research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­kis­[μ-2-(meth­­oxy­carbon­yl)benzoato-κ2O1:O1′]bis­­[(N,N-di­methyl­formamide-κO)copper(II)](CuCu) di­methyl­formamide disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Changzhi University, Changzhi, Shanxi 046011, People's Republic of China
*Correspondence e-mail: jlwangczu@163.com

Edited by V. Khrustalev, Russian Academy of Sciences, Russia (Received 22 February 2018; accepted 16 April 2018; online 24 April 2018)

The title compound, [Cu2(C9H7O4)4(C3H7NO)2]·2C3H7NO, crystallizes in the monoclinic P21/c space group, with the binuclear copper unit occupying a special position on an inversion center, i.e. the asymmetric unit of the crystal consists of one CuII ion, two 2-(meth­oxy­carbon­yl)benzoate ligands, and two DMF mol­ecules (one coordinated and one solvate). The binuclear complex displays a paddle-wheel-shaped structure with the two copper atoms being in a Jahn–Teller-distorted octa­hedral coordination environment. Each 2-(meth­oxy­carbon­yl)benzoate substituent acts as a bridging ligand and links two Cu atoms with a Cu—Cu distance of 2.633 (1) Å. The carboxyl­ate groups of the 2-(meth­oxy­carbon­yl)benzoate ligands adopt bidentate synsyn bridging modes, with dihedral angles between the carboxyl­ate planes and the aromatic rings of 18.427 (4) and 43.029 (6)°. In the crystal, adjacent DMF mol­ecules coordinated to copper atoms are arranged in a mutual `head-to-tail' manner by offset face-to-face ππ stacking inter­actions, resulting in chains along the c-axis direction. The planes of the coordinated DMF mol­ecules are parallel to each other, the distance between them being 3.33 (1) Å. A three-dimensional structure is assembled from the chains by weak C—H⋯O and C—H⋯π inter­molecular inter­actions involving the DMF solvent mol­ecules. One of the methyl ester groups is disordered over two sites with an occupancy ratio of 0.751 (12):0.249 (12).

1. Chemical context

Binuclear CuII compounds have been an attractive target for chemical research because of their wide range of applications in materials chemistry (Kato et al., 1964[Kato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99-128.]; Farraj et al., 2017[Farraj, Y., Smooha, A., Kamyshny, A. & Magdassi, S. (2017). Appl. Mater. Interfaces, 9, 8766-8773.]), environmental (Pokharel et al., 2014[Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nat. Commun. 5, 5883, 1-5.]) and biological chemistry (Ma & Moulton, 2007[Ma, Z. & Moulton, B. (2007). Cryst. Growth Des. 7, 196-198.]). In crystal engineering, the carboxyl­ate ligands are widely used as linkers in the design of binuclear complexes as they exhibit versatile coordination modes for bonding of different metal ions, including monodentate – chelating and monoatomic bridging, as well as bridging modes in synanti, antianti and synsyn conformations (Su et al., 2015[Su, F., Lu, L., Feng, S., Zhu, M., Gao, Z. & Dong, Y. (2015). Dalton Trans. 44, 7213-7222.]). Thus, carboxyl­ate ligands can adopt μ2-O, chelate or bridging modes to construct binuclear copper complexes. In addition, the Cu—Cu dimer can be tetra bridged by four carboxyl­ate groups to form a paddle-wheel building unit. Furthermore, the paddle-wheel building unit may be axially coordinated by means of two monodentate ligands to give the formula [Cu2(OOCR)4L2] (Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. (2012). Chem. Rev. 112, 782-835.]). For example, [Cu2(aspirinate)4L2] [L = N,N-di­methyl­formamide (DMF), 3-bromo­pyridine, quinoline, pyridine; Ma & Moulton, 2007[Ma, Z. & Moulton, B. (2007). Cryst. Growth Des. 7, 196-198.]], [Cu2(Sal)4(aceto­nitrile)2] (Sal = salicylate; Liu et al., 2017[Liu, Y., Wang, C., Xue, D., Xiao, M., Liu, J., Li, C. & Xiao, J. (2017). Chem. Eur. J. 23, 3062-3066.]), [Cu2[2-(meth­oxy­carbon­yl)benzoate]4(MeOH)(DMF)], (Liu et al., 2008[Liu, T.-H., Huang, L., Chen, F.-J., Xi, P.-X., Xu, Z.-H., Xu, M. & Zeng, Z.-Z. (2008). Anal. Sci. 24, x303-x304.]), [Cu2(2-(meth­oxy­carbon­yl) benzoate)4(aceto­nitrile)2] (Wang et al., 2013[Wang, J., Wang, C., Wang, Z. & Yang, B. (2013). Acta Cryst. E69, m19.]). In a similar way, binuclear copper coordination polymers (CPs) with paddle-wheel cluster units can be coordinated by functional ligands in the axial position, including 4,4′-bi­pyridine (Liu et al., 2005[Liu, P., Wang, Y.-Y., Li, D.-S., Luan, X.-J., Gao, S. & Shi, Q.-Z. (2005). Chin. J. Chem. 23, 204-210.]), pyrazine (Kitao et al., 2017[Kitao, T., Zhang, Y., Kitagawa, S., Wang, B. & Uemura, T. (2017). Chem. Soc. Rev. 46, 3108-3133.]), 2,5-bis­(4-pyrid­yl)-1,3,4-oxa­diazole (Hou et al., 2004[Hou, H., Xie, L., Li, G., Ge, T., Fan, Y. & Zhu, Y. (2004). New J. Chem. 28, 191-199.]), forming a class of multifunctional polymer materials. Moreover, it is well known that the solubility and lipophilicity are the key parameters of drugs, and the appropriate choice of an axial ligand affords the ability to significantly alter these properties.

[Scheme 1]

In this paper, we report the synthesis and crystal structure of a new binuclear copper complex [Cu2(2-(meth­oxy­carbon­yl)benzoate)4(DMF)2], (I)[link], containing the paddle-wheel building unit.

2. Structural commentary

The title compound crystallizes in the monoclinic P21/c space group, with the binuclear copper unit occupying a special position on the inversion center. The asymmetric unit consists of one CuII ion, two 2-(meth­oxy­carbon­yl)benzoate ligands, and two DMF mol­ecules (one coordinated and one solvate). The complex displays a paddle-wheel-shaped binuclear structure (Fig. 1[link]). If the Cu—Cu bonding contact is neglected, each CuII ion is penta­coordinated to four carboxyl­ate oxygen atoms [O1, O2i, O5 and O6i] of four 2-(meth­oxy­carbon­yl)benzoate ligands and one oxygen atom [O9] from the DMF mol­ecule. Both CuII ions exhibit Jahn–Teller square-pyramidal geometries (τ = 0), with four short Cu—O(carboxyl­ate) [1.934 (4) to 1.968 (4) Å; Table 1[link]] bond lengths in the equatorial plane and one long Cu—O(DMF) [2.132 (4) Å] bond length at the axial position. Each 2-(meth­oxy­carbon­yl)benzoate substituent acts as a bridging ligand and links two Cu atoms with a Cu—Cu(−x + 1, −y + 1, −z + 1) distance of 2.633 (1) Å; this is close to the 2.64 Å reported for the similar dinuclear complex [Cu2(OAc)4·2H2O] (Kato et al., 1964[Kato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99-128.]). However, the Cu—Cui distance in (I)[link] is slightly longer than the Cu—Cu separation of 2.56 Å in metallic copper (Jones et al., 1997[Jones, P. L., Jeffery, J. C., Maher, J. P., McCleverty, J. A., Rieger, P. H. & Ward, M. D. (1997). Inorg. Chem. 36, 3088-3095.]). The carboxyl­ate groups of the 2-(meth­oxy­carbon­yl)benzoate ligands adopt bidentate syn–syn bridging modes, with the dihedral angles between the carboxyl­ate planes and the aromatic rings of 18.427 (4) and 43.029 (6)°.

Table 1
Selected geometric parameters (Å, °)

Cu1—Cu1i 2.6329 (14) Cu1—O5 1.968 (4)
Cu1—O1 1.943 (4) Cu1—O6i 1.953 (4)
Cu1—O2i 1.934 (4) Cu1—O9 2.132 (4)
       
O2i—Cu1—O1 168.03 (18) O6i—Cu1—O5 168.06 (18)
O2i—Cu1—O6i 90.25 (19) O2i—Cu1—O9 99.14 (18)
O1—Cu1—O6i 89.05 (19) O1—Cu1—O9 92.82 (18)
O2i—Cu1—O5 88.7 (2) O6i—Cu1—O9 96.36 (17)
O1—Cu1—O5 89.48 (19) O5—Cu1—O9 95.55 (17)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
Mol­ecular structure of (I)[link] drawn with 30% probability displacement ellipsoids. Symmetry code: (i) –x + 1, –y + 1, –z + 1.

3. Supra­molecular features

The crystal structure of (I)[link] contains both coordinated and solvate DMF mol­ecules. As illustrated in Fig. 2[link], adjacent DMF mol­ecules coordinated to copper atoms are arranged in a mutual `head-to-tail' manner by offset face-to-face ππ stacking inter­actions (Wang et al., 2010[Wang, J., Liu, B. & Yang, B. (2010). Acta Cryst. C66, m280-m282.]), resulting in chains along the c-axis direction. The planes of the coordinated DMF mol­ecules are parallel to each other, the distance between them being 3.33 (1) Å. The three-dimensional structure of (I)[link] is assembled from these chains by further weak C—H⋯O inter­actions (H⋯A distances of 2.63–2.70 Å; Table 2[link]) and inter­molecular ππ inter­actions (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O3Ai 0.93 2.50 3.29 (3) 143
C23—H23A⋯O6ii 0.96 2.70 3.538 (11) 145
C3—H3⋯O10iii 0.93 2.63 3.284 (10) 128
C6—H6⋯O10iv 0.93 2.69 3.355 (11) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1.
[Figure 2]
Figure 2
The one-dimensional motif from the binuclear copper fragments of (I)[link] along the c-axis direction formed by ππ stacking inter­actions (dashed lines) between the coordinated DMF mol­ecules.
[Figure 3]
Figure 3
The crystal packing of (I)[link] showing the three-dimensional supra­molecular network along the c axis. The inter­molecular C—H⋯O hydrogen bonds are shown as yellow dotted lines.

4. Database survey

There are a number of Cu paddle-wheel structures [Cu2(OOCR)4L2] in the crystallographic literature with benzene carboxyl­ates derivatives (Cambridge Structural Database, Version 5.39, updated in November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). In most cases, both copper centers in these complexes feature a coordinated water mol­ecule in the axial position, which can be replaced by small solvent mol­ecules to generate potential binding sites; for example, L = Cl (Silva et al., 2001[Silva, M. R., Paixão, J. A., Beja, A. M., da Veiga, L. A. & Martín-Gil, J. (2001). J. Chem. Crystallogr. 31, 167-171.]), urea, ethanol, benzoic acid (Kato et al., 1964[Kato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99-128.]), N,N-di­methyl­formamide, 3-bromo­pyridine, quinoline, pyridine, isonicotinamide, nicotinamide, 3-phenyl­pyridine (Ma & Moulton, 2007[Ma, Z. & Moulton, B. (2007). Cryst. Growth Des. 7, 196-198.]), aceto­nitrile (Liu et al., 2017[Liu, Y., Wang, C., Xue, D., Xiao, M., Liu, J., Li, C. & Xiao, J. (2017). Chem. Eur. J. 23, 3062-3066.], Wang et al., 2013[Wang, J., Wang, C., Wang, Z. & Yang, B. (2013). Acta Cryst. E69, m19.]), methanol (Liu et al., 2008[Liu, T.-H., Huang, L., Chen, F.-J., Xi, P.-X., Xu, Z.-H., Xu, M. & Zeng, Z.-Z. (2008). Anal. Sci. 24, x303-x304.]), 2-picoline (Del Sesto et al., 2000[Del Sesto, R. E., Arif, A. M. & Miller, J. S. (2000). Inorg. Chem. 39, 4894-4902.]). Various polycarb­oxy­lic benzene derivatives have been synthesized to obtain porous coordination polymers (Guillerm et al., 2014[Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X. F., Adil, K., Lah, M. S. & Eddaoudi, M. (2014). Chem. Soc. Rev. 43, 6141-6172.]), which exhibit different properties owing to different substituent groups in the axial sites.

5. Synthesis and crystallization

The title complex was synthesized according to a literature procedure (Wang et al., 2013[Wang, J., Wang, C., Wang, Z. & Yang, B. (2013). Acta Cryst. E69, m19.]). 2-(Meth­oxy­carbon­yl)benzoic acid (180.0 mg, 1.0 mmol) and NaOH (40.0 mg, 1.0 mmol) were dissolved in a methanol solution (20 mL) while stirring at room temperature for 20 min. Then, 15 mL of a methanol solution containing Cu(NO3)2·3H2O (121 mg, 0.5 mmol) was added to the mixture, and the mixture was further stirred at room temperature for 90 min. The blue precipitate obtained was separated by filtration, washed with methanol and dried. The powder was dissolved in N,N-di­methyl­formamide, and blue single crystals were collected after slow evaporation at room temperature for several weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were positioned geometrically with C—H = 0.93–0.96 Å and refined using the riding model with fixed displacement parameters [Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for the other groups]. One of the methyl ester groups is disordered over two sets of sties with an occupancy ratio of 0.751 (12):0.249 (12). The displacement parameters of the O4/O4A and C9/C9A atoms of the disordered fragment were restrained to be similar (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C9H7O4)4(C3H7NO)2]·2C3H7NO
Mr 1136.07
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.7775 (12), 19.746 (2), 10.7957 (11)
β (°) 106.870 (2)
V3) 2606.6 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.90
Crystal size (mm) 0.45 × 0.34 × 0.21
 
Data collection
Diffractometer Bruker Photon 100
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.689, 0.834
No. of measured, independent and observed [I > 2σ(I)] reflections 12822, 4610, 2522
Rint 0.101
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.221, 1.01
No. of reflections 4610
No. of parameters 373
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.91, −0.54
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Tetrakis[µ-2-(methoxycarbonyl)benzoato-κ2O1:O1']bis[(N,N-dimethylformamide-κO)copper(II)](CuCu) dimethylformamide disolvate top
Crystal data top
[Cu2(C9H7O4)4(C3H7NO)2]·2C3H7NOF(000) = 1180
Mr = 1136.07Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7775 (12) ÅCell parameters from 2608 reflections
b = 19.746 (2) Åθ = 2.2–21.7°
c = 10.7957 (11) ŵ = 0.90 mm1
β = 106.870 (2)°T = 296 K
V = 2606.6 (4) Å3Block, blue
Z = 20.45 × 0.34 × 0.21 mm
Data collection top
Bruker Photon 100
diffractometer
2522 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.101
φ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1215
Tmin = 0.689, Tmax = 0.834k = 2317
12822 measured reflectionsl = 1212
4610 independent reflections
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.221 w = 1/[σ2(Fo2) + (0.1098P)2 + 2.5593P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4610 reflectionsΔρmax = 0.91 e Å3
373 parametersΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.51748 (6)0.48436 (4)0.62288 (7)0.0317 (3)
N10.4576 (5)0.4167 (3)0.9654 (5)0.0451 (14)
N20.0957 (5)0.9334 (4)0.6092 (6)0.0641 (19)
O10.4075 (4)0.4160 (2)0.5502 (4)0.0439 (12)
O20.3789 (3)0.4416 (2)0.3420 (4)0.0447 (12)
O50.4004 (3)0.5502 (2)0.6162 (4)0.0413 (11)
O60.3716 (3)0.5759 (2)0.4083 (4)0.0431 (12)
O70.1773 (7)0.5501 (4)0.7540 (7)0.116 (3)
O80.1653 (4)0.5121 (3)0.5590 (6)0.0668 (16)
O90.5355 (3)0.4523 (2)0.8165 (4)0.0409 (11)
O100.0745 (6)0.8955 (4)0.5178 (7)0.110 (3)
C10.3623 (5)0.4065 (3)0.4326 (7)0.0363 (16)
C20.2811 (5)0.3508 (3)0.3972 (6)0.0341 (15)
C30.2052 (5)0.3496 (4)0.2792 (7)0.0472 (18)
H30.2067120.3827140.2183990.057*
C40.1263 (6)0.3001 (4)0.2487 (7)0.053 (2)
H40.0747450.3000860.1677250.064*
C50.1230 (6)0.2512 (4)0.3359 (8)0.056 (2)
H50.0695380.2177440.3144630.067*
C60.1986 (6)0.2512 (4)0.4554 (8)0.0530 (19)
H60.1966030.2178540.5154690.064*
C70.2772 (6)0.3005 (4)0.4863 (7)0.0476 (18)
C80.3466 (11)0.3011 (6)0.6261 (14)0.048 (3)0.751 (12)
O30.3230 (6)0.3196 (4)0.7184 (7)0.064 (3)0.751 (12)
O40.4429 (10)0.2714 (6)0.6315 (11)0.060 (3)0.751 (12)
C90.5209 (13)0.2647 (9)0.7578 (13)0.097 (6)0.751 (12)
H9A0.5357730.3084690.7976280.145*0.751 (12)
H9B0.5874800.2454870.7491560.145*0.751 (12)
H9C0.4913820.2355980.8105550.145*0.751 (12)
C8A0.391 (4)0.283 (2)0.580 (5)0.052 (12)0.249 (12)
O3A0.4754 (18)0.2744 (13)0.561 (3)0.064 (8)0.249 (12)
O4A0.370 (2)0.2762 (16)0.688 (3)0.060 (4)0.249 (12)
C9A0.470 (4)0.259 (3)0.798 (5)0.096 (6)0.249 (12)
H9A10.4808230.2112970.8024310.144*0.249 (12)
H9A20.4597590.2752190.8779500.144*0.249 (12)
H9A30.5329240.2811170.7843240.144*0.249 (12)
C100.3532 (5)0.5818 (3)0.5149 (6)0.0356 (15)
C110.2753 (5)0.6360 (4)0.5253 (7)0.0441 (17)
C120.2796 (7)0.6975 (4)0.4697 (8)0.064 (2)
H120.3281280.7040140.4211110.077*
C130.2133 (8)0.7503 (5)0.4842 (10)0.085 (3)
H130.2172870.7923840.4471020.102*
C140.1418 (9)0.7390 (6)0.5547 (11)0.094 (3)
H140.0955590.7737740.5642120.113*
C150.1368 (7)0.6792 (6)0.6101 (9)0.079 (3)
H150.0887210.6734940.6595490.095*
C160.2008 (6)0.6260 (4)0.5959 (7)0.052 (2)
C170.1818 (6)0.5593 (5)0.6481 (9)0.064 (2)
C180.1415 (8)0.4457 (5)0.5937 (11)0.095 (3)
H18A0.1313020.4160730.5206690.143*
H18B0.2012150.4295330.6638890.143*
H18C0.0760070.4466030.6201920.143*
C190.4544 (6)0.4433 (4)0.8545 (6)0.0433 (17)
H190.3866420.4565000.8003060.052*
C200.5587 (7)0.3926 (4)1.0530 (8)0.072 (3)
H20A0.5449840.3747551.1295580.107*
H20B0.5885800.3576861.0115900.107*
H20C0.6097540.4294241.0762640.107*
C210.3581 (7)0.4049 (5)1.0006 (9)0.078 (3)
H21A0.3757880.3850561.0853300.117*
H21B0.3208360.4471121.0006520.117*
H21C0.3115700.3746570.9390370.117*
C220.0126 (9)0.9123 (5)0.5152 (10)0.089 (3)
H220.0245100.9102320.4343220.107*
C230.1986 (7)0.9484 (6)0.5900 (10)0.105 (4)
H23A0.2486670.9630750.6701710.157*
H23B0.2269120.9084780.5601930.157*
H23C0.1898530.9836150.5265280.157*
C240.0870 (9)0.9415 (9)0.7348 (11)0.149 (6)
H24A0.1553950.9572740.7908410.223*
H24B0.0306400.9738210.7336910.223*
H24C0.0688550.8987520.7657990.223*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0357 (4)0.0410 (5)0.0215 (4)0.0001 (4)0.0133 (3)0.0025 (4)
N10.069 (4)0.044 (4)0.030 (3)0.013 (3)0.027 (3)0.006 (3)
N20.051 (4)0.086 (5)0.050 (4)0.012 (4)0.007 (3)0.002 (4)
O10.050 (3)0.054 (3)0.028 (3)0.010 (2)0.012 (2)0.000 (2)
O20.047 (3)0.056 (3)0.031 (3)0.012 (2)0.013 (2)0.005 (2)
O50.045 (3)0.054 (3)0.028 (3)0.009 (2)0.016 (2)0.003 (2)
O60.046 (3)0.055 (3)0.032 (3)0.011 (2)0.017 (2)0.002 (2)
O70.155 (7)0.145 (7)0.075 (5)0.000 (6)0.077 (5)0.017 (5)
O80.067 (4)0.069 (4)0.075 (4)0.006 (3)0.038 (3)0.003 (3)
O90.041 (2)0.059 (3)0.026 (2)0.001 (2)0.015 (2)0.005 (2)
O100.072 (4)0.133 (7)0.115 (6)0.044 (5)0.013 (4)0.008 (5)
C10.031 (3)0.039 (4)0.040 (4)0.001 (3)0.012 (3)0.002 (3)
C20.036 (3)0.037 (4)0.034 (4)0.007 (3)0.016 (3)0.000 (3)
C30.045 (4)0.056 (5)0.041 (5)0.007 (4)0.014 (3)0.005 (4)
C40.049 (4)0.064 (5)0.044 (5)0.012 (4)0.008 (4)0.005 (4)
C50.045 (4)0.064 (6)0.064 (6)0.016 (4)0.024 (4)0.013 (4)
C60.055 (5)0.054 (5)0.053 (5)0.007 (4)0.020 (4)0.004 (4)
C70.046 (4)0.049 (5)0.047 (5)0.009 (4)0.011 (3)0.002 (4)
C80.058 (8)0.038 (7)0.050 (9)0.008 (5)0.019 (7)0.006 (6)
O30.088 (6)0.070 (6)0.048 (5)0.007 (4)0.040 (4)0.008 (4)
O40.072 (7)0.065 (6)0.036 (6)0.017 (5)0.001 (5)0.004 (5)
C90.101 (13)0.122 (11)0.049 (9)0.060 (11)0.008 (7)0.016 (8)
C8A0.08 (4)0.03 (2)0.05 (3)0.02 (2)0.03 (3)0.00 (2)
O3A0.043 (15)0.10 (2)0.045 (17)0.011 (12)0.013 (12)0.008 (14)
O4A0.070 (9)0.064 (7)0.035 (7)0.010 (7)0.000 (6)0.001 (6)
C9A0.101 (13)0.122 (11)0.048 (9)0.060 (11)0.007 (7)0.016 (8)
C100.028 (3)0.048 (4)0.031 (4)0.001 (3)0.008 (3)0.003 (3)
C110.044 (4)0.054 (5)0.034 (4)0.009 (3)0.012 (3)0.004 (3)
C120.064 (5)0.071 (6)0.064 (6)0.008 (5)0.030 (4)0.008 (5)
C130.097 (7)0.059 (6)0.103 (8)0.028 (6)0.034 (7)0.008 (6)
C140.101 (8)0.098 (9)0.092 (8)0.050 (7)0.040 (7)0.001 (7)
C150.073 (6)0.104 (8)0.073 (7)0.032 (6)0.043 (5)0.008 (6)
C160.046 (4)0.073 (6)0.040 (4)0.019 (4)0.018 (4)0.001 (4)
C170.044 (4)0.105 (8)0.052 (5)0.012 (5)0.028 (4)0.007 (5)
C180.080 (7)0.088 (8)0.139 (10)0.001 (6)0.067 (7)0.012 (7)
C190.047 (4)0.053 (5)0.033 (4)0.000 (3)0.016 (3)0.004 (3)
C200.096 (6)0.086 (7)0.040 (5)0.016 (5)0.030 (5)0.025 (5)
C210.103 (7)0.079 (6)0.077 (6)0.021 (5)0.065 (6)0.008 (5)
C220.091 (8)0.075 (7)0.085 (8)0.003 (6)0.000 (7)0.004 (6)
C230.066 (6)0.158 (11)0.100 (8)0.007 (7)0.039 (6)0.022 (8)
C240.097 (8)0.29 (2)0.067 (8)0.016 (10)0.040 (7)0.015 (10)
Geometric parameters (Å, º) top
Cu1—Cu1i2.6329 (14)C9—H9B0.9600
Cu1—O11.943 (4)C9—H9C0.9600
Cu1—O2i1.934 (4)C8A—O3A1.17 (5)
Cu1—O51.968 (4)C8A—O4A1.28 (6)
Cu1—O6i1.953 (4)O4A—C9A1.50 (5)
Cu1—O92.132 (4)C9A—H9A10.9600
N1—C191.297 (8)C9A—H9A20.9600
N1—C201.442 (10)C9A—H9A30.9600
N1—C211.448 (9)C10—C111.488 (9)
N2—C221.306 (10)C11—C121.363 (10)
N2—C241.401 (11)C11—C161.395 (9)
N2—C231.421 (10)C12—C131.381 (11)
O1—C11.247 (7)C12—H120.9300
O2—C11.266 (7)C13—C141.367 (13)
O5—C101.251 (7)C13—H130.9300
O6—C101.245 (7)C14—C151.335 (13)
O7—C171.176 (9)C14—H140.9300
O8—C171.313 (10)C15—C161.366 (11)
O8—C181.420 (10)C15—H150.9300
O9—C191.234 (7)C16—C171.480 (12)
O10—C221.169 (11)C18—H18A0.9600
C1—C21.485 (9)C18—H18B0.9600
C2—C31.359 (9)C18—H18C0.9600
C2—C71.393 (9)C19—H190.9300
C3—C41.374 (9)C20—H20A0.9600
C3—H30.9300C20—H20B0.9600
C4—C51.357 (10)C20—H20C0.9600
C4—H40.9300C21—H21A0.9600
C5—C61.370 (10)C21—H21B0.9600
C5—H50.9300C21—H21C0.9600
C6—C71.367 (9)C22—H220.9300
C6—H60.9300C23—H23A0.9600
C7—C81.513 (16)C23—H23B0.9600
C7—C8A1.55 (5)C23—H23C0.9600
C8—O31.179 (15)C24—H24A0.9600
C8—O41.349 (19)C24—H24B0.9600
O4—C91.442 (16)C24—H24C0.9600
C9—H9A0.9600
O2i—Cu1—O1168.03 (18)O4A—C9A—H9A2109.5
O2i—Cu1—O6i90.25 (19)H9A1—C9A—H9A2109.5
O1—Cu1—O6i89.05 (19)O4A—C9A—H9A3109.5
O2i—Cu1—O588.7 (2)H9A1—C9A—H9A3109.5
O1—Cu1—O589.48 (19)H9A2—C9A—H9A3109.5
O6i—Cu1—O5168.06 (18)O6—C10—O5126.1 (6)
O2i—Cu1—O999.14 (18)O6—C10—C11116.6 (6)
O1—Cu1—O992.82 (18)O5—C10—C11117.1 (6)
O6i—Cu1—O996.36 (17)C12—C11—C16119.2 (7)
O5—Cu1—O995.55 (17)C12—C11—C10119.6 (6)
O2i—Cu1—Cu1i85.81 (13)C16—C11—C10121.2 (7)
O1—Cu1—Cu1i82.24 (13)C11—C12—C13121.2 (8)
O6i—Cu1—Cu1i83.61 (13)C11—C12—H12119.4
O5—Cu1—Cu1i84.46 (13)C13—C12—H12119.4
O9—Cu1—Cu1i175.05 (13)C14—C13—C12118.1 (9)
C19—N1—C20121.4 (6)C14—C13—H13120.9
C19—N1—C21120.8 (7)C12—C13—H13120.9
C20—N1—C21117.6 (6)C15—C14—C13121.4 (9)
C22—N2—C24120.9 (9)C15—C14—H14119.3
C22—N2—C23122.1 (9)C13—C14—H14119.3
C24—N2—C23117.1 (8)C14—C15—C16121.5 (8)
C1—O1—Cu1125.6 (4)C14—C15—H15119.3
C1—O2—Cu1i121.4 (4)C16—C15—H15119.3
C10—O5—Cu1122.0 (4)C15—C16—C11118.6 (8)
C10—O6—Cu1i123.9 (4)C15—C16—C17118.1 (7)
C17—O8—C18117.6 (7)C11—C16—C17123.1 (7)
C19—O9—Cu1120.4 (4)O7—C17—O8124.0 (10)
O1—C1—O2125.0 (6)O7—C17—C16124.6 (10)
O1—C1—C2117.1 (6)O8—C17—C16111.3 (7)
O2—C1—C2118.0 (6)O8—C18—H18A109.5
C3—C2—C7118.5 (6)O8—C18—H18B109.5
C3—C2—C1120.5 (6)H18A—C18—H18B109.5
C7—C2—C1120.9 (6)O8—C18—H18C109.5
C2—C3—C4120.6 (7)H18A—C18—H18C109.5
C2—C3—H3119.7H18B—C18—H18C109.5
C4—C3—H3119.7O9—C19—N1124.1 (7)
C5—C4—C3120.6 (7)O9—C19—H19118.0
C5—C4—H4119.7N1—C19—H19118.0
C3—C4—H4119.7N1—C20—H20A109.5
C4—C5—C6119.8 (7)N1—C20—H20B109.5
C4—C5—H5120.1H20A—C20—H20B109.5
C6—C5—H5120.1N1—C20—H20C109.5
C7—C6—C5119.8 (7)H20A—C20—H20C109.5
C7—C6—H6120.1H20B—C20—H20C109.5
C5—C6—H6120.1N1—C21—H21A109.5
C6—C7—C2120.6 (7)N1—C21—H21B109.5
C6—C7—C8115.1 (7)H21A—C21—H21B109.5
C2—C7—C8123.7 (7)N1—C21—H21C109.5
C6—C7—C8A119.2 (17)H21A—C21—H21C109.5
C2—C7—C8A113.0 (18)H21B—C21—H21C109.5
O3—C8—O4123.5 (13)O10—C22—N2129.6 (11)
O3—C8—C7128.7 (13)O10—C22—H22115.2
O4—C8—C7107.7 (12)N2—C22—H22115.2
C8—O4—C9116.9 (13)N2—C23—H23A109.5
O4—C9—H9A109.5N2—C23—H23B109.5
O4—C9—H9B109.5H23A—C23—H23B109.5
H9A—C9—H9B109.5N2—C23—H23C109.5
O4—C9—H9C109.5H23A—C23—H23C109.5
H9A—C9—H9C109.5H23B—C23—H23C109.5
H9B—C9—H9C109.5N2—C24—H24A109.5
O3A—C8A—O4A126 (5)N2—C24—H24B109.5
O3A—C8A—C7131 (5)H24A—C24—H24B109.5
O4A—C8A—C7102 (4)N2—C24—H24C109.5
C8A—O4A—C9A113 (4)H24A—C24—H24C109.5
O4A—C9A—H9A1109.5H24B—C24—H24C109.5
Cu1—O1—C1—O22.2 (9)O3A—C8A—O4A—C9A5 (6)
Cu1—O1—C1—C2179.2 (4)C7—C8A—O4A—C9A180 (3)
Cu1i—O2—C1—O11.3 (9)Cu1i—O6—C10—O51.1 (9)
Cu1i—O2—C1—C2179.8 (4)Cu1i—O6—C10—C11172.8 (4)
O1—C1—C2—C3159.7 (6)Cu1—O5—C10—O60.9 (9)
O2—C1—C2—C318.9 (9)Cu1—O5—C10—C11173.0 (4)
O1—C1—C2—C716.9 (9)O6—C10—C11—C1241.0 (9)
O2—C1—C2—C7164.5 (6)O5—C10—C11—C12133.5 (7)
C7—C2—C3—C40.2 (10)O6—C10—C11—C16141.9 (7)
C1—C2—C3—C4176.5 (6)O5—C10—C11—C1643.6 (9)
C2—C3—C4—C50.3 (11)C16—C11—C12—C131.3 (12)
C3—C4—C5—C60.2 (11)C10—C11—C12—C13175.9 (8)
C4—C5—C6—C70.1 (11)C11—C12—C13—C140.9 (14)
C5—C6—C7—C20.0 (11)C12—C13—C14—C151.1 (17)
C5—C6—C7—C8172.2 (9)C13—C14—C15—C161.9 (17)
C5—C6—C7—C8A148 (2)C14—C15—C16—C112.2 (14)
C3—C2—C7—C60.1 (10)C14—C15—C16—C17173.3 (9)
C1—C2—C7—C6176.6 (6)C12—C11—C16—C151.9 (11)
C3—C2—C7—C8171.6 (9)C10—C11—C16—C15175.2 (7)
C1—C2—C7—C85.1 (12)C12—C11—C16—C17173.4 (8)
C3—C2—C7—C8A150.1 (19)C10—C11—C16—C179.5 (11)
C1—C2—C7—C8A33 (2)C18—O8—C17—O70.5 (12)
C6—C7—C8—O374.5 (14)C18—O8—C17—C16177.6 (6)
C2—C7—C8—O397.4 (13)C15—C16—C17—O751.0 (12)
C6—C7—C8—O4101.3 (10)C11—C16—C17—O7133.7 (9)
C2—C7—C8—O486.8 (12)C15—C16—C17—O8126.0 (8)
O3—C8—O4—C92 (2)C11—C16—C17—O849.3 (10)
C7—C8—O4—C9178.1 (12)Cu1—O9—C19—N1171.9 (5)
C6—C7—C8A—O3A106 (4)C20—N1—C19—O92.4 (11)
C2—C7—C8A—O3A45 (5)C21—N1—C19—O9177.0 (7)
C6—C7—C8A—O4A70 (3)C24—N2—C22—O102.6 (18)
C2—C7—C8A—O4A139 (2)C23—N2—C22—O10176.5 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3Ai0.932.503.29 (3)143
C23—H23A···O6ii0.962.703.538 (11)145
C3—H3···O10iii0.932.633.284 (10)128
C6—H6···O10iv0.932.693.355 (11)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1, z+1.
 

Funding information

The authors thank the National Natural Science Foundation of the People's Republic of China (grant No. 21602016) and the Scientific Research Foundation for PhDs of Changzhi University.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDel Sesto, R. E., Arif, A. M. & Miller, J. S. (2000). Inorg. Chem. 39, 4894–4902.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarraj, Y., Smooha, A., Kamyshny, A. & Magdassi, S. (2017). Appl. Mater. Interfaces, 9, 8766–8773.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X. F., Adil, K., Lah, M. S. & Eddaoudi, M. (2014). Chem. Soc. Rev. 43, 6141–6172.  CrossRef CAS Google Scholar
First citationHou, H., Xie, L., Li, G., Ge, T., Fan, Y. & Zhu, Y. (2004). New J. Chem. 28, 191–199.  CSD CrossRef CAS Google Scholar
First citationJones, P. L., Jeffery, J. C., Maher, J. P., McCleverty, J. A., Rieger, P. H. & Ward, M. D. (1997). Inorg. Chem. 36, 3088–3095.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99–128.  CrossRef CAS Web of Science Google Scholar
First citationKitao, T., Zhang, Y., Kitagawa, S., Wang, B. & Uemura, T. (2017). Chem. Soc. Rev. 46, 3108–3133.  CrossRef CAS Google Scholar
First citationLiu, T.-H., Huang, L., Chen, F.-J., Xi, P.-X., Xu, Z.-H., Xu, M. & Zeng, Z.-Z. (2008). Anal. Sci. 24, x303–x304.  Google Scholar
First citationLiu, P., Wang, Y.-Y., Li, D.-S., Luan, X.-J., Gao, S. & Shi, Q.-Z. (2005). Chin. J. Chem. 23, 204–210.  CAS Google Scholar
First citationLiu, Y., Wang, C., Xue, D., Xiao, M., Liu, J., Li, C. & Xiao, J. (2017). Chem. Eur. J. 23, 3062–3066.  CSD CrossRef CAS Google Scholar
First citationMa, Z. & Moulton, B. (2007). Cryst. Growth Des. 7, 196–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationPokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nat. Commun. 5, 5883, 1–5.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, M. R., Paixão, J. A., Beja, A. M., da Veiga, L. A. & Martín-Gil, J. (2001). J. Chem. Crystallogr. 31, 167–171.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, F., Lu, L., Feng, S., Zhu, M., Gao, Z. & Dong, Y. (2015). Dalton Trans. 44, 7213–7222.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D. W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, J., Liu, B. & Yang, B. (2010). Acta Cryst. C66, m280–m282.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, J., Wang, C., Wang, Z. & Yang, B. (2013). Acta Cryst. E69, m19.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds