research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of sodium-, lithium-, and ammonium 4,5-di­hy­droxy­benzene-1,3-di­sulfonate (tiron) hydrates

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA 19122, USA, and bDepartment of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104, USA
*Correspondence e-mail: ann.valentine@temple.edu

Edited by M. Zeller, Purdue University, USA (Received 7 May 2018; accepted 30 May 2018; online 8 June 2018)

The solid-state structures of the Na+, Li+, and NH4+ salts of the 4,5-di­hydroxy­benzene-1,3-di­sulfonate (tiron) dianion are reported, namely disodium 4,5-di­hydroxy­benzene-1,3-di­sulfonate, 2Na+·C6H4O8S22−, μ-4,5-di­hydroxy­benzene-1,3-di­sulfonato-bis­[aqua­lithium(I)] hemihydrate, [Li2(C6H4O8S2)(H2O)2]·0.5H2O, and di­ammonium 4,5-di­hydroxy­benzene-1,3-di­sulfonate monohydrate, 2NH4+·C6H4O8S22−·H2O. Inter­molecular inter­actions vary with the size of the cation, and the asymmetric unit cell, and the macromolecular features are also affected. The sodium in Na2(tiron) is coordinated in a distorted octa­hedral environment through the sulfonate oxygen and hydroxyl oxygen donors on tiron, as well as an inter­stitial water mol­ecule. Lithium, with its smaller ionic radius, is coordinated in a distorted tetra­hedral environment by sulfonic and phenolic O atoms, as well as water in Li2(tiron). The surrounding tiron anions coordinating to sodium or lithium in Na2(tiron) and Li2(tiron), respectively, result in a three-dimensional network held together by the coordinate bonds to the alkali metal cations. The formation of such a three-dimensional network for tiron salts is relatively rare and has not been observed with monovalent cations. Finally, (NH4)2(tiron) exhibits extensive hydrogen-bonding arrays between NH4+ and the surrounding tiron anions and inter­stitial water mol­ecules. This series of structures may be valuable for understanding charge transfer in a putative solid-state fuel cell utilizing tiron.

1. Chemical context

Catechols play important roles across many areas of chemistry and biology. Their rich coordination chemistry with metal ions (Pierpont & Lange, 1994[Pierpont, C. G. & Lange, C. W. (1994). Progress in Inorganic Chemistry, Vol 41, edited by K. D. Karlin, pp. 331-442. New York: John Wiley & Sons Inc.]; Sever & Wilker, 2004[Sever, M. J. & Wilker, J. J. (2004). Dalton Trans. pp. 1061-1072.]) emerges for example in siderophores (Boukhalfa & Crumbliss, 2002[Boukhalfa, H. & Crumbliss, A. L. (2002). Biometals, 15, 325-339.]; Raymond et al., 2015[Raymond, K. N., Allred, B. E. & Sia, A. K. (2015). Acc. Chem. Res. 48, 2496-2505.]; Springer & Butler, 2016[Springer, S. D. & Butler, A. (2016). Coord. Chem. Rev. 306, 628-635.]). One catechol-containing siderophore, enterobactin (ent) has the strongest characterized FeIII complex to date (Ka = 1049) (Loomis & Raymond, 1991[Loomis, L. D. & Raymond, K. N. (1991). Inorg. Chem. 30, 906-911.]). Catechols are also key to the function of some marine bioadhesives (Lee et al., 2011[Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. (2011). Annual Review of Materials Research, Vol 41, edited by D. R. Clarke & P. Fratzl, pp. 99-132. Palo Alto: Annual Reviews.]); in one recent example, a protein in sessile marine organisms uses a cooperation between surface residues containing 3,4-di­hydroxy­phenyl­alanine (DOPA) and lysine to bind strongly to mineral surfaces (Rapp et al., 2016[Rapp, M. V., Maier, G. P., Dobbs, H. A., Higdon, N. J., Waite, J. H., Butler, A. & Israelachvili, J. N. (2016). J. Am. Chem. Soc. 138, 9013-9016.]). Some species of ascidians produce a polyphenol-containing mol­ecule called tunichrome that has been implicated in metal binding and/or metal function (Sugumaran & Robinson, 2012[Sugumaran, M. & Robinson, W. E. (2012). Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 163, 1-25.]).

Upon binding to metal cations such as FeIII and TiIV, cat­echols typically form brightly colored complexes (Sever & Wilker, 2004[Sever, M. J. & Wilker, J. J. (2004). Dalton Trans. pp. 1061-1072.]; Pierpont & Lange, 1994[Pierpont, C. G. & Lange, C. W. (1994). Progress in Inorganic Chemistry, Vol 41, edited by K. D. Karlin, pp. 331-442. New York: John Wiley & Sons Inc.]). In solution, however, some catechols can oxidize and form polymers, thus forming metal complexes that are more difficult to characterize. Compared to unsubstituted catechol, tiron (4,5-dihy­droxy-1,3-benzene­disulfonic acid, Fig. 1[link]) allows for improved water solubility as well as reduced polymerization by substituting electron-withdrawing sulfonic acid moieties (Sommer, 1963a[Sommer, L. (1963a). Collect. Czech. Chem. Commun. 28, 2102-2130.],b[Sommer, L. (1963b). Z. Anorg. Allg. Chem. 321, 191-197.]). Tiron has long been used for colorimetric determination of both TiIV and FeIII (Yoe & Armstrong, 1945[Yoe, J. H. & Armstrong, A. R. (1945). Science, 102, 207-207.], 1947[Yoe, J. H. & Armstrong, A. R. (1947). Anal. Chem. 19, 100-102.]), hence its name.

[Figure 1]
Figure 1
Tiron dianion (4,5-dihy­droxy-1,3-benzene­disulfonate).

The free acid of tiron has been used in an aqueous flow battery because of its two-electron redox couple within range of an aqueous system, high water solubility, and low cost (Yang et al., 2014[Yang, B., Hoober-Burkhardt, L., Wang, F., Surya Prakash, G. K. & Narayanan, S. R. (2014). J. Electrochem. Soc. 161, A1371-A1380.]). When crystallized, tiron mol­ecules can form a network through coordination of the counter-cation to the sulfonate or protonated or deprotonated hydroxide of the tiron (Côté & Shimizu, 2001[Côté, A. P. & Shimizu, G. K. H. (2001). Chem. Commun. pp. 251-252.], 2003[Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361-5370.]; Sheriff et al., 2003[Sheriff, T. S., Carr, P. & Piggott, B. (2003). Inorg. Chim. Acta, 348, 115-122.]; Guan & Wang, 2016[Guan, L. & Wang, Y. (2016). J. Coord. Chem. 69, 3107-3114.], 2017[Guan, L. & Wang, Y. (2017). J. Coord. Chem. 70, 2520-2529.]). These networks can range from one-dimensional networks, which form a linear polymer (Côté & Shimizu, 2003[Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361-5370.]; Sheriff et al., 2003[Sheriff, T. S., Carr, P. & Piggott, B. (2003). Inorg. Chim. Acta, 348, 115-122.]), to three-dimensional networks in which each tiron anion is coordinated to a metal cation and forms an inter­connected lattice among all tiron anions in the crystal (Côté & Shimizu, 2001[Côté, A. P. & Shimizu, G. K. H. (2001). Chem. Commun. pp. 251-252.], 2003[Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361-5370.]; Guan & Wang, 2016[Guan, L. & Wang, Y. (2016). J. Coord. Chem. 69, 3107-3114.]). Many of these tiron-containing crystal structures exhibit counter-cation-dependent luminescent properties (Guan & Wang, 2016[Guan, L. & Wang, Y. (2016). J. Coord. Chem. 69, 3107-3114.], 2017[Guan, L. & Wang, Y. (2017). J. Coord. Chem. 70, 2520-2529.]). The three-dimensional networks with tiron can absorb H2S gas after inter­stitial and coordinated H2O are liberated with heat (Côté & Shimizu, 2003[Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361-5370.]). Currently, examples of three-dimensional networks formed by tiron and cations are relatively rare. Presented here are the first two examples of the preparation and characterization of the Li+ tiron salt and Na+ tiron salt, which forms a three-dimensional network. In addition to Li2(tiron) and Na2(tiron), the preparation and crystallization of the NH4+ tiron salt is reported. This species is the first tiron salt which utilizes a counter-cation capable of hydrogen bond (H-bond) donation to allow for a complex H-bonding network.

[Scheme 1]

2. Structural commentary

Three tiron salts of different monovalent cations were crystallized. Li2(tiron) and (NH4)2(tiron) were both prepared from commercially available Na2(tiron) by salt metathesis. In each case, the Na+ cation was removed by 15-crown-5 ether.

All asymmetric units (Fig. 2[link]) contain two of their respective cations on general positions. Water is included in all asymmetric units, however in different amounts. Both sodium and ammonium tiron have one water mol­ecule in the asymmetric unit, whereas lithium tiron has 2.5 water mol­ecules in the asymmetric unit. The lithium tiron also exhibits rotational whole-mol­ecule disorder leading to two possible placements of O1 on the phenyl, and representing a major and minor orientation [89.2 (3) and 10.8 (3)% occupancy, respectively].

[Figure 2]
Figure 2
Displacement ellipsoid plots of the asymmetric unit contents for the crystal structures of tiron salts characterized in this study: (a) Li2(tiron)·2.5H2O, (b) Na2(tiron)·H2O and (c) (NH4)2(tiron)·H2O. Ellipsoids are shown at the 50% probability. Hydrogen atoms shown as spheres.

The structure of Li2(tiron) is presented in the P21/n space group. The lithium ion is coordinated by phenolic, sulfonate and water oxygen atoms. Lithium is bonded to only three sulfonate moieties, and one water mol­ecule in a distorted tetra­hedral geometry. An extensive H-bonding network with three types of solvate water mol­ecules stabilizes the crystal structure (Table 1[link], Fig. 3[link]). The geometrically frustrated water mol­ecule containing O10 sits in a pocket surrounded by H-bond donors and acceptors from sulfonate (O6, O4), and water (O9), and phenol (O2). As a result of the frustration, O10 is highly disordered, modeled with a two-site split-atom model that additionally exhibits special-position disorder about the inversion element at Wyckoff position d. The result is a four-site disorder model for the water mol­ecule containing O10. The lithium-bound water mol­ecule containing O11 H-bonds with sulfonate oxygen atoms O4 and O8, but the oxygen atom is disordered, pyramidalized predominantly toward the phenolic O—H hydrogen atom of O2 due to H-bonding, but with a minor component pyramidalized toward O1, which is less available as an H-bond acceptor since the phenolic hydrogen of O1 is already involved in an intra­molecular ortho-H-bond with its own O2 (Fig. 2[link]). The water mol­ecule containing O9 is also lithium bound, but not disordered, and inter­acts with O10/10A of the disordered water and with sulfonate oxygen O3 and the phenolic hydrogen atom of O1.

Table 1
Hydrogen-bond geometry (Å, °) for Li2(tiron)·2.5H2O[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 2.22 2.685 (3) 115
O1—H1⋯O9i 0.84 1.93 2.693 (3) 150
O1A—H1A⋯O8ii 0.84 2.31 2.978 (17) 136
O2—H2⋯O1A 0.84 2.29 2.693 (16) 110
O2—H2⋯O7iii 0.84 2.60 3.082 (3) 117
O2—H2⋯O11ii 0.84 2.13 2.952 (6) 166
O9—H9A⋯O3iv 0.8323 (17) 1.9961 (16) 2.821 (2) 170.86 (13)
O9—H9B⋯O10iv 0.8033 (17) 2.19 (6) 2.96 (6) 160.0 (18)
O9—H9B⋯O10 0.8033 (17) 1.98 (6) 2.73 (6) 155.0 (16)
O9—H9B⋯O10Aiv 0.8033 (17) 2.02 (4) 2.80 (4) 164.8 (14)
O9—H9B⋯O10A 0.8033 (17) 2.08 (4) 2.83 (4) 156.2 (12)
O11—H11A⋯O4v 0.840 (2) 2.1244 (16) 2.957 (3) 171.19 (17)
O11—H11B⋯O8vi 0.829 (3) 2.0583 (19) 2.873 (3) 167.4 (4)
O11A—H11C⋯O6vi 0.843 (8) 2.5753 (18) 3.290 (8) 143.3 (5)
O11A—H11C⋯O8vi 0.843 (8) 1.9964 (18) 2.776 (8) 153.2 (8)
O11A—H11D⋯O1 0.862 (18) 2.1019 (19) 2.851 (17) 145.0 (5)
O10—H10A⋯O2iii 0.81 (6) 2.2562 (16) 2.93 (6) 141 (4)
O10—H10B⋯O6 1.02 (6) 2.2175 (18) 3.14 (6) 150 (3)
O10A—H10C⋯O2vii 0.90 (5) 2.3694 (16) 3.13 (5) 142 (3)
O10A—H10D⋯O6 0.86 (4) 2.3000 (17) 3.10 (5) 155 (3)
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z+1; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) x-1, y, z.
[Figure 3]
Figure 3
Ball and stick representation of Li2(tiron)·2.5H2O, including the H-bonding environment of neighboring tiron anions and water showing all disorder components. Atom labels with the suffix D are generated via inversion through the center of symmetry at Wyckoff position d. Atom labels with the suffix A represent minor components of two-site disorder models.

The sodium salt of tiron is also presented in the P21/n space group. Each sodium atom is bonded to four sulfonate moieties, one hydroxide, and one water oxygen atom to give a distorted octa­hedral geometry (Fig. 4[link]). The two types of Na atoms are bridged to one another along the crystallographic a axis by O9 of a water ligand and by phenolic oxygen residue O1 on one side, and by sulfonate residues O6 and O5 on the other.

[Figure 4]
Figure 4
Displacement ellipsoid plot of Na2(tiron)·H2O illustrating the pseudo-octa­hedral coordination geometry around the Na ions. Ellipsoids shown at the 50% probability level. H atoms are shown as spheres. Atom labels with the suffix A are related by translation by one unit cell.

Finally, (NH4)2(tiron) is presented in the Pbca space group. Ammonium is oriented around the negatively charged sulfonates, and acts as an H-bond donor to both sulfonates and neighboring water mol­ecules (Table 3[link], Fig. 5[link]). The structure of (NH4)2(tiron) is well-ordered with a clear H-bonding network, discussed in more detail in the next section.

Table 3
Hydrogen-bond geometry (Å, °) for (NH4)2(tiron)·H2O[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.84 2.47 2.974 (4) 119
O1—H1⋯O8 0.84 2.06 2.790 (4) 146
O2—H2⋯O9ii 0.84 1.99 2.830 (5) 174
O9—H9A⋯O3iii 0.85 (2) 2.03 (2) 2.871 (5) 171 (5)
O9—H9B⋯O4 0.86 (2) 1.97 (2) 2.831 (4) 174 (5)
N1—H1A⋯O4iv 0.95 (2) 2.13 (3) 2.980 (5) 148 (3)
N1—H1A⋯O8iii 0.95 (2) 2.30 (4) 2.907 (5) 121 (3)
N1—H1B⋯O5v 0.95 (2) 2.11 (2) 2.996 (5) 155 (3)
N1—H1C⋯O1vi 0.95 (2) 2.03 (3) 2.850 (5) 143 (3)
N1—H1C⋯O2vi 0.95 (2) 2.63 (3) 3.470 (5) 147 (3)
N1—H1D⋯O3i 0.96 (2) 2.41 (4) 2.891 (5) 111 (3)
N1—H1D⋯O7 0.96 (2) 2.02 (3) 2.847 (5) 143 (3)
N2—H2A⋯O9 0.97 (2) 1.95 (2) 2.917 (5) 174 (3)
N2—H2B⋯O7 0.97 (2) 1.87 (2) 2.834 (5) 171 (3)
N2—H2C⋯O6iii 0.95 (2) 2.03 (3) 2.901 (5) 152 (3)
N2—H2C⋯O7vii 0.95 (2) 2.60 (3) 3.215 (5) 123 (3)
N2—H2D⋯O3viii 0.96 (2) 2.45 (4) 3.025 (5) 119 (3)
N2—H2D⋯O4viii 0.96 (2) 1.99 (2) 2.916 (5) 161 (3)
N2—H2D⋯O8vii 0.96 (2) 2.60 (4) 3.113 (5) 114 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (viii) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
Displacement ellipsoid plot of asymmetric-unit contents for the crystal structure of (NH4)2(tiron)·H2O, showing intra­molecular H-bonding with ammonium ions and solvate water. Ellipsoids shown at the 50% probability level. Hydrogen atoms shown as spheres.

3. Supra­molecular features

All three tiron salts exhibit π-stacking between tiron catechol moieties, augmented by H-bonding inter­actions. H-bonding is present inter- and intra­molecularly for all tiron salts in this study. The lithium salt exists in the solid state as a three-dimensional inter­connected array of tiron anions bridged by lithium ions (Fig. 6[link]). One of the lithium ions, Li1 serves to bridge two sulfonate groups of two neighboring tiron arenes, which π-stack with one another about a crystallographic inversion center (Wyckoff position b), hence the rings are perfectly parallel. The other lithium ion, Li2, links through a sulfonate group (S1) of one tiron to the other sulfonate group S(2) of a third tiron, generating a `square' assembly of tiron anions and two Li2 ions around a crystallographic inversion element (Wyckoff position a, Fig. 6[link]). The distance of 3.718 (10) Å between the centroids of neighboring arene rings is consistent with a strong π-stacking inter­action, and suggests the inter­action is augmented by the array of H-bonding inter­actions among phenolic hydroxyl and sulfonate groups and water (Table 1[link], Fig. 3[link]).

[Figure 6]
Figure 6
Illustration of selected nearest neighbor lithium linkages of neighboring tiron anions in Li2(tiron)·2.5H2O. Atom labels with the suffix B are generated via inversion through the center of symmetry at the center of the cell (Wyckoff b) and those with the suffix A are generated via inversion through the center of symmetry in the a-face (Wyckoff b). Ellipsoids shown at the 50% probability level. Hydrogen atoms are shown as spheres.

The H-bonding in the sodium complex is entirely inter­molecular (Table 2[link], Fig. 7[link]). Both hydroxyl moieties H-bond to a sulfonate moiety on an adjacent tiron anion. The hydroxyl O1 H-bonds to the sulfonate based O3 [O—H⋯O—S 2.05 (2) Å]. The other hydroxyl O4 H-bonds to O2 of the same sulfonate with a slightly shorter H-bond [O—H⋯O—S 1.98 Å]. These two H-bonds decrease hyperconjugation to the π-system from the oxygen atom in the hydroxyls by reducing the torsion angle by 32.08 and 46.16° for O1 and O2, respectively. This deviation from a fully hyperconjugated hydroxyl exemplifies the importance of the formation of the H-bond. An H-bond not shown exists between a proton in water bound by Na+ and a tiron-based hydroxyl O2 position as well as a sulfonate in the first position [O—H⋯O—H 2.18 (3) Å, O—H⋯O—S 2.14 (3) Å].

Table 2
Hydrogen-bond geometry (Å, °) for Na2(tiron)·H2O[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 (2) 2.05 (2) 2.8256 (15) 156 (2)
O2—H2⋯O4ii 0.84 1.98 2.8145 (14) 169
O9—H9A⋯O2ii 0.82 (3) 2.18 (3) 2.9904 (15) 173 (3)
O9—H9B⋯O7iii 0.80 (3) 2.14 (3) 2.8975 (15) 158 (3)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z.
[Figure 7]
Figure 7
Packed structures of Na2(tiron)·H2O. Left: packing arrangement in the unit cell. Right: displacement ellipsoid plot showing alternating units in a π-stacked arrangement in the crystallographic a-axis direction. Ellipsoids are shown at the 50% probability level, hydrogen atoms are shown as spheres.

Two types of sodium atoms arrange in channels along the crystallographic a-axis direction, and are bridged by sulfonyl oxygen atoms O3, O4, O5, and O6, by phenolic oxygen atom O1, and by water oxygen atom O9 (Fig. 7[link]). Neighboring tiron arenes π-stack along the crystallographic a-axis direction, related by crystallographic inversion centers (Wyckoff letters a and b), also requiring the arene rings to be parallel, as in the lithium salt. The π-stacking inter­actions are further augmented by H-bonding inter­actions between the phenolic hydrogens of O1 and O2 with sulfonate oxygens O3 and O4 respectively. The π-stacking distance of 3.753 (18) Å is similar to that observed in the lithium salt with its corresponding dense array of H-bonding inter­actions, but slightly shorter due to the more acute O—Na—O bond angles in octa­hedrally coordinated sodium atoms, in contrast to tetra­hedrally coord­inated lithium atoms in the lithium salt. This arrangement of Na+ and tiron ions results in an ordered array of sodium channels inter­spersed between columns of strongly inter­acting π-stacked tiron aryl groups, all in the crystallographic a-axis direction (Fig. 8[link]).

[Figure 8]
Figure 8
Extended packing diagram of Na2(tiron)·H2O, showing the columnar arrangement of tiron aryl groups and parallel sodium ion channels.

Unlike Na+ and Li+, NH4+ cannot be coordinated by any atoms on tiron or water. Because of this inability, NH4+ inter­actions with the surrounding mol­ecules are primarily H-bond based. Both ammonium ions H-bond to three sulfonate moieties and an oxygen atom from a phenolic hydroxyl or a water molecule (Tables 3[link] and 4[link], Fig. 9[link]). The ammonium ion containing N1 forms H-bonds with two tiron mol­ecules that are horizontally next to each other in the unit cell as well as a tiron above and a tiron below. The ammonium ion containing N2 also forms a similar H-bonding network with the tiron mol­ecules but also stabilizes an inter­stitial water. This water H-bonds to two first position sulfonate moieties in alternating layers of tiron mol­ecules [O—H⋯O—S 1.97 (2) Å, O—H⋯O—S 2.03 (2) Å]. Finally, O5 of a phenolic hydroxyl is H-bonded to this inter­stitial water [O—H⋯OH2 1.99 Å] (Fig. 9[link]). Regarding intra­molecular H-bonding, because the protons on the hydroxyls are pointed away from each other to allow for H-bonding to N1, the phenolic hydroxyl containing O1 is directed to H-bond with O3 of the sulfonate (Fig. 9[link]).

Table 4
H-bonding to all NH4+ based protons in (NH4)2(tiron)·H2O

Proton on NH4 Acceptor/moiety H-bond distance (Å)
N1H1a O4/sulfonate 2.13 (3)
N1H1b O5/sulfonate 2.10 (2)
N1H1c O1/phenolic 2.04 (3)
N1H1d O7/sulfonate 2.02 (3)
N2H2a O9/water 1.95 (2)
N2H2b O7/sulfonate 1.87 (2)
N2H2c O6/sulfonate 2.03 (3)
N2H2d O4/sulfonate 1.99 (2)
[Figure 9]
Figure 9
Displacement ellipsoid plot of (NH4)2(tiron)·H2O showing neighboring H-bonding inter­actions among six tiron anions, four ammonium ions, and two water solvate mol­ecules. Ellipsoids are shown at the 50% probability level and hydrogen atoms are shown as open spheres. Atom labels with the suffix B are generated by symmetry about a crystallographic center of inversion (Wyckoff position b), and atom labels with the suffix A are generated by one or more glide operation.

The (NH4)2(tiron) packs such that the tiron units connect to one another along the crystallographic c-axis direction via a six-membered H-bonding array of two lattice water mol­ecules, two ammonium ions (containing N2), and two sulfonate oxygen atoms (Fig. 9[link]). The ammonium ions containing N1 further serve to link tiron units along the crystallographic b-axis direction by H-bonding with sulfonate oxygen O8 and phenolic oxygen atom O1. Further, the arene π-stacking inter­actions and additional H-bonding inter­actions between sulfonate oxygen atoms and both ammonium ions link these strands to one another in the crystallographic a-axis direction to give the three-dimensional H-bonding network (Fig. 10[link]), although the π-stacking distance is greatest in the ammonium salt [4.006 (3) Å] in comparison to the Li+ and Na+ salts. This result is possibly due to the lower strength of N—H H-bonds in comparison to O—H H-bonds. Unlike the Li+ and Na+ salts, the planes of the arene rings of tiron in the NH4+ tiron are canted at an angle of 2.08°, related to one another by the crystallographic glide operations.

[Figure 10]
Figure 10
Extended packing view of (NH4)2(tiron) structure showing the three-dimensional H-bond network.

4. Database survey

In the reported structures, inter­actions with sulfonate moieties and the protonated hydroxyl moieties together create a complex network formed through coordinate bonds or H-bonds. A search of the Cambridge Structural Database (Version 5.39, February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded several structures that included tiron (Table 5[link]). Of the structures reported, seven exhibited π-stacking inter­actions between at least two tiron mol­ecules as represented by their inter­centroid distances. A rarer structural feature of these complexes is the formation of networks between tiron mol­ecules and their corresponding counter-cations in which only HUCMOH, ADOXUP, and HUCMOH02 form three-dimensional networks by eliciting multiple bonds to the cations (Côté & Shimizu, 2003[Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361-5370.]; Guan & Wang, 2016[Guan, L. & Wang, Y. (2016). J. Coord. Chem. 69, 3107-3114.]). Both presented Li+ and Na+ tiron salts are the first examples of tiron-containing structures with monovalent cations that form three-dimensional networks. Furthermore, the NH4+ tiron salt presented is the first example of a tiron complex in which the counter-cation H-bonds to the tiron.

Table 5
Crystallographically characterized tiron salts

CSD code Counter-cation Observed coordination number Charge of tiron Inter­centroid distance (Å) Reference
CAZZEI Na+ 2, 1, 1 3 3.857 (Riley et al., 1983[Riley, P. E., Haddad, S. F. & Raymond, K. N. (1983). Inorg. Chem. 22, 3090-3096.])
HUCMOH Ba2+ 9 2 3.520 (Côté & Shimizu, 2003[Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361-5370.])
OMARAV Ca2+ 8 2 3.598 (Côté & Shimizu, 2003[Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361-5370.])
OMAREZ Sr2+ 9 2 3.654 (Côté & Shimizu, 2003[Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361-5370.])
OMARID Mg2+ 6 (all water) 2 4.180 (Côté & Shimizu, 2003[Côté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361-5370.])
FIMBEJ Zn2+ 6 (no tiron) 2 N/A (Wang et al., 2005[Wang, W. G., Zhang, J., Ju, Z. F. & Song, L. J. (2005). Appl. Organomet. Chem. 19, 191-192.])
NIWKUA Cd2+ 6 (one sulfonate) 2 N/A (Zhang et al., 2008[Zhang, X., Ge, C., Guan, L. & Sun, Z. (2008). Acta Cryst. E64, m396-m397.])
FIRMEA Cu2+ 6 (one sulfonate) 2 N/A (Lu et al., 2014[Lu, L., Jun, W., Wei-Ping, W., Xiu-Lan, Z. & Bin, X. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 393-396.])
TUYNUY Mg2+ 6 (no tiron) 2 N/A (Guan, 2016[Guan, L. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1-5.])
ADOXUP La3+ 9 3 3.530 (Guan & Wang, 2016[Guan, L. & Wang, Y. (2016). J. Coord. Chem. 69, 3107-3114.])
HUCMOH02 Ba2+ 9 2 3.516 (Guan & Wang, 2016[Guan, L. & Wang, Y. (2016). J. Coord. Chem. 69, 3107-3114.])

5. Synthesis and crystallization

Na2(tiron)·H2O

Na2(tiron)·H2O was used as received from the commercial source (97%, Sigma Aldrich) and added to water until it was saturated. The slurry was filtered into a 1 dram scintillation vial and covered with a Kimwipe. The solution was allowed to sit undisturbed at room temperature until the water evapor­ated. The crystals which developed were off-white needles.

Li2(tiron)·2.5H2O

In 2.00 mL of water, 0.100 g of Na2(tiron)·H2O was dissolved. To this solution, 0.94 g of LiPF6 was added. Once the lithium salt dissolved, 0.120 mL 15-crown-5 was added which immediately resulted in a white precipitate. The slurry was stirred while adding 1 mL of dichloromethane (DCM), then the DCM layer was removed by pipette. The aqueous solution was extracted twice more with DCM for a total of three times. The water was then evaporated by gentle heating. A white powder was obtained and triturated with 1 mL of diethyl ether three times. The resulting solid was dried, partially dissolved in ethanol, filtered, and allowed to sit undisturbed in a 1 dram scintillation vial at room temperature. The resulting crystals were off-white needles.

(NH4)2(tiron)·H2O

Na2(tiron)·H2O (0.100 g) was added and dissolved in 2.00 mL of water. After the Na2(tiron) had dissolved, 0.098 g of NH4PF6 was added and dissolved. Upon adding NH4PF6, the solution turned rose pink. To this solution, 0.120 mL of 15-crown-5 was added and a white precipitate formed. The slurry was extracted three times total with 1 mL of DCM each time. The aqueous solution was gently heated to dryness. The solid was then triturated with three separate 1 mL portions of diethyl ether. The solid was dried and dissolved in methanol, filtered, and allowed to sit undisturbed in a 1 dram vial at room temperature. The crystals which formed were off-white needles with a purple/rose-colored oily residue coating them.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Water hydrogens were located in difference maps and refined wherever possible. H atoms bonded to C were placed in geometrically idealized positions based on sp2 hybridization with C—H bond lengths of 0.95 Å and Uiso(H) = 1.2Ueq(C). A combination of calculated H atoms and H atoms found in the difference map was utilized for phenolic O—H and H2O mol­ecules. For phenolic OH, H atoms were either located and freely refined, or placed in idealized sp3 positions with bond lengths of 0.84 Å and Uiso(H) = 1.5Ueq(O), and permitted to rotate about the O—C bond. For water mol­ecules, hydrogen atoms were either located in the difference-Fourier map and refined with restraints (detailed below), or added and refined with restraints according to the most likely hydrogen-bonding inter­actions. For disordered water mol­ecules, restraints (SIMU, DFIX, DANG, ISOR) and constraints (EADP) were employed to improve displacement parameters as well as allow for convergence of H-atom locations. For SIMU restraints on the disordered O10 of Li2(tiron)·2.5H2O, the restraint was set at s = 0.005 Å, st = 0.02 Å, and the default cutoff of 1.7 Å. These atoms were further restrained with ISOR 0.01 0.02. The disordered O—H phenoxyl group on the tiron ligand for the Li2(tiron) crystal structure was located from a difference map and refined to a 0.892 (3)/0.108 (3) site occupancy. The lithium-bound water mol­ecule was refined to a 0.751 (12)/0.249 (12) site occupancy. The disordered solvate water mol­ecule on Wyckoff position d containing O10 was refined to a 0.30 (5)/0.20 (5) site occupancy. H atoms bonded to N were located in the difference-Fourier maps and restrained using DFIX and DANG to idealized sp3 hybridization with N—H bond lengths of 1.00 (2) Å and Uiso(H) = 1.5Ueq(N). EADP was used to constrain the ellipsoids of the disordered O1 to be equivalent for accurate refinement of occupancies.

Table 6
Experimental details

  Li2(tiron)·2.5H2O Na2(tiron)·H2 (NH4)2(tiron)·H2O
Crystal data
Chemical formula [Li2(C6H4O8S2)(H2O)2]2·H2O 2Na+·C6H6O9S22− 2NH4+·C6H4O8S22−·H2O
Mr 654.26 332.21 322.31
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Orthorhombic, Pbca
Temperature (K) 100 100 100
a, b, c (Å) 9.5847 (18), 7.4498 (15), 17.599 (4) 6.8156 (7), 16.1449 (15), 9.5870 (9) 6.5023 (15), 18.779 (4), 20.236 (4)
α, β, γ (°) 90, 102.997 (4), 90 90, 92.727 (2), 90 90, 90, 90
V3) 1224.5 (4) 1053.73 (18) 2470.9 (9)
Z 2 4 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.49 0.63 0.48
Crystal size (mm) 0.24 × 0.09 × 0.04 0.45 × 0.16 × 0.13 0.10 × 0.05 × 0.04
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.])
Tmin, Tmax 0.670, 0.746 0.676, 0.746 0.663, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15864, 2851, 2313 9573, 2485, 2340 12544, 2255, 1354
Rint 0.049 0.025 0.147
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.02 0.023, 0.071, 1.08 0.055, 0.127, 1.01
No. of reflections 2851 2485 2255
No. of parameters 217 185 204
No. of restraints 18 0 23
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.48 0.44, −0.43 0.42, −0.53
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2014). Cell refinement: SAINT (Bruker, 2014) for NaTiron, NH4Tiron; SAINT (Bruker, 2016) for LiTiron. Data reduction: SAINT (Bruker, 2014) for NaTiron, NH4Tiron; SAINT (Bruker, 2016) for LiTiron. For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Disodium 4,5-dihydroxybenzene-1,3-disulfonate (NaTiron) top
Crystal data top
2Na+·C6H6O9S22F(000) = 672
Mr = 332.21Dx = 2.094 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.8156 (7) ÅCell parameters from 6900 reflections
b = 16.1449 (15) Åθ = 2.5–27.9°
c = 9.5870 (9) ŵ = 0.63 mm1
β = 92.727 (2)°T = 100 K
V = 1053.73 (18) Å3Plank, colorless
Z = 40.45 × 0.16 × 0.13 mm
Data collection top
Bruker APEXII
diffractometer
2485 independent reflections
Radiation source: sealed tube2340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.333 pixels mm-1θmax = 27.9°, θmin = 2.5°
ω and φ scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1721
Tmin = 0.676, Tmax = 0.746l = 1112
9573 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.6133P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2485 reflectionsΔρmax = 0.44 e Å3
185 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74934 (5)0.47581 (2)0.82422 (3)0.00662 (9)
S20.78290 (5)0.28628 (2)0.35605 (3)0.00666 (9)
Na10.52212 (8)0.15609 (3)0.55730 (6)0.01024 (13)
Na20.52978 (8)0.35866 (3)0.07130 (6)0.00904 (13)
O10.77862 (15)0.44913 (6)0.21044 (10)0.0095 (2)
H10.834 (3)0.4913 (15)0.184 (2)0.026 (6)*
O20.72832 (15)0.60443 (6)0.33613 (10)0.0103 (2)
H20.6468430.5971790.2687210.015*
O30.93352 (15)0.43988 (6)0.88058 (10)0.0102 (2)
O40.57824 (15)0.42796 (6)0.86349 (10)0.0104 (2)
O50.73253 (14)0.56359 (6)0.85674 (10)0.0094 (2)
O60.78663 (15)0.22645 (6)0.47032 (10)0.0089 (2)
O70.96390 (15)0.28408 (6)0.27946 (10)0.0104 (2)
O80.60507 (15)0.28136 (6)0.26724 (10)0.0102 (2)
O90.26274 (16)0.24089 (7)0.49210 (11)0.0115 (2)
H9A0.256 (4)0.2814 (17)0.542 (3)0.042 (7)*
H9B0.205 (4)0.2515 (16)0.419 (3)0.037 (7)*
C10.76633 (19)0.45634 (8)0.35261 (13)0.0074 (2)
C20.74189 (19)0.53371 (8)0.41504 (14)0.0078 (3)
C30.73789 (19)0.53988 (8)0.55936 (14)0.0082 (2)
H30.7238890.5924590.6022560.010*
C40.75445 (19)0.46884 (8)0.64062 (13)0.0073 (2)
C50.77038 (19)0.39085 (8)0.58031 (13)0.0082 (3)
H50.7781090.3425170.6368280.010*
C60.77476 (19)0.38501 (8)0.43624 (14)0.0072 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00802 (17)0.00652 (17)0.00529 (15)0.00008 (11)0.00004 (11)0.00033 (10)
S20.00871 (17)0.00549 (16)0.00574 (16)0.00048 (11)0.00007 (12)0.00022 (11)
Na10.0092 (3)0.0105 (3)0.0109 (3)0.0003 (2)0.0001 (2)0.0014 (2)
Na20.0093 (3)0.0099 (3)0.0079 (3)0.0004 (2)0.0002 (2)0.0004 (2)
O10.0137 (5)0.0090 (5)0.0060 (4)0.0021 (4)0.0006 (3)0.0014 (4)
O20.0152 (5)0.0072 (5)0.0081 (4)0.0012 (4)0.0029 (4)0.0030 (4)
O30.0105 (5)0.0108 (5)0.0091 (4)0.0022 (4)0.0018 (3)0.0007 (4)
O40.0111 (5)0.0121 (5)0.0079 (4)0.0035 (4)0.0009 (3)0.0017 (4)
O50.0110 (5)0.0071 (5)0.0100 (4)0.0005 (4)0.0007 (3)0.0018 (3)
O60.0113 (5)0.0073 (4)0.0081 (4)0.0008 (4)0.0003 (4)0.0024 (3)
O70.0116 (5)0.0111 (5)0.0087 (5)0.0022 (4)0.0031 (4)0.0003 (3)
O80.0118 (5)0.0095 (5)0.0091 (5)0.0010 (4)0.0029 (4)0.0005 (3)
O90.0135 (5)0.0114 (5)0.0095 (5)0.0012 (4)0.0007 (4)0.0003 (4)
C10.0066 (6)0.0090 (6)0.0065 (6)0.0009 (5)0.0000 (4)0.0007 (5)
C20.0072 (6)0.0069 (6)0.0093 (6)0.0006 (5)0.0003 (5)0.0021 (5)
C30.0073 (6)0.0074 (6)0.0100 (6)0.0008 (5)0.0003 (5)0.0000 (5)
C40.0068 (6)0.0091 (6)0.0059 (6)0.0007 (5)0.0001 (4)0.0003 (5)
C50.0079 (6)0.0080 (6)0.0086 (6)0.0002 (5)0.0004 (5)0.0013 (5)
C60.0065 (6)0.0064 (6)0.0087 (6)0.0004 (5)0.0002 (4)0.0007 (5)
Geometric parameters (Å, º) top
S1—O31.4628 (10)Na2—O5vi2.3163 (11)
S1—O41.4630 (10)Na2—O6iii2.3278 (11)
S1—O51.4567 (10)Na2—O82.2929 (11)
S1—C41.7657 (13)Na2—O9vii2.4073 (12)
S2—Na23.3683 (7)O1—H10.82 (2)
S2—O61.4599 (10)O1—C11.3746 (16)
S2—O71.4658 (10)O2—H20.8400
S2—O81.4499 (10)O2—C21.3704 (16)
S2—C61.7717 (14)O9—H9A0.82 (3)
Na1—Na2i3.3731 (8)O9—H9B0.80 (3)
Na1—Na2ii3.4644 (8)C1—C21.3984 (18)
Na1—O1i2.8332 (12)C1—C61.4028 (18)
Na1—O3iii2.3534 (11)C2—C31.3888 (19)
Na1—O5iv2.3611 (11)C3—H30.9500
Na1—O62.3192 (12)C3—C41.3881 (18)
Na1—O7i2.3890 (11)C4—C51.3920 (19)
Na1—O92.2988 (12)C5—H50.9500
Na2—O12.5640 (12)C5—C61.3862 (18)
Na2—O4v2.3223 (11)
O3—S1—O4112.09 (6)O5vi—Na2—O9vii170.31 (4)
O3—S1—C4106.60 (6)O6iii—Na2—O1173.13 (4)
O4—S1—C4106.06 (6)O6iii—Na2—O9vii86.67 (4)
O5—S1—O3112.43 (6)O8—Na2—O176.54 (4)
O5—S1—O4112.76 (6)O8—Na2—O4v158.38 (4)
O5—S1—C4106.31 (6)O8—Na2—O5vi101.35 (4)
O6—S2—Na2145.86 (4)O8—Na2—O6iii98.43 (4)
O6—S2—O7112.01 (6)O8—Na2—O9vii76.69 (4)
O6—S2—C6105.63 (6)O9vii—Na2—O196.58 (4)
O7—S2—Na290.76 (4)Na1vii—O1—H192.7 (16)
O7—S2—C6106.48 (6)Na2—O1—Na1vii77.18 (3)
O8—S2—Na233.02 (4)Na2—O1—H1127.7 (15)
O8—S2—O6112.87 (6)C1—O1—Na1vii129.01 (8)
O8—S2—O7113.86 (6)C1—O1—Na2119.61 (8)
O8—S2—C6105.17 (6)C1—O1—H1106.6 (15)
C6—S2—Na290.81 (5)C2—O2—H2109.5
Na2i—Na1—Na2ii170.83 (3)S1—O3—Na1ii135.50 (6)
O1i—Na1—Na2i47.83 (2)S1—O4—Na2viii128.53 (6)
O1i—Na1—Na2ii123.18 (3)S1—O5—Na1ix128.93 (6)
O3iii—Na1—Na2ii101.78 (3)S1—O5—Na2vi131.35 (6)
O3iii—Na1—Na2i76.14 (3)Na2vi—O5—Na1ix95.57 (4)
O3iii—Na1—O1i80.89 (4)S2—O6—Na1127.43 (6)
O3iii—Na1—O5iv89.31 (4)S2—O6—Na2ii133.57 (6)
O3iii—Na1—O7i149.34 (4)Na1—O6—Na2ii96.41 (4)
O5iv—Na1—Na2i129.11 (3)S2—O7—Na1vii128.04 (6)
O5iv—Na1—Na2ii41.72 (3)S2—O8—Na2126.83 (6)
O5iv—Na1—O1i82.09 (4)Na1—O9—Na2i91.54 (4)
O5iv—Na1—O7i95.13 (4)Na1—O9—H9A112.4 (19)
O6—Na1—Na2ii41.89 (3)Na1—O9—H9B134.7 (18)
O6—Na1—Na2i147.21 (3)Na2i—O9—H9A107.1 (19)
O6—Na1—O1i164.68 (4)Na2i—O9—H9B96.3 (19)
O6—Na1—O3iii103.94 (4)H9A—O9—H9B108 (2)
O6—Na1—O5iv83.43 (4)O1—C1—C2120.94 (12)
O6—Na1—O7i106.70 (4)O1—C1—C6119.63 (12)
O7i—Na1—Na2ii101.61 (3)C2—C1—C6119.42 (12)
O7i—Na1—Na2i77.60 (3)O2—C2—C1120.95 (12)
O7i—Na1—O1i69.77 (3)O2—C2—C3119.09 (12)
O9—Na1—Na2ii143.62 (4)C3—C2—C1119.93 (12)
O9—Na1—Na2i45.51 (3)C2—C3—H3120.2
O9—Na1—O1i92.07 (4)C4—C3—C2119.66 (12)
O9—Na1—O3iii91.64 (4)C4—C3—H3120.2
O9—Na1—O5iv173.87 (4)C3—C4—S1120.12 (10)
O9—Na1—O6102.21 (4)C3—C4—C5121.34 (12)
O9—Na1—O7i80.99 (4)C5—C4—S1118.52 (10)
O4v—Na2—O193.11 (4)C4—C5—H5120.6
O4v—Na2—O6iii93.16 (4)C6—C5—C4118.76 (12)
O4v—Na2—O9vii85.88 (4)C6—C5—H5120.6
O5vi—Na2—O192.13 (4)C1—C6—S2119.47 (10)
O5vi—Na2—O4v97.91 (4)C5—C6—S2119.74 (10)
O5vi—Na2—O6iii84.23 (4)C5—C6—C1120.76 (12)
S1—C4—C5—C6179.90 (10)O6—S2—C6—C1178.85 (11)
Na1vii—O1—C1—C2141.05 (10)O6—S2—C6—C50.93 (12)
Na1vii—O1—C1—C640.13 (17)O7—S2—O6—Na1148.47 (7)
Na2—S2—O6—Na120.03 (12)O7—S2—O6—Na2ii8.76 (10)
Na2—S2—O6—Na2ii137.20 (6)O7—S2—O8—Na249.16 (9)
Na2—S2—O7—Na1vii11.89 (7)O7—S2—C6—C161.90 (12)
Na2—S2—C6—C129.14 (11)O7—S2—C6—C5120.18 (11)
Na2—S2—C6—C5148.78 (11)O8—S2—O6—Na118.39 (9)
Na2—O1—C1—C2121.37 (12)O8—S2—O6—Na2ii138.85 (8)
Na2—O1—C1—C657.45 (15)O8—S2—O7—Na1vii36.24 (9)
O1—C1—C2—O20.4 (2)O8—S2—C6—C159.25 (12)
O1—C1—C2—C3177.37 (12)O8—S2—C6—C5118.67 (11)
O1—C1—C6—S24.63 (17)C1—C2—C3—C41.2 (2)
O1—C1—C6—C5177.47 (12)C2—C1—C6—S2174.21 (10)
O2—C2—C3—C4179.04 (12)C2—C1—C6—C53.7 (2)
O3—S1—O4—Na2viii35.85 (9)C2—C3—C4—S1179.94 (10)
O3—S1—O5—Na1ix13.55 (9)C2—C3—C4—C51.6 (2)
O3—S1—O5—Na2vi137.77 (7)C3—C4—C5—C61.7 (2)
O3—S1—C4—C3121.82 (11)C4—S1—O3—Na1ii132.68 (8)
O3—S1—C4—C559.75 (12)C4—S1—O4—Na2viii151.80 (7)
O4—S1—O3—Na1ii17.06 (10)C4—S1—O5—Na1ix102.73 (8)
O4—S1—O5—Na1ix141.46 (7)C4—S1—O5—Na2vi105.95 (8)
O4—S1—O5—Na2vi9.86 (10)C4—C5—C6—S2176.94 (10)
O4—S1—C4—C3118.57 (11)C4—C5—C6—C11.0 (2)
O4—S1—C4—C559.86 (12)C6—S2—O6—Na196.00 (8)
O5—S1—O3—Na1ii111.21 (9)C6—S2—O6—Na2ii106.76 (8)
O5—S1—O4—Na2viii92.24 (8)C6—S2—O7—Na1vii79.18 (8)
O5—S1—C4—C31.68 (13)C6—S2—O8—Na267.03 (8)
O5—S1—C4—C5179.89 (10)C6—C1—C2—O2178.42 (12)
O6—S2—O7—Na1vii165.81 (6)C6—C1—C2—C33.8 (2)
O6—S2—O8—Na2178.30 (6)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y1/2, z+3/2; (v) x, y, z1; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z1/2; (viii) x, y, z+1; (ix) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3x0.82 (2)2.05 (2)2.8256 (15)156 (2)
O2—H2···O4vi0.841.982.8145 (14)169
O9—H9A···O2vi0.82 (3)2.18 (3)2.9904 (15)173 (3)
O9—H9B···O7xi0.80 (3)2.14 (3)2.8975 (15)158 (3)
Symmetry codes: (vi) x+1, y+1, z+1; (x) x+2, y+1, z+1; (xi) x1, y, z.
Diammonium 4,5-dihydroxybenzene-1,3-disulfonate monohydrate (NH4Tiron) top
Crystal data top
2NH4+·C6H4O8S22·H2ODx = 1.733 Mg m3
Mr = 322.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 511 reflections
a = 6.5023 (15) Åθ = 3.0–21.0°
b = 18.779 (4) ŵ = 0.48 mm1
c = 20.236 (4) ÅT = 100 K
V = 2470.9 (9) Å3Plank, colorless
Z = 80.10 × 0.05 × 0.04 mm
F(000) = 1344
Data collection top
Bruker APEXII
diffractometer
2255 independent reflections
Radiation source: sealed tube1354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.147
Detector resolution: 8.333 pixels mm-1θmax = 25.3°, θmin = 2.0°
ω and φ scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 2222
Tmin = 0.663, Tmax = 0.746l = 1524
12544 measured reflections
Refinement top
Refinement on F223 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.6346P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2255 reflectionsΔρmax = 0.42 e Å3
204 parametersΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29066 (17)0.42273 (6)0.34618 (5)0.0132 (3)
S20.26230 (17)0.69952 (6)0.42150 (6)0.0154 (3)
O10.2580 (5)0.72630 (16)0.27192 (15)0.0216 (8)
H10.2247510.7518610.3042710.032*
O20.2771 (5)0.62901 (17)0.17777 (13)0.0175 (7)
H20.2701160.5940580.1519570.026*
O30.0895 (5)0.41015 (16)0.37651 (14)0.0184 (8)
O40.4555 (5)0.41571 (16)0.39574 (14)0.0152 (7)
O50.3278 (5)0.38099 (17)0.28738 (14)0.0199 (8)
O60.2038 (5)0.66240 (16)0.48126 (15)0.0193 (8)
O70.4689 (5)0.72999 (17)0.42551 (15)0.0209 (8)
O80.1134 (5)0.75262 (17)0.39943 (16)0.0234 (8)
C10.2691 (7)0.6571 (2)0.2915 (2)0.0127 (10)
C20.2800 (7)0.6052 (3)0.2418 (2)0.0152 (11)
C30.2921 (7)0.5343 (2)0.2580 (2)0.0129 (10)
H30.3019280.4994460.2241650.015*
C40.2901 (7)0.5134 (2)0.3242 (2)0.0119 (10)
C50.2797 (7)0.5640 (2)0.3741 (2)0.0138 (10)
H50.2797260.5497800.4191250.017*
C60.2694 (6)0.6352 (2)0.3576 (2)0.0115 (9)
O90.7831 (5)0.51345 (17)0.41197 (17)0.0209 (8)
H9A0.883 (5)0.487 (2)0.401 (2)0.031*
H9B0.684 (5)0.483 (2)0.410 (2)0.031*
N10.7375 (6)0.8117 (2)0.34433 (18)0.0172 (9)
H1A0.853 (4)0.829 (2)0.3686 (17)0.026*
H1B0.707 (6)0.8458 (17)0.3109 (15)0.026*
H1C0.762 (6)0.7691 (14)0.3204 (17)0.026*
H1D0.620 (4)0.804 (2)0.3718 (16)0.026*
N20.7621 (6)0.6433 (2)0.49080 (17)0.0159 (9)
H2A0.767 (6)0.5981 (13)0.4675 (17)0.024*
H2B0.673 (5)0.6738 (18)0.4648 (16)0.024*
H2C0.895 (4)0.664 (2)0.4954 (19)0.024*
H2D0.698 (6)0.634 (2)0.5323 (12)0.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0118 (5)0.0115 (6)0.0162 (6)0.0002 (5)0.0002 (5)0.0014 (5)
S20.0156 (6)0.0120 (6)0.0186 (6)0.0004 (5)0.0001 (5)0.0024 (5)
O10.028 (2)0.0126 (18)0.0244 (18)0.0027 (16)0.0000 (17)0.0008 (14)
O20.0188 (18)0.0202 (19)0.0135 (15)0.0027 (16)0.0001 (15)0.0018 (14)
O30.0134 (18)0.016 (2)0.0258 (18)0.0042 (14)0.0062 (14)0.0024 (15)
O40.0136 (17)0.0127 (19)0.0194 (16)0.0014 (14)0.0035 (13)0.0004 (14)
O50.032 (2)0.0115 (18)0.0158 (17)0.0028 (15)0.0010 (15)0.0042 (14)
O60.024 (2)0.0156 (19)0.0185 (17)0.0012 (15)0.0059 (15)0.0035 (14)
O70.0184 (18)0.020 (2)0.0239 (18)0.0051 (14)0.0004 (15)0.0033 (15)
O80.022 (2)0.019 (2)0.0291 (18)0.0111 (16)0.0067 (17)0.0004 (16)
C10.006 (2)0.011 (2)0.021 (2)0.0002 (19)0.005 (2)0.0040 (19)
C20.008 (2)0.021 (3)0.016 (2)0.002 (2)0.006 (2)0.005 (2)
C30.011 (2)0.013 (2)0.014 (2)0.002 (2)0.0008 (19)0.005 (2)
C40.009 (2)0.008 (3)0.018 (2)0.0018 (19)0.002 (2)0.0014 (19)
C50.008 (2)0.017 (3)0.017 (2)0.001 (2)0.0017 (19)0.004 (2)
C60.006 (2)0.011 (2)0.017 (2)0.0003 (18)0.001 (2)0.0023 (19)
O90.0136 (18)0.020 (2)0.0290 (19)0.0020 (15)0.0015 (16)0.0015 (16)
N10.014 (2)0.018 (2)0.019 (2)0.0015 (18)0.0003 (19)0.0002 (18)
N20.019 (2)0.015 (2)0.014 (2)0.0006 (19)0.0029 (19)0.0010 (17)
Geometric parameters (Å, º) top
S1—O31.464 (3)C3—H30.9500
S1—O41.474 (3)C3—C41.396 (6)
S1—O51.445 (3)C4—C51.388 (6)
S1—C41.760 (4)C5—H50.9500
S2—O61.447 (3)C5—C61.378 (6)
S2—O71.462 (3)O9—H9A0.849 (19)
S2—O81.460 (3)O9—H9B0.861 (19)
S2—C61.770 (4)N1—H1A0.951 (18)
O1—H10.8400N1—H1B0.954 (17)
O1—C11.361 (5)N1—H1C0.949 (17)
O2—H20.8400N1—H1D0.956 (17)
O2—C21.370 (5)N2—H2A0.972 (17)
C1—C21.402 (6)N2—H2B0.969 (17)
C1—C61.401 (6)N2—H2C0.948 (17)
C2—C31.373 (6)N2—H2D0.955 (17)
O3—S1—O4110.49 (18)C3—C4—S1121.0 (3)
O3—S1—C4105.1 (2)C5—C4—S1118.6 (3)
O4—S1—C4105.1 (2)C5—C4—C3120.4 (4)
O5—S1—O3114.01 (19)C4—C5—H5120.3
O5—S1—O4112.96 (19)C6—C5—C4119.4 (4)
O5—S1—C4108.5 (2)C6—C5—H5120.3
O6—S2—O7112.6 (2)C1—C6—S2119.8 (3)
O6—S2—O8114.2 (2)C5—C6—S2119.1 (3)
O6—S2—C6106.75 (19)C5—C6—C1121.0 (4)
O7—S2—C6106.47 (19)H9A—O9—H9B100 (3)
O8—S2—O7111.0 (2)H1A—N1—H1B108 (3)
O8—S2—C6105.1 (2)H1A—N1—H1C114 (3)
C1—O1—H1109.5H1A—N1—H1D112 (3)
C2—O2—H2109.5H1B—N1—H1C104 (3)
O1—C1—C2117.3 (4)H1B—N1—H1D110 (3)
O1—C1—C6123.9 (4)H1C—N1—H1D108 (3)
C6—C1—C2118.8 (4)H2A—N2—H2B106 (3)
O2—C2—C1116.8 (4)H2A—N2—H2C112 (3)
O2—C2—C3122.9 (4)H2A—N2—H2D106 (3)
C3—C2—C1120.3 (4)H2B—N2—H2C111 (3)
C2—C3—H3119.9H2B—N2—H2D109 (3)
C2—C3—C4120.1 (4)H2C—N2—H2D113 (3)
C4—C3—H3119.9
S1—C4—C5—C6177.0 (3)O7—S2—C6—C176.0 (4)
O1—C1—C2—O20.4 (6)O7—S2—C6—C5102.6 (4)
O1—C1—C2—C3179.8 (4)O8—S2—C6—C141.9 (4)
O1—C1—C6—S21.8 (6)O8—S2—C6—C5139.5 (4)
O1—C1—C6—C5179.6 (4)C1—C2—C3—C41.1 (6)
O2—C2—C3—C4178.6 (4)C2—C1—C6—S2178.4 (3)
O3—S1—C4—C3112.9 (4)C2—C1—C6—C50.2 (6)
O3—S1—C4—C564.7 (4)C2—C3—C4—S1176.4 (4)
O4—S1—C4—C3130.5 (4)C2—C3—C4—C51.2 (7)
O4—S1—C4—C551.9 (4)C3—C4—C5—C60.6 (6)
O5—S1—C4—C39.4 (4)C4—C5—C6—S2178.5 (3)
O5—S1—C4—C5173.0 (3)C4—C5—C6—C10.1 (6)
O6—S2—C6—C1163.6 (3)C6—C1—C2—O2179.3 (4)
O6—S2—C6—C517.8 (4)C6—C1—C2—C30.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.842.472.974 (4)119
O1—H1···O80.842.062.790 (4)146
O2—H2···O9ii0.841.992.830 (5)174
O9—H9A···O3iii0.85 (2)2.03 (2)2.871 (5)171 (5)
O9—H9B···O40.86 (2)1.97 (2)2.831 (4)174 (5)
N1—H1A···O4iv0.95 (2)2.13 (3)2.980 (5)148 (3)
N1—H1A···O8iii0.95 (2)2.30 (4)2.907 (5)121 (3)
N1—H1B···O5v0.95 (2)2.11 (2)2.996 (5)155 (3)
N1—H1C···O1vi0.95 (2)2.03 (3)2.850 (5)143 (3)
N1—H1C···O2vi0.95 (2)2.63 (3)3.470 (5)147 (3)
N1—H1D···O3i0.96 (2)2.41 (4)2.891 (5)111 (3)
N1—H1D···O70.96 (2)2.02 (3)2.847 (5)143 (3)
N2—H2A···O90.97 (2)1.95 (2)2.917 (5)174 (3)
N2—H2B···O70.97 (2)1.87 (2)2.834 (5)171 (3)
N2—H2C···O6iii0.95 (2)2.03 (3)2.901 (5)152 (3)
N2—H2C···O7vii0.95 (2)2.60 (3)3.215 (5)123 (3)
N2—H2D···O3viii0.96 (2)2.45 (4)3.025 (5)119 (3)
N2—H2D···O4viii0.96 (2)1.99 (2)2.916 (5)161 (3)
N2—H2D···O8vii0.96 (2)2.60 (4)3.113 (5)114 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+1/2; (iii) x+1, y, z; (iv) x+3/2, y+1/2, z; (v) x+1, y+1/2, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x+1/2, y+3/2, z+1; (viii) x+1, y+1, z+1.
µ-4,5-Dihydroxybenzene-1,3-disulfonato-bis[aqualithium(I)] hemihydrate (LiTiron) top
Crystal data top
[Li2(C6H4O8S2)(H2O)2]2·H2OF(000) = 668
Mr = 654.26Dx = 1.775 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.5847 (18) ÅCell parameters from 3529 reflections
b = 7.4498 (15) Åθ = 2.2–27.8°
c = 17.599 (4) ŵ = 0.49 mm1
β = 102.997 (4)°T = 100 K
V = 1224.5 (4) Å3Plank, colourless
Z = 20.24 × 0.09 × 0.04 mm
Data collection top
Bruker APEXII
diffractometer
2851 independent reflections
Radiation source: sealed tube2313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 8.333 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 99
Tmin = 0.670, Tmax = 0.746l = 2322
15864 measured reflections
Refinement top
Refinement on F218 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0437P)2 + 1.2637P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2851 reflectionsΔρmax = 0.44 e Å3
217 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.32410 (6)0.37552 (7)0.67254 (3)0.01367 (14)
S20.20642 (6)0.24170 (8)0.35997 (3)0.01575 (15)
O10.5203 (2)0.1795 (3)0.38983 (11)0.0257 (5)0.892 (3)
H10.6100710.1727390.4004480.039*0.892 (3)
O1A0.6234 (16)0.305 (2)0.6540 (9)0.0257 (5)0.108 (3)
H1A0.6165030.2232060.6859650.039*0.108 (3)
O20.71321 (17)0.2031 (3)0.52616 (10)0.0267 (4)
H20.7639390.2153850.5714380.040*
O30.32479 (17)0.2061 (2)0.71493 (9)0.0185 (4)
O40.17924 (16)0.4482 (2)0.64770 (9)0.0173 (3)
O50.42396 (17)0.5036 (2)0.71657 (9)0.0215 (4)
O60.06889 (17)0.2875 (2)0.37599 (10)0.0221 (4)
O70.2162 (2)0.0587 (3)0.33493 (11)0.0390 (5)
O80.24746 (18)0.3710 (3)0.30624 (10)0.0309 (5)
O90.21479 (18)0.1015 (2)0.37158 (10)0.0233 (4)
H9A0.2414100.0138210.3426400.044*
H9B0.1668400.0585600.4107000.044*
O110.4064 (3)0.1930 (4)0.1751 (3)0.0238 (11)0.751 (12)
H11A0.4873290.1645500.1680510.025*0.751 (12)
H11B0.3661600.1031010.1879100.025*0.751 (12)
O11A0.4377 (10)0.1619 (13)0.2239 (10)0.028 (3)0.249 (12)
H11C0.3966600.0680100.2033210.034*0.249 (12)
H11D0.4835000.1277500.2695490.034*0.249 (12)
C10.4755 (2)0.2263 (3)0.45422 (13)0.0154 (5)
H1B0.5068160.1926780.4087150.018*0.108 (3)
C20.5738 (2)0.2393 (3)0.52645 (14)0.0175 (5)
C30.5268 (2)0.2844 (3)0.59252 (14)0.0169 (5)
H30.5925170.2887740.6417320.020*0.892 (3)
C40.3821 (2)0.3237 (3)0.58686 (13)0.0138 (4)
C50.2839 (2)0.3139 (3)0.51595 (13)0.0134 (4)
H50.1858830.3415030.5124660.016*
C60.3312 (2)0.2633 (3)0.45013 (13)0.0136 (4)
Li10.1315 (4)0.3045 (5)0.3289 (2)0.0188 (8)
Li20.3913 (4)0.3966 (6)0.2447 (2)0.0224 (9)
O100.011 (6)0.038 (9)0.478 (3)0.045 (5)0.20 (5)
H10A0.0577000.1236910.4687200.068*0.20 (5)
H10B0.0662100.0543400.4539800.068*0.20 (5)
O10A0.005 (4)0.042 (6)0.507 (3)0.043 (5)0.30 (5)
H10C0.0475410.1160700.5299810.065*0.30 (5)
H10D0.0452000.1185500.4817500.065*0.30 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0148 (3)0.0123 (3)0.0136 (3)0.0003 (2)0.00248 (19)0.0012 (2)
S20.0166 (3)0.0155 (3)0.0143 (3)0.0031 (2)0.0016 (2)0.0006 (2)
O10.0209 (10)0.0374 (12)0.0215 (10)0.0025 (8)0.0105 (8)0.0048 (9)
O1A0.0209 (10)0.0374 (12)0.0215 (10)0.0025 (8)0.0105 (8)0.0048 (9)
O20.0141 (8)0.0442 (12)0.0219 (9)0.0071 (7)0.0043 (7)0.0002 (8)
O30.0265 (9)0.0134 (8)0.0154 (8)0.0007 (6)0.0044 (6)0.0024 (6)
O40.0166 (8)0.0183 (8)0.0169 (8)0.0014 (6)0.0035 (6)0.0019 (7)
O50.0208 (9)0.0214 (9)0.0218 (9)0.0054 (7)0.0035 (7)0.0074 (7)
O60.0158 (8)0.0316 (10)0.0187 (9)0.0009 (7)0.0034 (6)0.0021 (7)
O70.0451 (12)0.0210 (10)0.0378 (12)0.0131 (8)0.0185 (9)0.0163 (9)
O80.0236 (9)0.0469 (12)0.0239 (10)0.0088 (8)0.0085 (7)0.0187 (9)
O90.0293 (9)0.0184 (9)0.0220 (9)0.0009 (7)0.0051 (7)0.0004 (7)
O110.0168 (13)0.0183 (13)0.037 (3)0.0016 (9)0.0070 (14)0.0075 (14)
O11A0.023 (4)0.025 (4)0.036 (8)0.004 (3)0.007 (4)0.011 (4)
C10.0183 (11)0.0116 (11)0.0182 (12)0.0011 (8)0.0082 (9)0.0009 (9)
C20.0121 (10)0.0165 (11)0.0245 (13)0.0023 (8)0.0052 (9)0.0012 (10)
C30.0157 (11)0.0151 (12)0.0188 (12)0.0001 (8)0.0014 (9)0.0005 (9)
C40.0172 (11)0.0092 (10)0.0154 (11)0.0010 (8)0.0046 (8)0.0009 (8)
C50.0130 (10)0.0107 (10)0.0168 (11)0.0003 (8)0.0042 (8)0.0009 (9)
C60.0160 (11)0.0110 (10)0.0134 (11)0.0017 (8)0.0023 (8)0.0009 (8)
Li10.021 (2)0.0144 (19)0.019 (2)0.0001 (15)0.0005 (15)0.0006 (16)
Li20.020 (2)0.022 (2)0.025 (2)0.0026 (16)0.0045 (16)0.0007 (17)
O100.042 (8)0.050 (6)0.049 (13)0.010 (7)0.023 (8)0.020 (10)
O10A0.040 (7)0.050 (6)0.047 (12)0.008 (6)0.024 (7)0.020 (9)
Geometric parameters (Å, º) top
S1—O31.4655 (17)O9—H9B0.8033 (17)
S1—O41.4626 (16)O9—Li11.939 (4)
S1—O51.4466 (16)O11—H11A0.840 (2)
S1—C41.764 (2)O11—H11B0.829 (3)
S1—Li1i3.012 (4)O11—Li21.975 (5)
S1—Li1ii3.005 (4)O11A—H11C0.843 (8)
S2—O61.4493 (17)O11A—H11D0.862 (18)
S2—O71.4422 (19)O11A—Li21.861 (9)
S2—O81.4642 (19)C1—H1B0.9500
S2—C61.766 (2)C1—C21.405 (3)
O1—H10.8400C1—C61.396 (3)
O1—C11.345 (3)C2—C31.380 (3)
O1A—H1A0.8400C3—H30.9500
O1A—C31.265 (16)C3—C41.398 (3)
O2—H20.8400C4—C51.386 (3)
O2—C21.364 (3)C5—H50.9500
O3—Li1ii1.957 (4)C5—C61.388 (3)
O4—Li1i1.964 (4)Li2—H11D2.193 (4)
O5—Li2iii1.900 (4)O10—H10A0.81 (6)
O6—Li11.917 (4)O10—H10B1.02 (6)
O7—Li2iv1.958 (5)O10A—H10C0.90 (5)
O8—Li21.945 (5)O10A—H10D0.86 (4)
O9—H9A0.8323 (17)
O3—S1—C4106.28 (10)O2—C2—C3123.8 (2)
O3—S1—Li1i128.22 (11)C3—C2—C1120.0 (2)
O4—S1—O3111.49 (10)O1A—C3—C2115.8 (7)
O4—S1—C4106.64 (10)O1A—C3—C4124.0 (7)
O4—S1—Li1ii111.62 (10)C2—C3—H3120.1
O5—S1—O3111.63 (10)C2—C3—C4119.8 (2)
O5—S1—O4112.66 (10)C4—C3—H3120.1
O5—S1—C4107.73 (10)C3—C4—S1118.89 (17)
C4—S1—Li1i118.47 (11)C5—C4—S1120.01 (16)
C4—S1—Li1ii132.73 (11)C5—C4—C3121.0 (2)
Li1ii—S1—Li1i108.75 (7)C4—C5—H5120.6
O6—S2—O8111.04 (10)C4—C5—C6118.8 (2)
O6—S2—C6105.40 (10)C6—C5—H5120.6
O7—S2—O6113.98 (12)C1—C6—S2119.42 (17)
O7—S2—O8112.28 (13)C5—C6—S2119.48 (17)
O7—S2—C6106.44 (10)C5—C6—C1121.1 (2)
O8—S2—C6107.11 (11)S1v—Li1—S1i112.65 (12)
C1—O1—H1109.5O3v—Li1—S1i91.92 (14)
C3—O1A—H1A109.5O3v—Li1—O4i104.25 (19)
C2—O2—H2109.5O4i—Li1—S1v128.23 (18)
S1—O3—Li1ii122.14 (15)O6—Li1—S1i127.50 (18)
S1—O4—Li1i122.34 (15)O6—Li1—S1v106.74 (17)
S1—O5—Li2iii154.32 (17)O6—Li1—O3v113.8 (2)
S2—O6—Li1142.95 (17)O6—Li1—O4i103.28 (19)
S2—O7—Li2iv137.88 (16)O6—Li1—O9103.95 (19)
S2—O8—Li2138.70 (17)O9—Li1—S1i108.40 (17)
H9A—O9—H9B104.44 (18)O9—Li1—S1v91.18 (15)
Li1—O9—H9A118.14 (19)O9—Li1—O3v110.7 (2)
Li1—O9—H9B115.87 (18)O9—Li1—O4i121.0 (2)
H11A—O11—H11B109.7 (3)O5iii—Li2—O7vi108.3 (2)
Li2—O11—H11A119.0 (3)O5iii—Li2—O8124.0 (2)
Li2—O11—H11B110.4 (4)O5iii—Li2—O11109.3 (2)
H11C—O11A—H11D104.3 (14)O7vi—Li2—O1197.5 (2)
Li2—O11A—H11C139.0 (10)O8—Li2—O7vi97.7 (2)
Li2—O11A—H11D100.9 (8)O8—Li2—O11115.5 (2)
O1—C1—C2120.3 (2)O11A—Li2—O5iii101.2 (3)
O1—C1—C6120.5 (2)O11A—Li2—O7vi123.3 (6)
C2—C1—H1B120.4O11A—Li2—O8104.4 (4)
C6—C1—H1B120.4H10A—O10—H10B95 (5)
C6—C1—C2119.2 (2)H10C—O10A—H10D101 (4)
O2—C2—C1116.2 (2)
S1—C4—C5—C6176.51 (16)O8—S2—O6—Li166.9 (3)
O1—C1—C2—O20.3 (3)O8—S2—O7—Li2iv74.8 (3)
O1—C1—C2—C3178.9 (2)O8—S2—C6—C162.2 (2)
O1—C1—C6—S21.9 (3)O8—S2—C6—C5118.80 (18)
O1—C1—C6—C5179.2 (2)C1—C2—C3—O1A175.5 (9)
O1A—C3—C4—S19.0 (10)C1—C2—C3—C42.4 (3)
O1A—C3—C4—C5174.0 (10)C2—C1—C6—S2178.43 (17)
O2—C2—C3—O1A5.3 (10)C2—C1—C6—C50.5 (3)
O2—C2—C3—C4178.4 (2)C2—C3—C4—S1178.46 (17)
O3—S1—O4—Li1i127.63 (18)C2—C3—C4—C51.5 (3)
O3—S1—O5—Li2iii79.3 (4)C3—C4—C5—C60.4 (3)
O3—S1—C4—C373.21 (19)C4—S1—O3—Li1ii147.14 (17)
O3—S1—C4—C5103.75 (19)C4—S1—O4—Li1i116.77 (18)
O4—S1—O3—Li1ii97.05 (18)C4—S1—O5—Li2iii37.0 (4)
O4—S1—O5—Li2iii154.4 (4)C4—C5—C6—S2177.56 (17)
O4—S1—C4—C3167.74 (17)C4—C5—C6—C11.4 (3)
O4—S1—C4—C515.3 (2)C6—S2—O6—Li1177.4 (3)
O5—S1—O3—Li1ii29.9 (2)C6—S2—O7—Li2iv168.3 (3)
O5—S1—O4—Li1i1.2 (2)C6—S2—O8—Li276.1 (3)
O5—S1—C4—C346.6 (2)C6—C1—C2—O2179.4 (2)
O5—S1—C4—C5136.48 (18)C6—C1—C2—C31.4 (3)
O6—S2—O7—Li2iv52.6 (3)Li1i—S1—O3—Li1ii63.3 (2)
O6—S2—O8—Li2169.3 (2)Li1ii—S1—O4—Li1i91.57 (15)
O6—S2—C6—C1179.47 (17)Li1ii—S1—O5—Li2iii95.4 (4)
O6—S2—C6—C50.5 (2)Li1i—S1—O5—Li2iii153.7 (4)
O7—S2—O6—Li161.1 (3)Li1i—S1—C4—C3133.71 (18)
O7—S2—O8—Li240.4 (3)Li1ii—S1—C4—C349.2 (2)
O7—S2—C6—C158.1 (2)Li1i—S1—C4—C549.3 (2)
O7—S2—C6—C5120.90 (19)Li1ii—S1—C4—C5127.79 (19)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z+1/2; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.842.222.685 (3)115
O1—H1···O9vii0.841.932.693 (3)150
O1A—H1A···O8ii0.842.312.978 (17)136
O2—H2···O1A0.842.292.693 (16)110
O2—H2···O7viii0.842.603.082 (3)117
O2—H2···O11ii0.842.132.952 (6)166
O9—H9A···O3ix0.8323 (17)1.9961 (16)2.821 (2)170.86 (13)
O9—H9B···O10ix0.8033 (17)2.19 (6)2.96 (6)160.0 (18)
O9—H9B···O100.8033 (17)1.98 (6)2.73 (6)155.0 (16)
O9—H9B···O10Aix0.8033 (17)2.02 (4)2.80 (4)164.8 (14)
O9—H9B···O10A0.8033 (17)2.08 (4)2.83 (4)156.2 (12)
O11—H11A···O4x0.840 (2)2.1244 (16)2.957 (3)171.19 (17)
O11—H11B···O8iv0.829 (3)2.0583 (19)2.873 (3)167.4 (4)
O11A—H11C···O6iv0.843 (8)2.5753 (18)3.290 (8)143.3 (5)
O11A—H11C···O8iv0.843 (8)1.9964 (18)2.776 (8)153.2 (8)
O11A—H11D···O10.862 (18)2.1019 (19)2.851 (17)145.0 (5)
O10—H10A···O2viii0.81 (6)2.2562 (16)2.93 (6)141 (4)
O10—H10B···O61.02 (6)2.2175 (18)3.14 (6)150 (3)
O10A—H10C···O2xi0.90 (5)2.3694 (16)3.13 (5)142 (3)
O10A—H10D···O60.86 (4)2.3000 (17)3.10 (5)155 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (vii) x+1, y, z; (viii) x+1, y, z+1; (ix) x, y, z+1; (x) x+1/2, y+1/2, z1/2; (xi) x1, y, z.
H-bonding to all NH4+ based protons in (NH4)2(tiron)·H2O top
Proton on NH4Acceptor/moietyH-bond distance (Å)
N1H1aO4/sulfonate2.13 (3)
N1H1bO5/sulfonate2.10 (2)
N1H1cO1/phenolic2.04 (3)
N1H1dO7/sulfonate2.02 (3)
N2H2aO9/water1.950 (18)
N2H2bO7/sulfonate1.872 (19)
N2H2cO6/sulfonate2.03 (3)
N2H2dO4/sulfonate1.99 (2)
Crystallographically characterized tiron salts top
CSD codeCounter-cationObserved coordination numberCharge of tironIntercentroid distance (Å)Reference
CAZZEINa+2, 1, 13-3.857(Riley et al., 1983)
HUCMOHBa2+92-3.520(Côté & Shimizu, 2003)
OMARAVCa2+82-3.598(Côté & Shimizu, 2003)
OMAREZSr2+92-3.654(Côté & Shimizu, 2003)
OMARIDMg2+6 (all water)2-4.180(Côté & Shimizu, 2003)
FIMBEJZn2+6 (no tiron)2-N/A(Wang et al., 2005)
NIWKUACd2+6 (one sulfonate)2-N/A(Zhang et al., 2008)
FIRMEACu2+6 (one sulfonate)2-N/A(Lu et al., 2014)
TUYNUYMg2+6 (no tiron)2-N/A(Guan, 2016)
ADOXUPLa3+93-3.530(Guan & Wang, 2016)
HUCMOH02Ba2+92-3.516(Guan & Wang, 2016)
 

Funding information

We thank the National Science Foundation (CHE-1412373 and CHE-1708793 to AMV) and Temple University (Dissertation Completion Grant to CJHG) for support.

References

First citationBoukhalfa, H. & Crumbliss, A. L. (2002). Biometals, 15, 325–339.  Web of Science CrossRef Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCôté, A. P. & Shimizu, G. K. H. (2001). Chem. Commun. pp. 251–252.  Google Scholar
First citationCôté, A. P. & Shimizu, G. K. H. (2003). Chem. Eur. J. 9, 5361–5370.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuan, L. (2016). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 1–5.  Web of Science CrossRef Google Scholar
First citationGuan, L. & Wang, Y. (2016). J. Coord. Chem. 69, 3107–3114.  Web of Science CrossRef Google Scholar
First citationGuan, L. & Wang, Y. (2017). J. Coord. Chem. 70, 2520–2529.  Web of Science CrossRef Google Scholar
First citationLee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. (2011). Annual Review of Materials Research, Vol 41, edited by D. R. Clarke & P. Fratzl, pp. 99–132. Palo Alto: Annual Reviews.  Google Scholar
First citationLoomis, L. D. & Raymond, K. N. (1991). Inorg. Chem. 30, 906–911.  CrossRef Web of Science Google Scholar
First citationLu, L., Jun, W., Wei-Ping, W., Xiu-Lan, Z. & Bin, X. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 393–396.  Web of Science CrossRef Google Scholar
First citationPierpont, C. G. & Lange, C. W. (1994). Progress in Inorganic Chemistry, Vol 41, edited by K. D. Karlin, pp. 331–442. New York: John Wiley & Sons Inc.  Google Scholar
First citationRapp, M. V., Maier, G. P., Dobbs, H. A., Higdon, N. J., Waite, J. H., Butler, A. & Israelachvili, J. N. (2016). J. Am. Chem. Soc. 138, 9013–9016.  Web of Science CrossRef Google Scholar
First citationRaymond, K. N., Allred, B. E. & Sia, A. K. (2015). Acc. Chem. Res. 48, 2496–2505.  Web of Science CrossRef Google Scholar
First citationRiley, P. E., Haddad, S. F. & Raymond, K. N. (1983). Inorg. Chem. 22, 3090–3096.  CSD CrossRef CAS Web of Science Google Scholar
First citationSever, M. J. & Wilker, J. J. (2004). Dalton Trans. pp. 1061–1072.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheriff, T. S., Carr, P. & Piggott, B. (2003). Inorg. Chim. Acta, 348, 115–122.  Web of Science CSD CrossRef CAS Google Scholar
First citationSommer, L. (1963a). Collect. Czech. Chem. Commun. 28, 2102–2130.  CrossRef Web of Science Google Scholar
First citationSommer, L. (1963b). Z. Anorg. Allg. Chem. 321, 191–197.  CrossRef Web of Science Google Scholar
First citationSpringer, S. D. & Butler, A. (2016). Coord. Chem. Rev. 306, 628–635.  Web of Science CrossRef Google Scholar
First citationSugumaran, M. & Robinson, W. E. (2012). Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 163, 1–25.  Google Scholar
First citationWang, W. G., Zhang, J., Ju, Z. F. & Song, L. J. (2005). Appl. Organomet. Chem. 19, 191–192.  Web of Science CrossRef Google Scholar
First citationYang, B., Hoober-Burkhardt, L., Wang, F., Surya Prakash, G. K. & Narayanan, S. R. (2014). J. Electrochem. Soc. 161, A1371–A1380.  Web of Science CrossRef Google Scholar
First citationYoe, J. H. & Armstrong, A. R. (1945). Science, 102, 207–207.  CrossRef Web of Science Google Scholar
First citationYoe, J. H. & Armstrong, A. R. (1947). Anal. Chem. 19, 100–102.  CrossRef Web of Science Google Scholar
First citationZhang, X., Ge, C., Guan, L. & Sun, Z. (2008). Acta Cryst. E64, m396–m397.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds