research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

Crystal structure of racemic 2-[(β-arabino­pyran­osyl)­sulfanyl]-4,6-di­phenylpyridine-3-carbo­nitrile

CROSSMARK_Color_square_no_text.svg

aPharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 March 2018; accepted 15 May 2018; online 25 May 2018)

In the racemic title compound, C23H20N2O4S, the sulfur atom is attached equatorially to the sugar ring with unequal S—C bonds, viz.: S—Cs = 1.808 (2) and S—Cp = 1.770 (2) Å (s = sugar, p = pyrid­yl). The dihedral angles between the pyridine ring and its attached phenyl groups are 42.24 (8) and 6.37 (14)°. In the crystal, a system of classical O—H⋯O and O—H⋯(O,O) hydrogen bonds links the mol­ecules to form tube-like assemblies propagating parallel to the c-axis direction. Weak C—H⋯N inter­actions are also observed.

1. Chemical context

In recent years, nucleoside analogues of pyrimidines and purines have been shown to be effective as chemical therapeutic agents against cancer cells (Yoshimura et al., 2000[Yoshimura, Y., Kitano, K., Yamada, K., Sakata, S., Miura, S., Ashida, N. & Machida, H. (2000). Bioorg. Med. Chem. 8, 1545-1558.]; Elgemeie et al., 2016[Elgemeie, G. H., Abou-Zeid, M. & Azzam, R. (2016). Nucleosides, Nucleotides, Nucleic Acids, 35, 211-222.], 2017a[Elgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017a). Tetrahedron, 73, 5853-5861.],b[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017b). Nucleosides, Nucleotides & Nucleic Acids, 36, 139-150.]). Recently, heterocyclic thio­glycosides have been used as anti­metabolic agents in medicinal chemistry (Dinkelaar et al., 2006[Dinkelaar, J., Witte, M. D., van den Bos, L. J., Overkleeft, H. S. & van der Marel, G. A. (2006). Carbohydr. Res. 341, 1723-1729.]; Kananovich et al., 2014[Kananovich, D. G., Reino, A., Ilmarinen, K., Rõõmusoks, M., Karelson, M. & Lopp, M. A. (2014). Org. Biomol. Chem. 12, 5634-5644.]; Elgemeie & Abu-Zaied, 2017[Elgemeie, G. H. & Abu-Zaied, M. A. (2017). Nucleosides, Nucleotides, Nucleic Acids, 36, 511-519.]). We and others have designed new syntheses for pyridine thio­glycosides, which have shown strong cytotoxicity against various human cancer cell lines and block proliferation of various cancer cell lines (Komor et al., 2012[Komor, R., Pastuch-Gawołek, G., Sobania, A., Jadwiński, M. & Szeja, W. (2012). Acta Pol. Pharm. 69, 1259-1269.]; Elgemeie et al., 2015[Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides, Nucleotides, Nucleic Acids, 34, 659-673.]). It has also been shown that thio­glycosides involving pyridine and di­hydro­pyridine groups exert inhibitory effects on both DNA-containing viruses and inhibitors of protein glycosyl­ation (Agrawal et al., 2017[Agrawal, S., Wozniak, M., Luc, M., Walaszek, K., Pielka, E., Szeja, W., Pastuch-Gawolek, G., Gamian, A. & Ziolkowski, P. (2017). Oncotarget, 8, 114173-114182.]; Elgemeie et al., 2010[Elgemeie, G. H., Mahdy, E. M., Elgawish, M. A., Ahmed, M. M., Shousha, W. G. & Eldin, M. E. (2010). Z. Naturforsch. Teil C, 65, 577-587.]; Masoud et al., 2017[Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751-1754.]). Based on these significant biological findings and with the aim of identifying new potent chemotherapeutics as new anti­cancer agents with improved pharmacological and safety profiles, we have prepared several new non-classical thio­glycosides containing the pyridine ring.

Here we report a one-step synthesis of the pyridine-2-thio­arabinoside (4) by the reaction of the pyridine-2 (1H)-thione derivative (1) with 2,3,4-tri-O-acetyl-α-D-arabino­pyranosyl bromide (2). Thus, (1) reacted with (2) in KOH in acetone to give a product for which two isomeric N- or S-arabinoside structures were conceivable, corresponding to two possible modes of glycosyl­ation. The final deprotected product (see Scheme[link]) would then be either the pyridine-2-thio­arabinoside (4) or its regioisomer pyridine-2-thione-N-arab­inoside (5). Spectroscopic data cannot differentiate between these two structures.

[Scheme 1]

2. Structural commentary

The crystal structure determination indicated unambiguously the formation of the pyridine-2-thio­arabinoside (4) as the only product in the solid state. We suggest that the 2,3,4-tri-O-acetyl-α-D-arabinopranosyl bromide (2) inter­acts via a simple SN2 reaction to give the β-glycoside product (3), which after deprotection leads to the free 2-(β-D/L-arabino­pyran­osyl­thio)-pyridine-3-carbo­nitrile (4). This separates as a racemic mixture, presumably because of thermodynamic racemization during synthesis or crystallization (Brands & Davies, 2006[Brands, K. M. J. & Davies, A. J. (2006). Chem. Rev. 106, 2711-2733.]).

The mol­ecular structure of (4) is shown in Fig. 1[link]. The sulfur atom is attached equatorially to the sugar ring. Similarly to the structure of a related glucose derivative (Masoud et al., 2017[Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751-1754.]), the C—S bond lengths are unequal, with S—Cs 1.808 (2) and S—Cp 1.770 (2) Å (s = sugar, p = pyrid­yl). The phenyl ring at C31 is approximately coplanar with the pyridyl ring, but the ring at C21 is significantly rotated (inter­planar angles = 6.4 (2) and 42.24 (8)°, respectively). The relative orientation of the pyridyl ring and the sugar moiety is defined by the torsion angles N1—C2—S1—C11 9.7 (2) and C2—S1—C11—C12 162.73 (12)°. The intra­molecular contact O1—H01⋯S1, with H⋯S 2.79 (4) Å and an angle of 109 (3)°, is probably too long and has too narrow an angle to be considered a hydrogen bond.

[Figure 1]
Figure 1
Structure of the title compound (4) in the crystal. Ellipsoids represent 50% probability levels.

3. Supra­molecular features

In the crystal, the mol­ecules are connected by two-centre O2—H02⋯O3ii and O3—H03⋯O3ii hydrogen bonds and a three-centre O1—H01⋯O1i,O2i hydrogen bond (Table 1[link]), via the [\overline{4}] operator, thus forming tube-like assemblies parallel to the c axis (Figs. 2[link] and 3[link]). The short S1⋯O1 (1 − y, x, 1 − z) contact of 3.2374 (16) Å (van der Waals' contact distance = 3.32 Å) may play a supporting role, but is not shown explicitly.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H01⋯O2i 0.85 (4) 2.12 (4) 2.831 (2) 140 (3)
O1—H01⋯O1i 0.85 (4) 2.42 (3) 3.133 (2) 141 (3)
O2—H02⋯O3ii 0.81 (3) 2.07 (4) 2.883 (2) 175 (3)
O3—H03⋯O3ii 0.82 (4) 1.94 (4) 2.729 (2) 159 (4)
C13—H13⋯N2iii 1.00 2.57 3.547 (3) 165
C34—H34⋯N2iv 0.95 2.51 3.404 (3) 157
Symmetry codes: (i) -y+1, x, -z+1; (ii) y, -x+1, -z; (iii) y, -x+1, -z+1; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram of (4) projected parallel to the c axis. Dashed lines indicate classical hydrogen bonds.
[Figure 3]
Figure 3
Packing diagram of (4) viewed parallel to the a axis. Dashed lines indicate classical hydrogen bonds. Phenyl rings are represented by the ipso carbon atoms only.

4. Database survey

There is one other structure involving arabinose with a sulfur substituent at the C2 position; the arabinose is tri­acetyl­ated and the sulfur atom, which is axially bonded to the sugar ring, acts as a bridge to a pyran­opyrimidine ring system (Tomas et al., 1993[Tomas, A., Dung, N.-H., Viossat, B., Esanu, A. & Rolland, A. (1993). Acta Cryst. C49, 626-628.]; refcode WACJAL).

5. Synthesis and crystallization

To a solution of the pyridine-2-(1H)-thione (1) (2.88 g, 0.01 mol) in aqueous potassium hydroxide (6 ml, 0.56 g, 0.01 mol) was added a solution of 2,3,4-tri-O-acetyl-α-D-arabino­pyranosyl bromide (2) (3.73 g, 0.011 mol) in acetone (30 ml). The reaction mixture was stirred at room temperature until the reaction was judged complete by TLC (30 min to 2 h). The mixture was evaporated under reduced pressure at 313 K and the residue was washed with distilled water to remove the potassium bromide. The solid was collected by filtration and crystallized from ethanol to give compound (3) in 70% yield (m. p. 440–442 K). Dry gaseous ammonia was then passed through a solution of the protected thio­glycoside (3) (0.5 g) in dry methanol (20 ml) at 273 K for 15 min, and the mixture was stirred at 273 K until the reaction was complete (TLC, 1–2 h). The mixture was evaporated at 313 K to give a solid residue, which was recrystallized from methanol solution to give compound (4) in 60% yield (m.p. 479–480 K), IR (KBr): 3370–3480 (OH); 2222 (CN) cm−1. 1H NMR (400 MHz, DMSO-d6): δ 3.10–3.70 (m, 5H, 2H-5′, H-4′, H-3′, H-2′); 4.81–5.20 (m, 3H, 3OH); 5.52 (d, 1H, H-1′), 7.05–7.78 (m, 10H, 2C6H5), 7.99 (s, 1H, pyridine H-5). Analysis calculated for C23H20N2O4S (420.47): C, 65.60%; H, 4.76%; N, 6.66%. Found: C, 65.48%; H, 4.84%; N, 6.41%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. OH hydrogen atoms were refined freely. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99, C—Hmethine = 1.00 Å) with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C23H20N2O4S
Mr 420.47
Crystal system, space group Tetragonal, P[\overline{4}]21c
Temperature (K) 100
a, c (Å) 21.8333 (2), 8.67551 (17)
V3) 4135.54 (11)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.67
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Atlas, Nova
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.631, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22380, 4067, 3766
Rint 0.050
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.04
No. of reflections 4067
No. of parameters 283
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.21
Absolute structure Flack x determined using 1455 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.001 (9)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL2017/1 (Sheldrick, 2015).

2-[(β-Arabinopyranosyl)sulfanyl]-4,6-diphenylpyridine-3-carbonitrile top
Crystal data top
C23H20N2O4SDx = 1.351 Mg m3
Mr = 420.47Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P421cCell parameters from 11865 reflections
a = 21.8333 (2) Åθ = 4.0–75.7°
c = 8.67551 (17) ŵ = 1.67 mm1
V = 4135.54 (11) Å3T = 100 K
Z = 8Irregular tablet, colourless
F(000) = 17600.2 × 0.2 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur, Atlas, Nova
diffractometer
4067 independent reflections
Radiation source: micro-focus sealed X-ray tube3766 reflections with I > 2σ(I)
Detector resolution: 10.3543 pixels mm-1Rint = 0.050
ω–scanθmax = 76.0°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 2719
Tmin = 0.631, Tmax = 1.000k = 2326
22380 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.206P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4067 reflectionsΔρmax = 0.14 e Å3
283 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack x determined using 1455 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

9.6921 (0.0225) x - 5.4261 (0.0258) y - 7.4689 (0.0051) z = 2.9936 (0.0259)

* -0.0092 (0.0019) C21 * 0.0029 (0.0022) C22 * 0.0049 (0.0023) C23 * -0.0063 (0.0021) C24 * -0.0001 (0.0019) C25 * 0.0078 (0.0018) C26

Rms deviation of fitted atoms = 0.0060

7.1279 (0.0186) x + 10.0786 (0.0190) y - 7.1557 (0.0046) z = 5.9951 (0.0155)

Angle to previous plane (with approximate esd) = 42.243 ( 0.080 )

* 0.0110 (0.0015) N1 * 0.0192 (0.0017) C2 * -0.0324 (0.0017) C3 * 0.0172 (0.0016) C4 * 0.0119 (0.0016) C5 * -0.0269 (0.0016) C6

Rms deviation of fitted atoms = 0.0212

9.0031 (0.0245) x + 8.5392 (0.0229) y - 7.1382 (0.0057) z = 7.0241 (0.0183)

Angle to previous plane (with approximate esd) = 6.371 ( 0.143 )

* -0.0055 (0.0018) C31 * 0.0027 (0.0023) C32 * 0.0001 (0.0024) C33 * -0.0001 (0.0021) C34 * -0.0028 (0.0019) C35 * 0.0056 (0.0018) C36

Rms deviation of fitted atoms = 0.0036

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.66558 (2)0.40955 (2)0.37773 (7)0.01892 (12)
N10.71332 (8)0.30150 (8)0.2959 (2)0.0193 (4)
C20.72285 (9)0.35219 (9)0.3756 (3)0.0188 (4)
C30.77798 (10)0.36462 (10)0.4552 (3)0.0196 (4)
C40.82688 (10)0.32328 (10)0.4388 (3)0.0213 (5)
C50.81609 (10)0.27034 (10)0.3542 (3)0.0228 (5)
H50.8479320.2411180.3415320.027*
C60.75894 (10)0.25972 (10)0.2878 (3)0.0206 (5)
C70.78113 (10)0.41680 (10)0.5556 (3)0.0216 (5)
N20.78087 (9)0.45778 (9)0.6383 (3)0.0282 (5)
C110.60285 (9)0.36958 (10)0.2861 (3)0.0180 (4)
H110.6002430.3269530.3277700.022*
C120.54261 (10)0.40390 (10)0.3205 (3)0.0175 (4)
H120.5454120.4471000.2828230.021*
C130.49053 (9)0.37047 (9)0.2379 (3)0.0174 (4)
H130.4857200.3298830.2899170.021*
C140.50479 (10)0.35742 (10)0.0692 (3)0.0205 (5)
H140.4729700.3294280.0254780.025*
C150.56731 (10)0.32792 (11)0.0554 (3)0.0228 (5)
H15A0.5672520.2877930.1085590.027*
H15B0.5772360.3209660.0545220.027*
O10.52797 (7)0.40316 (7)0.4791 (2)0.0205 (3)
H010.5536 (17)0.4259 (16)0.526 (5)0.046 (10)*
O20.43389 (7)0.40239 (8)0.2568 (2)0.0210 (3)
H020.4290 (15)0.4296 (16)0.194 (4)0.035 (9)*
O30.50739 (7)0.41263 (8)0.0200 (2)0.0237 (4)
H030.4738 (18)0.4298 (17)0.019 (5)0.047 (10)*
O40.61261 (7)0.36736 (7)0.1238 (2)0.0211 (3)
C210.88763 (10)0.33451 (11)0.5093 (3)0.0235 (5)
C220.91531 (11)0.39202 (12)0.5018 (4)0.0333 (6)
H220.8951560.4248490.4508520.040*
C230.97250 (12)0.40132 (13)0.5690 (4)0.0399 (7)
H230.9912020.4405440.5635130.048*
C241.00232 (11)0.35385 (13)0.6436 (4)0.0348 (6)
H241.0410420.3606140.6905700.042*
C250.97528 (11)0.29625 (12)0.6496 (3)0.0288 (5)
H250.9957120.2634830.7000370.035*
C260.91861 (10)0.28654 (11)0.5820 (3)0.0235 (5)
H260.9006510.2469320.5852050.028*
C310.74451 (11)0.20354 (10)0.1993 (3)0.0222 (5)
C320.68866 (11)0.19904 (11)0.1223 (4)0.0328 (6)
H320.6606980.2323460.1258140.039*
C330.67336 (13)0.14672 (13)0.0408 (4)0.0388 (7)
H330.6349720.1442250.0104250.047*
C340.71408 (13)0.09782 (11)0.0337 (3)0.0332 (6)
H340.7036940.0619620.0225830.040*
C350.76943 (12)0.10168 (10)0.1085 (3)0.0285 (5)
H350.7971260.0681640.1043830.034*
C360.78530 (11)0.15421 (10)0.1901 (3)0.0244 (5)
H360.8239870.1565880.2398920.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0153 (2)0.0177 (2)0.0237 (3)0.00191 (17)0.0005 (2)0.0018 (2)
N10.0185 (8)0.0196 (8)0.0198 (10)0.0026 (7)0.0021 (7)0.0003 (8)
C20.0165 (9)0.0198 (9)0.0199 (11)0.0019 (7)0.0029 (9)0.0025 (9)
C30.0193 (10)0.0185 (10)0.0210 (11)0.0010 (8)0.0007 (9)0.0029 (9)
C40.0185 (10)0.0235 (10)0.0220 (12)0.0010 (8)0.0029 (9)0.0066 (9)
C50.0212 (10)0.0231 (10)0.0243 (13)0.0058 (8)0.0044 (9)0.0041 (9)
C60.0208 (10)0.0208 (10)0.0201 (13)0.0037 (8)0.0043 (9)0.0035 (9)
C70.0167 (9)0.0221 (11)0.0260 (12)0.0004 (8)0.0020 (9)0.0068 (10)
N20.0277 (10)0.0226 (9)0.0343 (13)0.0010 (7)0.0043 (9)0.0011 (10)
C110.0168 (9)0.0196 (9)0.0174 (11)0.0003 (8)0.0016 (8)0.0019 (9)
C120.0182 (9)0.0173 (9)0.0169 (11)0.0005 (8)0.0015 (8)0.0001 (8)
C130.0153 (9)0.0173 (9)0.0195 (11)0.0004 (7)0.0007 (8)0.0002 (8)
C140.0206 (10)0.0211 (10)0.0200 (12)0.0030 (8)0.0000 (9)0.0012 (9)
C150.0235 (10)0.0235 (10)0.0215 (12)0.0014 (9)0.0003 (9)0.0057 (9)
O10.0189 (7)0.0255 (8)0.0170 (8)0.0009 (6)0.0013 (6)0.0033 (7)
O20.0159 (7)0.0249 (8)0.0221 (9)0.0016 (6)0.0008 (6)0.0020 (7)
O30.0187 (7)0.0305 (8)0.0219 (9)0.0003 (7)0.0006 (7)0.0056 (7)
O40.0189 (7)0.0248 (7)0.0196 (9)0.0001 (6)0.0017 (6)0.0023 (7)
C210.0191 (10)0.0277 (11)0.0237 (12)0.0026 (9)0.0010 (9)0.0031 (10)
C220.0237 (11)0.0298 (12)0.0464 (17)0.0009 (9)0.0023 (12)0.0098 (12)
C230.0256 (12)0.0336 (13)0.061 (2)0.0070 (10)0.0021 (13)0.0034 (14)
C240.0189 (10)0.0448 (14)0.0407 (17)0.0004 (10)0.0018 (11)0.0000 (13)
C250.0235 (11)0.0362 (13)0.0265 (14)0.0071 (10)0.0009 (10)0.0032 (11)
C260.0203 (10)0.0275 (11)0.0228 (13)0.0045 (8)0.0033 (9)0.0010 (9)
C310.0249 (11)0.0217 (10)0.0201 (12)0.0044 (9)0.0045 (9)0.0032 (9)
C320.0304 (12)0.0273 (11)0.0406 (16)0.0092 (9)0.0058 (13)0.0102 (13)
C330.0375 (14)0.0317 (13)0.0473 (18)0.0044 (11)0.0101 (13)0.0118 (13)
C340.0448 (14)0.0214 (11)0.0333 (15)0.0011 (10)0.0064 (12)0.0060 (11)
C350.0382 (13)0.0172 (10)0.0301 (14)0.0058 (9)0.0135 (12)0.0045 (10)
C360.0262 (11)0.0214 (11)0.0256 (13)0.0048 (9)0.0059 (10)0.0061 (10)
Geometric parameters (Å, º) top
S1—C21.770 (2)C15—H15B0.9900
S1—C111.808 (2)O1—H010.85 (4)
N1—C21.322 (3)O2—H020.81 (3)
N1—C61.352 (3)O3—H030.82 (4)
C2—C31.414 (3)C21—C221.395 (3)
C3—C41.405 (3)C21—C261.397 (3)
C3—C71.435 (3)C22—C231.393 (4)
C4—C51.389 (3)C22—H220.9500
C4—C211.481 (3)C23—C241.385 (4)
C5—C61.394 (3)C23—H230.9500
C5—H50.9500C24—C251.390 (4)
C6—C311.481 (3)C24—H240.9500
C7—N21.147 (3)C25—C261.385 (3)
C11—O41.425 (3)C25—H250.9500
C11—C121.543 (3)C26—H260.9500
C11—H111.0000C31—C321.394 (4)
C12—O11.413 (3)C31—C361.400 (3)
C12—C131.529 (3)C32—C331.384 (4)
C12—H121.0000C32—H320.9500
C13—O21.429 (2)C33—C341.391 (4)
C13—C141.523 (3)C33—H330.9500
C13—H131.0000C34—C351.374 (4)
C14—O31.434 (3)C34—H340.9500
C14—C151.514 (3)C35—C361.392 (4)
C14—H141.0000C35—H350.9500
C15—O41.439 (3)C36—H360.9500
C15—H15A0.9900
C2—S1—C11100.90 (10)C14—C15—H15A109.8
C2—N1—C6118.42 (19)O4—C15—H15B109.8
N1—C2—C3123.40 (19)C14—C15—H15B109.8
N1—C2—S1119.13 (17)H15A—C15—H15B108.2
C3—C2—S1117.41 (17)C12—O1—H01108 (3)
C4—C3—C2118.3 (2)C13—O2—H02113 (2)
C4—C3—C7122.3 (2)C14—O3—H03110 (3)
C2—C3—C7119.30 (19)C11—O4—C15108.96 (17)
C5—C4—C3117.3 (2)C22—C21—C26119.1 (2)
C5—C4—C21120.5 (2)C22—C21—C4121.2 (2)
C3—C4—C21122.1 (2)C26—C21—C4119.7 (2)
C4—C5—C6120.6 (2)C23—C22—C21120.0 (2)
C4—C5—H5119.7C23—C22—H22120.0
C6—C5—H5119.7C21—C22—H22120.0
N1—C6—C5121.7 (2)C24—C23—C22120.5 (3)
N1—C6—C31115.4 (2)C24—C23—H23119.7
C5—C6—C31122.9 (2)C22—C23—H23119.7
N2—C7—C3176.7 (2)C23—C24—C25119.7 (2)
O4—C11—C12109.55 (18)C23—C24—H24120.2
O4—C11—S1109.72 (14)C25—C24—H24120.2
C12—C11—S1109.07 (14)C26—C25—C24120.1 (2)
O4—C11—H11109.5C26—C25—H25119.9
C12—C11—H11109.5C24—C25—H25119.9
S1—C11—H11109.5C25—C26—C21120.6 (2)
O1—C12—C13106.43 (17)C25—C26—H26119.7
O1—C12—C11112.04 (18)C21—C26—H26119.7
C13—C12—C11108.15 (17)C32—C31—C36118.4 (2)
O1—C12—H12110.0C32—C31—C6119.5 (2)
C13—C12—H12110.0C36—C31—C6122.1 (2)
C11—C12—H12110.0C33—C32—C31120.9 (2)
O2—C13—C14112.23 (18)C33—C32—H32119.5
O2—C13—C12110.90 (17)C31—C32—H32119.5
C14—C13—C12112.80 (18)C32—C33—C34120.1 (3)
O2—C13—H13106.8C32—C33—H33119.9
C14—C13—H13106.8C34—C33—H33119.9
C12—C13—H13106.8C35—C34—C33119.6 (2)
O3—C14—C15106.23 (19)C35—C34—H34120.2
O3—C14—C13111.67 (18)C33—C34—H34120.2
C15—C14—C13109.85 (19)C34—C35—C36120.7 (2)
O3—C14—H14109.7C34—C35—H35119.7
C15—C14—H14109.7C36—C35—H35119.7
C13—C14—H14109.7C35—C36—C31120.3 (2)
O4—C15—C14109.43 (18)C35—C36—H36119.9
O4—C15—H15A109.8C31—C36—H36119.9
C6—N1—C2—C31.1 (4)C12—C13—C14—C1549.6 (2)
C6—N1—C2—S1176.09 (17)O3—C14—C15—O463.7 (2)
C11—S1—C2—N19.7 (2)C13—C14—C15—O457.2 (2)
C11—S1—C2—C3172.95 (19)C12—C11—O4—C1568.6 (2)
N1—C2—C3—C45.2 (4)S1—C11—O4—C15171.64 (14)
S1—C2—C3—C4172.01 (18)C14—C15—O4—C1167.9 (2)
N1—C2—C3—C7171.6 (2)C5—C4—C21—C22136.5 (3)
S1—C2—C3—C711.2 (3)C3—C4—C21—C2244.1 (4)
C2—C3—C4—C54.8 (3)C5—C4—C21—C2642.2 (3)
C7—C3—C4—C5171.9 (2)C3—C4—C21—C26137.2 (3)
C2—C3—C4—C21175.9 (2)C26—C21—C22—C231.3 (4)
C7—C3—C4—C217.4 (4)C4—C21—C22—C23180.0 (3)
C3—C4—C5—C60.7 (3)C21—C22—C23—C240.1 (5)
C21—C4—C5—C6180.0 (2)C22—C23—C24—C250.9 (5)
C2—N1—C6—C53.3 (3)C23—C24—C25—C260.5 (4)
C2—N1—C6—C31178.8 (2)C24—C25—C26—C210.9 (4)
C4—C5—C6—N13.6 (4)C22—C21—C26—C251.7 (4)
C4—C5—C6—C31178.7 (2)C4—C21—C26—C25179.5 (2)
C2—S1—C11—O477.26 (16)N1—C6—C31—C324.8 (3)
C2—S1—C11—C12162.73 (16)C5—C6—C31—C32173.1 (3)
O4—C11—C12—O1175.15 (17)N1—C6—C31—C36175.2 (2)
S1—C11—C12—O164.7 (2)C5—C6—C31—C367.0 (4)
O4—C11—C12—C1358.2 (2)C36—C31—C32—C331.0 (4)
S1—C11—C12—C13178.27 (14)C6—C31—C32—C33178.9 (3)
O1—C12—C13—O263.3 (2)C31—C32—C33—C340.5 (5)
C11—C12—C13—O2176.15 (17)C32—C33—C34—C350.2 (5)
O1—C12—C13—C14169.85 (17)C33—C34—C35—C360.5 (4)
C11—C12—C13—C1449.3 (2)C34—C35—C36—C311.1 (4)
O2—C13—C14—O358.2 (2)C32—C31—C36—C351.3 (4)
C12—C13—C14—O368.0 (2)C6—C31—C36—C35178.6 (2)
O2—C13—C14—C15175.75 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.85 (4)2.12 (4)2.831 (2)140 (3)
O1—H01···O1i0.85 (4)2.42 (3)3.133 (2)141 (3)
O2—H02···O3ii0.81 (3)2.07 (4)2.883 (2)175 (3)
O3—H03···O3ii0.82 (4)1.94 (4)2.729 (2)159 (4)
C13—H13···N2iii1.002.573.547 (3)165
C34—H34···N2iv0.952.513.404 (3)157
Symmetry codes: (i) y+1, x, z+1; (ii) y, x+1, z; (iii) y, x+1, z+1; (iv) x+3/2, y1/2, z+1/2.
 

References

First citationAgrawal, S., Wozniak, M., Luc, M., Walaszek, K., Pielka, E., Szeja, W., Pastuch-Gawolek, G., Gamian, A. & Ziolkowski, P. (2017). Oncotarget, 8, 114173–114182.  CrossRef Google Scholar
First citationBrands, K. M. J. & Davies, A. J. (2006). Chem. Rev. 106, 2711–2733.  CrossRef Google Scholar
First citationDinkelaar, J., Witte, M. D., van den Bos, L. J., Overkleeft, H. S. & van der Marel, G. A. (2006). Carbohydr. Res. 341, 1723–1729.  CrossRef Google Scholar
First citationElgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides, Nucleotides, Nucleic Acids, 34, 659–673.  Google Scholar
First citationElgemeie, G. H., Abou-Zeid, M. & Azzam, R. (2016). Nucleosides, Nucleotides, Nucleic Acids, 35, 211–222.  Google Scholar
First citationElgemeie, G. H. & Abu-Zaied, M. A. (2017). Nucleosides, Nucleotides, Nucleic Acids, 36, 511–519.  Google Scholar
First citationElgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017a). Tetrahedron, 73, 5853–5861.  CrossRef Google Scholar
First citationElgemeie, G. H., Mahdy, E. M., Elgawish, M. A., Ahmed, M. M., Shousha, W. G. & Eldin, M. E. (2010). Z. Naturforsch. Teil C, 65, 577–587.  Google Scholar
First citationElgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017b). Nucleosides, Nucleotides & Nucleic Acids, 36, 139–150.  Google Scholar
First citationKananovich, D. G., Reino, A., Ilmarinen, K., Rõõmusoks, M., Karelson, M. & Lopp, M. A. (2014). Org. Biomol. Chem. 12, 5634–5644.  CrossRef Google Scholar
First citationKomor, R., Pastuch-Gawołek, G., Sobania, A., Jadwiński, M. & Szeja, W. (2012). Acta Pol. Pharm. 69, 1259–1269.  Google Scholar
First citationMasoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751–1754.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationTomas, A., Dung, N.-H., Viossat, B., Esanu, A. & Rolland, A. (1993). Acta Cryst. C49, 626–628.  CrossRef IUCr Journals Google Scholar
First citationYoshimura, Y., Kitano, K., Yamada, K., Sakata, S., Miura, S., Ashida, N. & Machida, H. (2000). Bioorg. Med. Chem. 8, 1545–1558.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds