research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of tetra­aqua­bis­­(isonicotinamide-κN1)cobalt(II) succinate

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, and bDepartment of Chemistry, National Taras Shevchenko University of Kiev, 64/13 Volodymyrska Street, City of Kyiv 01601, Ukraine
*Correspondence e-mail: malinachem88@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 May 2018; accepted 17 June 2018; online 28 June 2018)

The reaction of CoCl2 with succinic acid and isonicotinamide in basic solution produces the title complex [Co(C6H6N2O)2(H2O)4](C4H4O4). The cobalt(II) ion of the complex cation and the succinate anion are each located on an inversion centre. The CoII ion is octa­hedrally coordinated by four O atoms of water mol­ecules and two N atoms of isonicotinamide mol­ecules. The two ions are linked via Owater—H⋯Osuccinate hydrogen bonds, forming chains propagating along [001]. In the crystal, these hydrogen-bonded chains are linked into a three-dimensional framework by further O—H⋯O hydrogen bonds and N—H⋯O hydrogen bonds. The framework is reinforced by C—H⋯O hydrogen bonds. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter­molecular inter­actions present in the crystal.

1. Chemical context

Metal carboxyl­ates have attracted intense attention because of their inter­esting framework topologies. Among metal carboxyl­ates, succinate dianions (succ) have good conformational freedom and they possess some desirable features such as being a versatile ligand because of the four electron-donor oxygen atoms they carry, and their ability to link inorganic moieties. Metal succinates are one of the best di­carboxyl­ate-based moieties that display an inter­esting structural variety. Di­carb­oxy­lic acids such as succinic acid and amides have been particularly useful in creating many supra­molecular structures between isonicotinamide and a variety of carb­oxy­lic acid mol­ecules (Vishweshwar et al., 2003[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 3, 783-790.]; Aakeröy et al., 2002[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]). Di­carb­oxy­lic acid ligands have been utilized frequently in the synthesis of various metal carboxyl­ates. For this reason they have been investigated widely, both experimentally and computationally. We describe herein the synthesis, structural features and Hirshfeld surface analysis of a new tetra­aqua­bis­(isonicotinamide-κN1)cobalt(II) succinate complex.

2. Structural commentary

The mol­ecular structure of the title complex is illustrated in Fig. 1[link]. The cobalt(II) ion is coordinated octa­hedrally by four O atoms of water mol­ecules and two Npyridine atoms of isonicotinamide mol­ecules. The values of the Co—Owater and Co—Npyridine bond lengths and the bond angles involving atom Co1 (Table 1[link]) are close to those reported for similar cobalt(II) complexes (Gao et al., 2006[Gao, G.-G., Liu, B., Li, C.-B. & Che, G.-B. (2006). Acta Cryst. E62, m3357-m3358.]; Liu et al., 2012[Liu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019-1026.]). The C—O bond lengths in the deprotonated carb­oxy­lic groups of the succinate dianion are almost the same, viz. 1.247 (3) Å for C7—O1 and 1.257 (3) Å for C7—O2, indicating delocalization of charge. Each O atom of the succinate dianion is linked to an H atom of a water mol­ecule via O—H⋯O hydrogen bonds, so forming chains along the c-axis direction (Table 2[link] and Figs. 1[link] and 2[link]).

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

Co1—O3 2.1134 (15) Co1—N2 2.1540 (16)
Co1—O4 2.0795 (16)    
       
O4—Co1—N2i 92.15 (7) O3—Co1—N2i 88.85 (6)
O4—Co1—N2 87.85 (6) O4i—Co1—O3 88.82 (7)
O3—Co1—N2 91.15 (6) O4—Co1—O3 91.18 (7)
Symmetry code: (i) -x+1, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O1 0.79 (4) 1.97 (4) 2.756 (3) 176 (3)
O4—H4A⋯O2 0.77 (3) 1.88 (3) 2.651 (2) 174 (3)
O3—H3A⋯O2ii 0.81 (3) 1.92 (3) 2.729 (2) 175 (3)
O4—H4B⋯O5iii 0.83 (4) 1.97 (4) 2.801 (2) 174 (3)
N1—H1A⋯O5iv 0.92 (4) 2.34 (4) 3.227 (3) 160 (3)
N1—H1B⋯O1v 0.87 (4) 2.14 (4) 2.966 (3) 160 (3)
C5—H5⋯O2ii 0.93 2.41 3.307 (3) 161
C6—H6⋯O5iv 0.93 2.31 3.223 (3) 167
Symmetry codes: (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (v) −x + 1, −y + 1, −z + 2; (vi) −x + 1, −y + 1, − z + 1.]
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title complex. Dashed lines indicate the hydrogen bonds (see Table 2[link]).

3. Supra­molecular features

In the crystal, the chains formed by O—H⋯O hydrogen bonds involving the succinate anions and the complex cations are linked by further O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architecture (Table 2[link] and Fig. 2[link]). Within the framework, C—H⋯O hydrogen bonds are also present (Table 2[link]).

4. Hirshfeld surface analysis

CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia.]) was used to analyse the inter­actions in the crystal. The mol­ecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.728 (red) to 1.428 (blue). The red spots in the dnorm surface (Fig. 3[link]), indicate the regions of donor–acceptor inter­actions given in Table 2[link].

[Figure 3]
Figure 3
dnorm mapped on the Hirshfeld surfaces to visualize the intra­molecular and inter­molecular inter­actions of the title complex.

The view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.366 to 0.236 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is given in Fig. 4[link]. The C—H⋯O, N—H⋯O and O—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the related atoms with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of the title complex, plotted over the electrostatic potential energy.

The fingerprint plot for the title complex is presented in Fig. 5[link]. The contribution from the O⋯H/H⋯O contacts, corresponding to C—H⋯O, N—H⋯O and O—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bonding inter­action (43%) (Fig. 6[link]a). The H⋯H inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall Hirshfeld surface of 39.8% (Fig. 6[link]b). The contribution of the other inter­molecular contacts to the Hirshfeld surfaces is C⋯H/H⋯C (8.4%) (Fig. 6[link]c). The C⋯C/C⋯C contacts with 3.8% contribution appear as points of low density (Fig. 6[link]d).

[Figure 5]
Figure 5
The fingerprint plot of the title compound.
[Figure 6]
Figure 6
(a) H⋯O/O⋯H, (b) H⋯H/H⋯H, (c) H⋯C/C⋯H and (d) C⋯C/C⋯C contacts in the title complex, showing the percentages of contacts contributing to the total Hirshfeld surface area.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structures of five similar tetra­aqua­bis­(isonicotinamide-κN1)cobalt(II) complexes with different counter-anions. They include p-formyl­benzoate dihydrate (HUCPIF; Hökelek et al., 2009[Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1130-m1131.]), bis­(3-hy­droxy­benzoate) tetra­hydrate (LAMMOD; Zaman et al., 2012[Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m249-m250.]), disaccharinate sesquihydrate (LEHHUC; Uçar et al., 2006[Uçar, İ., Karabulut, B., Paşaoğlu, H., Büyükgüngör, O. & Bulut, A. (2006). J. Mol. Struct. 787, 38-44.]), bis­(thio­phene-2,5-di­carboxyl­ate) dihydrate (NETQOU; Liu et al., 2012[Liu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019-1026.]) and terephthalate dihydrate (SETHIJ; Gao et al., 2006[Gao, G.-G., Liu, B., Li, C.-B. & Che, G.-B. (2006). Acta Cryst. E62, m3357-m3358.]). In all five complexes the cation possesses inversion symmetry with the cobalt ion being located on a centre of symmetry. The Co—Owater bond lengths vary from ca 2.057 to 2.115 Å, while the Co—Npyridine bond lengths vary from ca 2.131 to 2.169 Å. In the title complex, the cation also possesses inversion symmetry and the Co—Owater bond lengths [2.079 (2) and 2.113 (2) Å] and the Co—Npyridine bond length [2.154 (2) Å] fall within these limits. In addition, there are several precedents for succinic acid and isonicotin­amides, including the structures of bis­(isonico­tin­amide) succinic acid (Aakeröy et al., 2002[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]), succinic acid N,N′-octane-1,8-diyldiisonicotinamide (Aakeröy et al., 2014[Aakeröy, C. B., Forbes, S. & Desper, J. (2014). CrystEngComm, 16, 5870-5877.]), succinic acid bis­(isonicotinamide) (Vishweshwar et al., 2003[Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 3, 783-790.]) and catena-[(μ4-succinato)(μ2-succinato)bis­(μ2-4-pyridyl­isonicotin­amide)­dizinc] (Uebler et al., 2013[Uebler, J. W., Wilson, J. A. & LaDuca, R. L. (2013). CrystEngComm, 15, 1586-1596.]).

6. Synthesis and crystallization

An aqueous solution of succinic acid (25 mmol, 3 g) was added to a solution of NaOH (50 mmol, 2 g) under stirring. An aqueous solution of CoCl2·6H2O (25 mmol, 5.95 g) was added and the reaction mixture stirred for 30 min at room temperature. The pink mixture obtained was filtered and left to dry. The pink crystalline material (0.86 mmol, 0.20 g) obtained was dissolved in water and added to a aqueous solution of isonicotinamide (1.71 mmol, 0.21 g). The resulting suspension was filtered and the filtrate allowed to stand. Red prismatic crystals were obtained from the filtrate in five weeks.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The water and NH2 H atoms were located from difference-Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93-0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Co(C6H6N2O)2(H2O)4](C4H4O4)
Mr 491.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.6757 (8), 10.0381 (8), 11.4947 (10)
β (°) 112.489 (6)
V3) 1031.53 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.89
Crystal size (mm) 0.68 × 0.49 × 0.37
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.664, 0.770
No. of measured, independent and observed [I > 2σ(I)] reflections 5748, 2125, 1709
Rint 0.033
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.02
No. of reflections 2125
No. of parameters 166
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.38
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015) and PLATON (Spek, 2009).

Tetraaquabis(isonicotinamide-κN1)cobalt(II) butanedioate top
Crystal data top
[Co(C6H6N2O)2(H2O)4](C4H4O4)F(000) = 510
Mr = 491.32Dx = 1.582 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6757 (8) ÅCell parameters from 8789 reflections
b = 10.0381 (8) Åθ = 3.1–30.2°
c = 11.4947 (10) ŵ = 0.89 mm1
β = 112.489 (6)°T = 296 K
V = 1031.53 (15) Å3Prism, red
Z = 20.68 × 0.49 × 0.37 mm
Data collection top
Stoe IPDS 2
diffractometer
2125 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1709 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.033
rotation method scansθmax = 26.5°, θmin = 4.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1212
Tmin = 0.664, Tmax = 0.770k = 1212
5748 measured reflectionsl = 1410
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.0723P]
where P = (Fo2 + 2Fc2)/3
2125 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000001.0000000.02416 (13)
O30.40225 (19)0.64528 (17)0.85930 (16)0.0323 (3)
O40.39411 (19)0.34772 (15)0.87503 (16)0.0314 (3)
O20.44508 (19)0.36520 (15)0.66478 (15)0.0372 (4)
O51.08679 (19)0.30825 (16)0.80841 (18)0.0450 (4)
O10.2865 (2)0.53407 (16)0.62211 (16)0.0413 (4)
N20.68645 (19)0.47784 (15)0.94294 (17)0.0284 (4)
N11.0405 (3)0.5081 (3)0.7144 (3)0.0523 (6)
C11.0166 (2)0.4142 (2)0.7847 (2)0.0340 (5)
C20.9000 (2)0.4398 (2)0.8388 (2)0.0291 (4)
C50.7381 (2)0.5790 (2)0.8958 (2)0.0336 (5)
H50.7005170.6637430.8983890.040*
C70.3809 (2)0.4648 (2)0.6004 (2)0.0296 (4)
C30.8494 (3)0.3354 (2)0.8895 (2)0.0348 (5)
H30.8864820.2499190.8894550.042*
C60.8434 (2)0.5649 (2)0.8438 (2)0.0343 (5)
H60.8761900.6385960.8124430.041*
C40.7441 (3)0.3579 (2)0.9399 (2)0.0353 (5)
H40.7113090.2861210.9736460.042*
C80.4207 (3)0.5013 (3)0.4888 (3)0.0535 (7)
H8A0.3689600.4404720.4203450.064*
H8B0.3828760.5901180.4610030.064*
H1A0.982 (4)0.584 (4)0.697 (4)0.083 (12)*
H1B1.107 (4)0.495 (3)0.683 (4)0.076 (11)*
H4A0.403 (3)0.355 (3)0.812 (3)0.035 (7)*
H3A0.449 (3)0.711 (3)0.857 (3)0.049 (8)*
H3B0.373 (4)0.612 (3)0.792 (3)0.055 (9)*
H4B0.304 (4)0.330 (3)0.858 (3)0.065 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0267 (2)0.02335 (19)0.0296 (2)0.00065 (15)0.01885 (15)0.00042 (15)
O30.0388 (9)0.0293 (8)0.0331 (9)0.0031 (7)0.0184 (7)0.0019 (7)
O40.0343 (9)0.0338 (8)0.0335 (9)0.0035 (6)0.0211 (7)0.0022 (6)
O20.0519 (10)0.0311 (7)0.0413 (9)0.0079 (7)0.0319 (8)0.0046 (6)
O50.0432 (9)0.0380 (9)0.0700 (12)0.0002 (7)0.0399 (9)0.0086 (8)
O10.0469 (9)0.0431 (9)0.0443 (10)0.0117 (7)0.0291 (8)0.0043 (7)
N20.0296 (8)0.0264 (9)0.0373 (9)0.0010 (6)0.0217 (7)0.0014 (7)
N10.0506 (12)0.0602 (14)0.0686 (15)0.0086 (12)0.0479 (12)0.0121 (12)
C10.0285 (11)0.0403 (12)0.0406 (12)0.0040 (9)0.0214 (10)0.0073 (9)
C20.0257 (10)0.0333 (10)0.0336 (11)0.0011 (8)0.0174 (9)0.0032 (8)
C50.0368 (12)0.0252 (10)0.0475 (13)0.0038 (8)0.0260 (10)0.0045 (9)
C70.0323 (10)0.0304 (10)0.0309 (11)0.0036 (8)0.0175 (9)0.0010 (8)
C30.0368 (12)0.0258 (10)0.0515 (13)0.0003 (8)0.0276 (10)0.0027 (9)
C60.0349 (11)0.0320 (11)0.0450 (13)0.0004 (9)0.0253 (10)0.0076 (9)
C40.0400 (12)0.0262 (10)0.0516 (14)0.0018 (9)0.0307 (11)0.0014 (9)
C80.0439 (14)0.0825 (19)0.0455 (14)0.0135 (14)0.0298 (12)0.0250 (14)
Geometric parameters (Å, º) top
Co1—O4i2.0794 (16)N1—H1A0.92 (4)
Co1—O32.1134 (15)N1—H1B0.87 (4)
Co1—O42.0795 (16)C1—C21.504 (3)
Co1—N2i2.1540 (16)C2—C31.377 (3)
Co1—O3i2.1134 (15)C2—C61.381 (3)
Co1—N22.1540 (16)C5—C61.372 (3)
O3—H3A0.81 (3)C5—H50.9300
O3—H3B0.79 (4)C7—C81.519 (3)
O4—H4A0.77 (3)C3—C41.370 (3)
O4—H4B0.83 (4)C3—H30.9300
O2—C71.257 (3)C6—H60.9300
O5—C11.235 (3)C4—H40.9300
O1—C71.247 (3)C8—C8ii1.456 (5)
N2—C41.333 (3)C8—H8A0.9700
N2—C51.334 (3)C8—H8B0.9700
N1—C11.317 (3)
O3—Co1—O3i180O5—C1—N1122.8 (2)
O4i—Co1—O4180O5—C1—C2119.4 (2)
N2i—Co1—N2180N1—C1—C2117.8 (2)
O4i—Co1—O388.82 (7)C3—C2—C6117.62 (18)
O4—Co1—O391.18 (7)C3—C2—C1119.32 (18)
O4i—Co1—O3i91.18 (7)C6—C2—C1123.03 (19)
O4—Co1—O3i88.82 (7)N2—C5—C6123.66 (19)
O4i—Co1—N2i87.85 (6)N2—C5—H5118.2
O4—Co1—N2i92.15 (7)C6—C5—H5118.2
O3—Co1—N2i88.85 (6)O1—C7—O2124.09 (19)
O3i—Co1—N2i91.15 (6)O1—C7—C8118.4 (2)
O4i—Co1—N292.15 (7)O2—C7—C8117.47 (19)
O4—Co1—N287.85 (6)C4—C3—C2119.73 (19)
O3—Co1—N291.15 (6)C4—C3—H3120.1
O3i—Co1—N288.85 (6)C2—C3—H3120.1
Co1—O3—H3A120 (2)C5—C6—C2118.99 (19)
Co1—O3—H3B110 (2)C5—C6—H6120.5
H3A—O3—H3B108 (3)C2—C6—H6120.5
Co1—O4—H4A112 (2)N2—C4—C3123.14 (19)
Co1—O4—H4B121 (2)N2—C4—H4118.4
H4A—O4—H4B106 (3)C3—C4—H4118.4
C4—N2—C5116.83 (17)C8ii—C8—C7115.9 (3)
C4—N2—Co1120.60 (13)C8ii—C8—H8A108.3
C5—N2—Co1122.14 (13)C7—C8—H8A108.3
C1—N1—H1A119 (3)C8ii—C8—H8B108.3
C1—N1—H1B119 (2)C7—C8—H8B108.3
H1A—N1—H1B122 (3)H8A—C8—H8B107.4
O5—C1—C2—C314.5 (3)N2—C5—C6—C20.2 (4)
N1—C1—C2—C3166.3 (2)C3—C2—C6—C51.4 (3)
O5—C1—C2—C6163.5 (2)C1—C2—C6—C5179.5 (2)
N1—C1—C2—C615.7 (3)C5—N2—C4—C31.2 (4)
C4—N2—C5—C61.1 (4)Co1—N2—C4—C3171.39 (19)
Co1—N2—C5—C6171.37 (19)C2—C3—C4—N20.0 (4)
C6—C2—C3—C41.4 (4)O1—C7—C8—C8ii136.1 (3)
C1—C2—C3—C4179.5 (2)O2—C7—C8—C8ii44.5 (5)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O10.79 (4)1.97 (4)2.756 (3)176 (3)
O4—H4A···O20.77 (3)1.88 (3)2.651 (2)174 (3)
O3—H3A···O2iii0.81 (3)1.92 (3)2.729 (2)175 (3)
O4—H4B···O5iv0.83 (4)1.97 (4)2.801 (2)174 (3)
N1—H1A···O5v0.92 (4)2.34 (4)3.227 (3)160 (3)
N1—H1B···O1vi0.87 (4)2.14 (4)2.966 (3)160 (3)
C5—H5···O2iii0.932.413.307 (3)161
C6—H6···O5v0.932.313.223 (3)167
Symmetry codes: (iii) x+1, y+1/2, z+3/2; (iv) x1, y, z; (v) x+2, y+1/2, z+3/2; (vi) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.  Web of Science PubMed Google Scholar
First citationAakeröy, C. B., Forbes, S. & Desper, J. (2014). CrystEngComm, 16, 5870–5877.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, G.-G., Liu, B., Li, C.-B. & Che, G.-B. (2006). Acta Cryst. E62, m3357–m3358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1130–m1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019–1026.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia.  Google Scholar
First citationUçar, İ., Karabulut, B., Paşaoğlu, H., Büyükgüngör, O. & Bulut, A. (2006). J. Mol. Struct. 787, 38–44.  Google Scholar
First citationUebler, J. W., Wilson, J. A. & LaDuca, R. L. (2013). CrystEngComm, 15, 1586–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationVishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 3, 783–790.  Google Scholar
First citationZaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m249–m250.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds