weak interactions in crystals\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An exploration of O—H⋯O and C—H⋯π inter­actions in a long-chain-ester-substituted phenyl­phenol: methyl 10-[4-(4-hydroxyphenyl)phen­oxy]decanoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 27 October 2017; accepted 17 November 2017; online 17 April 2018)

An understanding of the driving forces resulting in crystallization vs organogel formation is essential to the development of modern soft materials. In the mol­ecular structure of the title compound, methyl 10-[4-(4-hydroxyphenyl)phen­oxy]decanoate (MBO10Me), C23H30O4, the aromatic rings of the biphenyl group are canted by 6.6 (2)° and the long-chain ester group has an extended conformation. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains along [10[\overline{3}]]. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C—H⋯π inter­actions, forming a three-dimensional supra­molecular structure. The extended structure exhibits a lamellar sheet arrangement of mol­ecules stacking along the b-axis direction. Each mol­ecule has six nearest neighbors and the seven-mol­ecule bundles stack to form a columnar superstructure. Inter­action energies within the bundles are dominated by dispersion forces, whereas inter­columnar inter­actions have a greater electrostatic component.

1. Chemical context

In a gel, the scaffold mol­ecules (the gelator) assemble into a network of fibers, which trap large numbers of solvent mol­ecules by way of non-covalent inter­actions (Weiss, 2014[Weiss, R. G. (2014). J. Am. Chem. Soc. 136, 7519-7530.]). Organogels, which are obtained by dissolving a small amount of a low-mol­ecular-mass organic gelator in an organic solvent, have myriad uses, including drug delivery and biomedical diagnostics (Wu & Wang, 2016[Wu, H.-Q. & Wang, C.-C. (2016). Langmuir, 32, 6211-6225.]; Tibbitt et al., 2016[Tibbitt, M. W., Dahlman, J. E. & Langer, R. (2016). J. Am. Chem. Soc. 138, 704-717.]), medical implants (Liow et al., 2016[Liow, S. S., Dou, Q., Kai, D., Karim, A. A., Zhang, K., Xu, F. & Loh, X. J. (2016). ACS Biomater. Sci. Eng. 2, 295-316.]; Yasmeen et al., 2014[Yasmeen, S., Lo, M. K., Bajracharya, S. & Roldo, M. (2014). Langmuir, 30, 12977-12985.]), and tissue engineering (Xavier et al., 2015[Xavier, J. R., Thakur, T., Desai, P., Jaiswal, M. K., Sears, N., Cosgriff-Hernandez, E., Kaunas, R. & Gaharwar, A. K. (2015). ACS Nano, 9, 3109-3118.]; Yan et al., 2015[Yan, L.-P., Oliveira, J. M., Oliveira, A. L. & Reis, R. L. (2015). ACS Biomater. Sci. Eng. 1, 183-200.]).

For a gel, self-assembly of a three-dimensional arrangement of mol­ecules incorporating a large number of solvent mol­ecules results in a thermodynamically stable state, whereas self-assembly followed by crystallization gives a solid. The factors resulting in gelation rather than crystallization are subtle and, as a result, there are few examples of single-crystal structure determinations of organogelators (Adhikari et al., 2016[Adhikari, B. R., Kim, D., Bae, J. H., Yeon, J., Roshan, K. C., Kang, S. K. & Lee, E. H. (2016). Cryst. Growth Des. 16, 7198-7204.]; Rojek et al., 2015[Rojek, T., Lis, T. & Matczak-Jon, E. (2015). Acta Cryst. C71, 593-597.]; Cui et al., 2010[Cui, J., Shen, Z. & Wan, X. (2010). Langmuir, 26, 97-103.]; Martin et al., 2016[Martin, A. D., Wojciechowski, J. P., Bhadbhade, M. M. & Thordarson, P. (2016). Langmuir, 32, 2245-2250.]; Geiger, Zick et al., 2017[Geiger, H. C., Zick, P. L., Roberts, W. R. & Geiger, D. K. (2017). Acta Cryst. C73, 350-356.]; Geiger, Geiger et al., 2017[Geiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791-796.]).

Traditional hydrogen bonding, van der Waals forces, and ππ and C—H⋯π inter­actions play important roles in determining the stability of organogels and crystalline lattices. The combination of solid-state structural data obtained via X-ray diffraction analysis and inter­action energies determined using computational techniques affords a powerful means of exploring the subtle differences in the driving force for crystallization vs gelation.

[Scheme 1]

Recently, we reported the crystal structures and gelation properties of two bis­(long-chain-ester)-substituted biphenyl compounds (Geiger, Geiger et al., 2017[Geiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791-796.]). To further understand the factors favoring gelation over crystallization, we have extended our exploration to a mono-substituted analog. In this report, we explore the structure, gelation ability, and inter­molecular inter­actions exhibited by methyl 10-[4-(4-hydroxyphenyl)phenoxy]decanoate (MBO10Me). Using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au]), we have estimated the strengths of the primary inter­molecular inter­actions found in the supra­molecular structure. As expected, the presence of the phenol functional group results in an extended O—H⋯O and C–H⋯O hydrogen-bonding network. In addition, van der Waals forces and C—H⋯π inter­actions are observed.

2. Structural commentary

MBO10Me was isolated as a side product during the synthesis of the corresponding bis­(ester-substituted)biphenyl, 4,4′-bis­(9-methyl­oxycarbonyl­non­yloxy)biphenyl, BBO10Me (see Scheme below).

[Scheme 2]

Although BBO10Me readily forms stable gels in a variety of solvents, MBO10Me does not behave as an organogelator in any of the solvents examined. The solid-state structures of BBO6Me and BBO6Et have been reported (Geiger, Geiger et al., 2017[Geiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791-796.]). BBO6Me behaves as an organogelator, but BBO6Et does not. The two compounds are isostructural and a comparative energy framework analysis (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) showed that the ethyl ester exhibits weaker inter­columnar inter­actions. The structural characterization of MBO10Me was undertaken in an effort to better understand the subtle differences in the strengths of the inter­molecular inter­actions that control gelation.

Fig. 1[link] shows the mol­ecular structure of MBO10Me with the atom-labeling scheme. The dihedral angle between the two phenyl rings is 6.6 (2) ° and the C6—C1—C7—C12 torsion angle is −6.3 (4)°. The ester chain adopts a straight-chain conformation, as is found in similar structures (Geiger, Zick et al., 2017[Geiger, H. C., Zick, P. L., Roberts, W. R. & Geiger, D. K. (2017). Acta Cryst. C73, 350-356.]; Geiger, Geiger et al., 2017[Geiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791-796.]), which maximizes the inter­molecular van der Waals inter­actions. The ester chain is, however, tilted out of the plane of the phenyl ring to which it is attached, with a C13—O2—C4—C3 torsion angle of 173.2 (3)°.

[Figure 1]
Figure 1
View of the mol­ecular structure of MBO10Me, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

As seen in Table 1[link] and Fig. 2[link], O—H⋯O hydrogen bonds, in which the phenol group is the donor and the ester carbonyl group is the acceptor, and C—H⋯O hydrogen bonds, in which the methyl group is the donor and the phenol is the acceptor, result in sheets parallel to the ac plane that are composed of inter­linked R44(52) rings. The structure is extended into the third dimension via C—H⋯π inter­actions involving phenyl ring hydrogen atoms and the π systems of both phenyl rings (see Fig. 3[link] and Table 1[link]). The result is a columnar structure similar to that observed in BBO6Me and BBO6Et (Geiger, Geiger et al., 2017[Geiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791-796.]) with an important difference: the columns are joined by an O—H⋯O hydrogen-bonding network in which the phenol is the donor and the ester carbonyl is the acceptor (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C1–C6 and C7–C12, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.89 (4) 1.96 (4) 2.813 (5) 162 (4)
C23—H23C⋯O1ii 0.98 2.46 3.149 (5) 127
C23—H23A⋯O3iii 0.98 2.74 3.564 (6) 142
C3—H3⋯O2iv 0.95 2.82 3.627 (4) 143
C2—H2⋯Cg1iv 0.95 2.98 3.737 (4) 138
C9—H9⋯Cg1iv 0.95 2.89 3.716 (4) 146
C5—H5⋯Cg2v 0.95 2.95 3.722 (4) 139
C12—H12⋯Cg2v 0.95 2.83 3.661 (4) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{5\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [x, -y, z-{\script{1\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Two views of the packing in MBO10Me showing the layers parallel to (010). Only the H atoms involved in the O—H⋯O and C—H⋯O hydrogen bonds are shown. Symmetry codes: (a) x + [{1\over 2}], −y + [{1\over 2}], z − [{3\over 2}]; (b) x, y z + 1; (c) x − [{1\over 2}], −y + [{1\over 2}], z + [{3\over 2}]; (d) x, y, z − 1.
[Figure 3]
Figure 3
Partial crystal packing diagram of MBO10Me, emphasizing the C—H⋯π inter­actions. Only H atoms involved in these inter­actions are shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, V5.38, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 4,4′-biphenols yielded 21 structures, excluding those in which the biphenol was coordinated to a metal. There are 15 examples of structures with biphenol mol­ecules in which the dihedral angle between phenyl rings is 2° or less. [The calculated rotational barrier in the gas phase for 4,4′-biphenyl is ca 8 kJ mol−1 (Johansson & Olsen, 2008[Johansson, M. P. & Olsen, J. (2008). J. Chem. Theory Comput. 4, 1460-1471.]).] In the title compound, MBO10Me, the dihedral angle between the two phenyl rings is 6.6 (2)°.

5. Hirshfeld surface analysis, inter­action energies

Using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au]), the Hirshfeld surface and fingerprint plots were calculated (see Section 9 for details). As seen in Fig. 4[link], the closest inter­molecular contacts involve the phenol group. Each of the types of hydrogen-bonding inter­actions are clearly discernible in the fingerprint plot. The presence of C—H⋯π bonding is also apparent. The H⋯O and H⋯C surface-contact coverages are 17.6% and 22.9%, respectively. No significant ππ inter­actions are are observed [the closest ring centroid-to-ring centroid distance is 4.921 (2) Å].

[Figure 4]
Figure 4
Fingerprint plots for MBO10Me, including (a) all inter­molecular contacts, (b) H⋯O inter­actions, (c) C—H⋯π inter­actions, and (d) Hirshfeld surface for MBO10Me.

Table 2[link] shows the results of the inter­action energy calculations (see Section 9 for details). The results are represented graphically in Fig. 5[link] as framework energy diagrams (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]). In an energy framework, the cylinder size correlates to the strength of the inter­action. The framework is reminiscent of that observed in the bis­(substituted) compounds with inter­actions that are primarily dispersive in nature between the six nearest intra­columnar neighbors. However, the inter­columnar inter­actions, which possess the O—H⋯O hydrogen bonding, have greater electrostatic components. These findings show that the van der Waals and C—H⋯π inter­actions result in significantly favorable inter­molecular attractive forces, surpassing the strength of the inter­columnar O—H⋯O inter­action.

Table 2
Inter­action energies

N refers to the number of mol­ecules with an R mol­ecular centroid-to-centroid distance (Å). Energies are in kJ mol−1.

N primary inter­action R Eele Epol Edis Erep Etot
2 C—H⋯π 4.91 −13.6 −2.8 −83.5 43.2 −62.5
2 C—H⋯π 4.98 −13.5 −3.5 −76.1 38.7 −59.2
2 H⋯H 6.70 −8.2 −1.2 −38.2 18.1 −31.7
2 O1—H⋯O3 23.60 −34.2 −7.1 −10.6 33.0 −30.3
2 C—H⋯O1 27.25 −6.1 −1.3 −5.5 8.8 −6.8
2 C—H⋯O1 25.53 −1.9 −0.4 −4.4 1.6 −5.1
Scale factors used to determine Etot: kele = 1.057, kpol = 0.740, kdis = 0.871, krep = 0.618 (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). See Section 9 for calculation details.
[Figure 5]
Figure 5
Energy framework diagram for separate electrostatic (top, red) and dispersion (middle, green) components of MBO10Me and the total inter­action energy (bottom, blue). The energy factor scale is 120 and the cut-off is 5.00 kJ mol−1.

Based on the three structures reported to date, a columnar supra­molecular structure appears to be a common feature of long-chain ester compounds with a biphenyl core. The findings reported herein support the rationale posited for the difference in gelation ability exhibited by BBO6Me and BBO6Et (Geiger, Geiger et al., 2017[Geiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791-796.]), i.e., the strength of the inter­columnar inter­actions. The O—H⋯O hydrogen bonds between columns in MBO10Me are about twice the strength of the inter­columnar inter­actions found in BBO6Me (−15.5 kJ mol−1) and three times that found in BBO6Et (−10.1 kJ mol−1). A possible explanation for the lack of gelation ability of MBO10Me is that the stronger inter­columnar inter­actions favor formation of the crystal lattice rather than incorporation of a large number of solvent mol­ecules giving a gel.

6. Synthesis and crystallization

6.1. Methyl 10-[4-(4-hydroxy­phenyl)phen­oxy]decan­oate (MBO10Me)

The title compound was isolated as a minor side-product during the synthesis of the organogelator 4,4′-bis-(9-methyl­oxycarbonyl­non­yloxy)biphenyl (BBO10Me). 1H NMR (400 MHz, DMSO-d6) δ 9.40 (s, 1H), 7.44 (d, 2H), 7.38 (d, 2H), 6.92 (d, 2H), 6.68 (d, 2H), 4.02 (t, 2H), 3.60 (s, 3H), 2.20 (t, 2H), 1.73 (m, 2H), 1.35–1.45 (m, 12H). Single crystals suitable for X-ray analysis were isolated from the NMR tube in DMSO-d6.

7. Gelation studies

The gelation behavior of MBO10Me was examined in n-octa­nol, n-hexa­nol, n-butanol and ethanol. Gelation attempts were carried out using a 2.0% (wt/wt) of the compound and solvent in a screw-capped vial. The mixture was heated until all the solid dissolved and was then allowed to cool to room temperature. Formation of a gel is indicated when inversion of the vial yields no movement of the solvent.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference-Fourier maps. H atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the aromatic positions, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for the methyl­ene groups, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for the methyl group. The phenolic H atom was refined freely, including the isotropic displacement parameter. A meaningless Flack parameter and corresponding standard deviation were observed.

Table 3
Experimental details

Crystal data
Chemical formula C23H30O4
Mr 370.47
Crystal system, space group Monoclinic, Cc
Temperature (K) 200
a, b, c (Å) 42.287 (9), 7.2848 (15), 6.7006 (13)
β (°) 91.226 (12)
V3) 2063.7 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.40 × 0.20
 
Data collection
Diffractometer Bruker SMART X2S benchtop
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.64, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 10387, 3095, 2363
Rint 0.060
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.05
No. of reflections 3095
No. of parameters 249
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.12, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

9. Hirshfeld surface, fingerprint plots, inter­action energy calculations

Hirshfeld surfaces, fingerprint plots, inter­action energies and energy frameworks (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) were calculated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au]). Inter­action energies were calculated employing the CE-B3LYP/6-31G(d,p) functional/basis set combination and are corrected for basis set superposition energy using the counterpoise method. The inter­action energy is broken down as

Etot = keleE′ele + kpolE′pol + kdisE′dis + krepE′repwhere the k values are scale factors, E′ele represents the electrostatic component, E′pol the polarization energy, E′dis the dispersion energy, and E′rep the exchange-repulsion energy (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]; Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). The C—H bond lengths were converted to normalized values based on neutron diffraction results (Allen et al., 2004[Allen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2004). International Tables for Crystallography, 3rd ed., edited by E. Prince, pp. 790-811. Heidelberg: Springer Verlag.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Methyl 10-[4-(4-hydroxyphenyl)phenoxy]decanoate top
Crystal data top
C23H30O4F(000) = 800
Mr = 370.47Dx = 1.192 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 42.287 (9) ÅCell parameters from 122 reflections
b = 7.2848 (15) Åθ = 3.1–19.4°
c = 6.7006 (13) ŵ = 0.08 mm1
β = 91.226 (12)°T = 200 K
V = 2063.7 (7) Å3Plate, clear colorless
Z = 40.40 × 0.40 × 0.20 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
3095 independent reflections
Radiation source: sealed microfocus tube2363 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.060
Detector resolution: 8.3330 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = 4450
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 88
Tmin = 0.64, Tmax = 0.98l = 88
10387 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.063P)2 + 0.2432P]
where P = (Fo2 + 2Fc2)/3
3095 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.12 e Å3
2 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73167 (7)0.2440 (4)0.5378 (5)0.0736 (9)
H10.7463 (10)0.294 (5)0.458 (7)0.077 (14)*
O20.51725 (5)0.2275 (3)0.0196 (3)0.0512 (7)
O30.28496 (7)0.1690 (4)1.2022 (5)0.0826 (9)
O40.29945 (7)0.3224 (4)1.4752 (4)0.0800 (9)
C10.60847 (8)0.2531 (4)0.2156 (5)0.0383 (8)
C20.58278 (8)0.1710 (5)0.3145 (5)0.0442 (8)
H20.58580.11670.44150.053*
C30.55318 (8)0.1662 (5)0.2339 (5)0.0447 (8)
H30.53640.1080.30580.054*
C40.54735 (8)0.2444 (5)0.0505 (5)0.0401 (9)
C50.57240 (9)0.3313 (5)0.0505 (5)0.0508 (9)
H50.5690.38920.17530.061*
C60.60217 (8)0.3326 (4)0.0319 (6)0.0499 (9)
H60.6190.39030.04020.06*
C70.64072 (7)0.2542 (4)0.3000 (5)0.0392 (8)
C80.64804 (9)0.1590 (5)0.4734 (6)0.0600 (10)
H80.63170.09420.54270.072*
C90.67810 (9)0.1556 (5)0.5479 (6)0.0662 (11)
H90.68220.08680.6650.079*
C100.70209 (8)0.2498 (4)0.4554 (6)0.0522 (10)
C110.69596 (9)0.3481 (5)0.2861 (6)0.0600 (10)
H110.71240.41530.22070.072*
C120.66573 (8)0.3490 (5)0.2107 (5)0.0552 (10)
H120.66190.41740.09290.066*
C130.51112 (8)0.2887 (5)0.2186 (5)0.0469 (9)
H13A0.51180.42440.22550.056*
H13B0.52720.23850.31350.056*
C140.47868 (8)0.2203 (5)0.2700 (6)0.0483 (9)
H14A0.47880.08440.26850.058*
H14B0.46330.26240.16630.058*
C150.46794 (8)0.2860 (4)0.4725 (5)0.0437 (8)
H15A0.46820.42190.47480.052*
H15B0.48310.24210.57660.052*
C160.43495 (8)0.2191 (4)0.5219 (5)0.0426 (8)
H16A0.41990.26390.41780.051*
H16B0.43480.08320.51710.051*
C170.42356 (8)0.2799 (4)0.7235 (5)0.0429 (8)
H17A0.4240.41570.72890.052*
H17B0.43850.23380.82760.052*
C180.39041 (9)0.2150 (4)0.7728 (5)0.0448 (8)
H18A0.37540.2610.66910.054*
H18B0.38990.07920.76830.054*
C190.37950 (8)0.2779 (4)0.9753 (5)0.0442 (8)
H19A0.38110.41340.98110.053*
H19B0.39420.22791.07850.053*
C200.34601 (8)0.2228 (5)1.0281 (5)0.0469 (9)
H20A0.3310.27030.92490.056*
H20B0.34440.08731.02910.056*
C210.33705 (9)0.2965 (5)1.2292 (6)0.0546 (10)
H21A0.35220.24751.33040.066*
H21B0.33960.43161.22720.066*
C220.30427 (9)0.2536 (5)1.2951 (6)0.0529 (9)
C230.26842 (13)0.2933 (7)1.5605 (9)0.0984 (18)
H23A0.26350.16181.56050.148*
H23B0.25240.35891.48050.148*
H23C0.26850.33971.69780.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0492 (17)0.092 (2)0.080 (2)0.0003 (13)0.0247 (15)0.0105 (16)
O20.0425 (14)0.0684 (17)0.0429 (15)0.0038 (12)0.0052 (12)0.0054 (12)
O30.0494 (15)0.109 (2)0.090 (2)0.0115 (16)0.0097 (14)0.0197 (19)
O40.076 (2)0.100 (2)0.0656 (19)0.0162 (16)0.0320 (16)0.0190 (17)
C10.046 (2)0.0295 (16)0.040 (2)0.0002 (12)0.0028 (15)0.0012 (13)
C20.048 (2)0.0502 (19)0.0340 (19)0.0005 (15)0.0007 (15)0.0056 (15)
C30.0430 (18)0.049 (2)0.042 (2)0.0037 (14)0.0013 (15)0.0019 (15)
C40.0399 (19)0.0411 (19)0.040 (2)0.0010 (14)0.0033 (16)0.0048 (15)
C50.054 (2)0.052 (2)0.047 (2)0.0067 (16)0.0087 (17)0.0128 (17)
C60.045 (2)0.0500 (18)0.055 (2)0.0121 (14)0.0052 (15)0.0159 (16)
C70.045 (2)0.0299 (16)0.043 (2)0.0006 (12)0.0043 (16)0.0003 (13)
C80.055 (2)0.066 (2)0.060 (2)0.0132 (16)0.0147 (18)0.0250 (19)
C90.061 (2)0.071 (2)0.066 (3)0.0080 (19)0.021 (2)0.0298 (19)
C100.048 (2)0.049 (2)0.060 (3)0.0047 (15)0.0116 (18)0.0014 (17)
C110.047 (2)0.069 (2)0.064 (3)0.0045 (16)0.0020 (19)0.012 (2)
C120.048 (2)0.067 (2)0.051 (2)0.0021 (16)0.0061 (18)0.0191 (17)
C130.047 (2)0.053 (2)0.040 (2)0.0002 (15)0.0056 (16)0.0014 (16)
C140.048 (2)0.051 (2)0.046 (2)0.0051 (15)0.0042 (16)0.0068 (17)
C150.0403 (18)0.051 (2)0.040 (2)0.0011 (15)0.0004 (15)0.0007 (16)
C160.0392 (18)0.0465 (19)0.042 (2)0.0024 (14)0.0000 (15)0.0047 (16)
C170.0442 (19)0.0486 (19)0.0359 (19)0.0004 (15)0.0003 (15)0.0005 (16)
C180.0471 (19)0.047 (2)0.040 (2)0.0001 (15)0.0005 (14)0.0055 (17)
C190.044 (2)0.0509 (19)0.0374 (19)0.0005 (15)0.0007 (16)0.0000 (16)
C200.045 (2)0.052 (2)0.043 (2)0.0011 (15)0.0009 (16)0.0029 (17)
C210.050 (2)0.070 (3)0.043 (2)0.0068 (17)0.0075 (17)0.0075 (18)
C220.049 (2)0.055 (2)0.056 (3)0.0026 (17)0.0095 (18)0.002 (2)
C230.090 (4)0.100 (4)0.108 (5)0.009 (3)0.061 (3)0.008 (3)
Geometric parameters (Å, º) top
O1—C101.378 (4)C13—H13A0.99
O1—H10.89 (4)C13—H13B0.99
O2—C41.372 (4)C14—C151.518 (5)
O2—C131.435 (4)C14—H14A0.99
O3—C221.188 (5)C14—H14B0.99
O4—C221.327 (5)C15—C161.521 (4)
O4—C231.458 (5)C15—H15A0.99
C1—C61.391 (5)C15—H15B0.99
C1—C21.395 (4)C16—C171.511 (4)
C1—C71.487 (3)C16—H16A0.99
C2—C31.374 (4)C16—H16B0.99
C2—H20.95C17—C181.522 (4)
C3—C41.381 (5)C17—H17A0.99
C3—H30.95C17—H17B0.99
C4—C51.396 (5)C18—C191.514 (5)
C5—C61.385 (5)C18—H18A0.99
C5—H50.95C18—H18B0.99
C6—H60.95C19—C201.521 (4)
C7—C121.388 (4)C19—H19A0.99
C7—C81.394 (5)C19—H19B0.99
C8—C91.376 (5)C20—C211.506 (5)
C8—H80.95C20—H20A0.99
C9—C101.363 (5)C20—H20B0.99
C9—H90.95C21—C221.497 (5)
C10—C111.371 (5)C21—H21A0.99
C11—C121.385 (5)C21—H21B0.99
C11—H110.95C23—H23A0.98
C12—H120.95C23—H23B0.98
C13—C141.506 (4)C23—H23C0.98
C10—O1—H1112 (3)C14—C15—C16112.8 (3)
C4—O2—C13118.5 (2)C14—C15—H15A109.0
C22—O4—C23117.3 (3)C16—C15—H15A109.0
C6—C1—C2115.9 (3)C14—C15—H15B109.0
C6—C1—C7121.9 (3)C16—C15—H15B109.0
C2—C1—C7122.2 (3)H15A—C15—H15B107.8
C3—C2—C1122.1 (3)C17—C16—C15114.3 (2)
C3—C2—H2119.0C17—C16—H16A108.7
C1—C2—H2119.0C15—C16—H16A108.7
C2—C3—C4121.4 (3)C17—C16—H16B108.7
C2—C3—H3119.3C15—C16—H16B108.7
C4—C3—H3119.3H16A—C16—H16B107.6
O2—C4—C3116.9 (3)C16—C17—C18114.6 (2)
O2—C4—C5125.1 (3)C16—C17—H17A108.6
C3—C4—C5118.0 (3)C18—C17—H17A108.6
C6—C5—C4119.7 (3)C16—C17—H17B108.6
C6—C5—H5120.1C18—C17—H17B108.6
C4—C5—H5120.1H17A—C17—H17B107.6
C5—C6—C1122.9 (3)C19—C18—C17113.6 (3)
C5—C6—H6118.6C19—C18—H18A108.9
C1—C6—H6118.6C17—C18—H18A108.9
C12—C7—C8115.2 (3)C19—C18—H18B108.9
C12—C7—C1122.3 (3)C17—C18—H18B108.9
C8—C7—C1122.4 (3)H18A—C18—H18B107.7
C9—C8—C7122.3 (3)C18—C19—C20115.6 (3)
C9—C8—H8118.8C18—C19—H19A108.4
C7—C8—H8118.8C20—C19—H19A108.4
C10—C9—C8120.7 (3)C18—C19—H19B108.4
C10—C9—H9119.6C20—C19—H19B108.4
C8—C9—H9119.6H19A—C19—H19B107.4
C9—C10—C11119.1 (3)C21—C20—C19111.5 (3)
C9—C10—O1118.4 (3)C21—C20—H20A109.3
C11—C10—O1122.5 (3)C19—C20—H20A109.3
C10—C11—C12119.8 (3)C21—C20—H20B109.3
C10—C11—H11120.1C19—C20—H20B109.3
C12—C11—H11120.1H20A—C20—H20B108.0
C11—C12—C7122.8 (3)C22—C21—C20116.2 (3)
C11—C12—H12118.6C22—C21—H21A108.2
C7—C12—H12118.6C20—C21—H21A108.2
O2—C13—C14107.0 (3)C22—C21—H21B108.2
O2—C13—H13A110.3C20—C21—H21B108.2
C14—C13—H13A110.3H21A—C21—H21B107.4
O2—C13—H13B110.3O3—C22—O4123.7 (4)
C14—C13—H13B110.3O3—C22—C21125.7 (4)
H13A—C13—H13B108.6O4—C22—C21110.5 (3)
C13—C14—C15113.0 (3)O4—C23—H23A109.5
C13—C14—H14A109.0O4—C23—H23B109.5
C15—C14—H14A109.0H23A—C23—H23B109.5
C13—C14—H14B109.0O4—C23—H23C109.5
C15—C14—H14B109.0H23A—C23—H23C109.5
H14A—C14—H14B107.8H23B—C23—H23C109.5
C6—C1—C2—C31.0 (4)C8—C9—C10—O1179.0 (3)
C7—C1—C2—C3178.3 (3)C9—C10—C11—C120.6 (5)
C1—C2—C3—C40.5 (5)O1—C10—C11—C12179.8 (3)
C13—O2—C4—C3173.2 (3)C10—C11—C12—C70.3 (6)
C13—O2—C4—C55.6 (5)C8—C7—C12—C110.8 (5)
C2—C3—C4—O2178.1 (3)C1—C7—C12—C11178.8 (3)
C2—C3—C4—C50.8 (5)C4—O2—C13—C14169.0 (3)
O2—C4—C5—C6177.1 (3)O2—C13—C14—C15176.1 (3)
C3—C4—C5—C61.7 (5)C13—C14—C15—C16179.1 (3)
C4—C5—C6—C11.2 (5)C14—C15—C16—C17179.3 (3)
C2—C1—C6—C50.2 (5)C15—C16—C17—C18179.4 (3)
C7—C1—C6—C5179.2 (3)C16—C17—C18—C19179.9 (3)
C6—C1—C7—C126.3 (4)C17—C18—C19—C20177.7 (2)
C2—C1—C7—C12174.4 (3)C18—C19—C20—C21178.3 (3)
C6—C1—C7—C8173.2 (3)C19—C20—C21—C22178.9 (3)
C2—C1—C7—C86.1 (4)C23—O4—C22—O30.9 (6)
C12—C7—C8—C91.6 (5)C23—O4—C22—C21179.6 (4)
C1—C7—C8—C9178.0 (3)C20—C21—C22—O30.8 (6)
C7—C8—C9—C101.4 (6)C20—C21—C22—O4178.8 (3)
C8—C9—C10—C110.2 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1–C6 and C7–C12, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.89 (4)1.96 (4)2.813 (5)162 (4)
C23—H23C···O1ii0.982.463.149 (5)127
C23—H23A···O3iii0.982.743.564 (6)142
C3—H3···O2iv0.952.823.627 (4)143
C2—H2···Cg1iv0.952.983.737 (4)138
C9—H9···Cg1iv0.952.893.716 (4)146
C5—H5···Cg2v0.952.953.722 (4)139
C12—H12···Cg2v0.952.833.661 (4)147
Symmetry codes: (i) x+1/2, y+1/2, z3/2; (ii) x1/2, y+1/2, z+5/2; (iii) x, y, z+1/2; (iv) x, y, z1/2; (v) x, y+1, z+1/2.
Interaction energies top
N refers to the number of molecules with an R molecular centroid-to-centroid distance (Å). Energies are in kJ mol-1.
Nprimary interactionRE'eleE'polE'disE'repEtot
2C—H···π4.91-13.6-2.8-83.543.2-62.5
2C—H···π4.98-13.5-3.5-76.138.7-59.2
2H···H6.70-8.2-1.2-38.218.1-31.7
2O1—H···O323.60-34.2-7.1-10.633.0-30.3
2C—H···O127.25-6.1-1.3-5.58.8-6.8
2C—H···O125.53-1.9-0.4-4.41.6-5.1
Scale factors used to determine Etot: kele = 1.057, kpol = 0.740, kdisp = 0.871, krep = 0.618 (Mackenzie et al., 2017). See Section 9 for calculation details.
 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationAdhikari, B. R., Kim, D., Bae, J. H., Yeon, J., Roshan, K. C., Kang, S. K. & Lee, E. H. (2016). Cryst. Growth Des. 16, 7198–7204.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (2004). International Tables for Crystallography, 3rd ed., edited by E. Prince, pp. 790–811. Heidelberg: Springer Verlag.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, J., Shen, Z. & Wan, X. (2010). Langmuir, 26, 97–103.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGeiger, D. K., Geiger, H. C., Moore, S. M. & Roberts, W. R. (2017). Acta Cryst. C73, 791–796.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, H. C., Zick, P. L., Roberts, W. R. & Geiger, D. K. (2017). Acta Cryst. C73, 350–356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohansson, M. P. & Olsen, J. (2008). J. Chem. Theory Comput. 4, 1460–1471.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiow, S. S., Dou, Q., Kai, D., Karim, A. A., Zhang, K., Xu, F. & Loh, X. J. (2016). ACS Biomater. Sci. Eng. 2, 295–316.  Web of Science CrossRef CAS Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMartin, A. D., Wojciechowski, J. P., Bhadbhade, M. M. & Thordarson, P. (2016). Langmuir, 32, 2245–2250.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRojek, T., Lis, T. & Matczak-Jon, E. (2015). Acta Cryst. C71, 593–597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTibbitt, M. W., Dahlman, J. E. & Langer, R. (2016). J. Am. Chem. Soc. 138, 704–717.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://crystalexplorer.scb.uwa.edu.au  Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationWeiss, R. G. (2014). J. Am. Chem. Soc. 136, 7519–7530.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H.-Q. & Wang, C.-C. (2016). Langmuir, 32, 6211–6225.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXavier, J. R., Thakur, T., Desai, P., Jaiswal, M. K., Sears, N., Cosgriff-Hernandez, E., Kaunas, R. & Gaharwar, A. K. (2015). ACS Nano, 9, 3109–3118.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYan, L.-P., Oliveira, J. M., Oliveira, A. L. & Reis, R. L. (2015). ACS Biomater. Sci. Eng. 1, 183–200.  Web of Science CrossRef CAS Google Scholar
First citationYasmeen, S., Lo, M. K., Bajracharya, S. & Roldo, M. (2014). Langmuir, 30, 12977–12985.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds