CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 26 April 2018
Accepted 21 March 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: scandium; heptacoordinate; nitrate; crystal structure.

CCDC reference: 1904826

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of hydroxy scandium nitrate chloride

Jeremiah Sears, ${ }^{\text {a }}$ Roger Cramer ${ }^{\text {b }}$ and Timothy Boyle ${ }^{\text {a* }}$

${ }^{\text {a }}$ Sandia National Laboratories, Advanced Materials Laboratory, 1001 University, Boulevard, SE, Albuquerque, NM 87106, USA, and ${ }^{\text {b }}$ University of Hawaii - Manoa, Department of Chemistry, 2545 McCarthy Mall, Honolulu, HI 968222275, USA. *Correspondence e-mail: tjboyle@sandia.gov

Each Sc^{3+} ion in the title salt, di- μ-hydroxido-bis[triaqua(nitrato- $\kappa^{2} O, O^{\prime}$)scandium(III)] dichloride, $\left[\mathrm{Sc}_{2}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$, is coordinated by a nitrate anion, two hydroxide ions and three water molecules to generate a distorted pentagonal-bipyramidal ScO_{7} coordination polyhedron. The complete $\left\{\left[\left(\mathrm{NO}_{3}\right)(\mu-\mathrm{OH}) \mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{2}\right\}^{2+}$ ion is generated by crystallographic inversion symmetry. The nitrate anion binds in a bidentate fashion whereas the hydroxide ions are bridged between two Sc centers. Two charge-balancing Cl^{-}ions are located in the outer sphere. In the extended structure, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds connect the components into a three-dimensional network.

1. Chemical context

Scandium nitrate compounds have found widespread utility in a diverse number of applications, including catalysts for aqueous-based organic reactions (Kobayashi, 1999), heterogeneous Lewis acid catalysts (Cao et al., 2015), cyanosilylation catalysis (Zhang et al., 2015) and films for use in optics and electronic manufacturing (Wang et al., 2013). Previously, the structural properties of scandium salts were reviewed and the wide variety of structure types available for Sc metal were presented (Sears et al., 2017). From this review, the diversity of structurally characterized scandium nitrate salts was illuminated. These were found to possess inner-sphere, outer-sphere and mixed-sphere nitrate ions. Additionally, a number of bridging ligands $\left(\mathrm{OH}^{-}, \mathrm{OMe}^{-}\right)$were present. As we continue to explore the fundamental coordination behavior of scandium with nitric acid as a means to recycle this multipurpose metal, another unusual scandium nitrate structure $\left[\left(\kappa^{2}-\mathrm{NO}_{3}\right)(\mu-\mathrm{OH}) \mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{2} 2(\mathrm{Cl})$ (1) was isolated. This report details the structure and its relationship to known scandium nitrate derivatives.

Figure 1
The molecular structure of the title compound, with non-H atoms shown as displacement ellipsoids at the 50% probability level. Only one Cl^{-}ion is shown. Unlabeled atoms are generated by the symmetry operation $1-x,-y, 1-z$.

2. Structural commentary

The title compound (Fig. 1) is the third reported hydrated scandium nitrate salt. We previously isolated $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Sc}\left(\mathrm{k}^{2}-\right.\right.$ $\left.\left.\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{NO}_{3}\right) \mathrm{H}_{2} \mathrm{O}$ and $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Sc}\left(k^{2}-\mathrm{NO}_{3}\right)(\mu-\mathrm{OH})\right]_{2} 2\left(\mathrm{NO}_{3}\right)$ from the reaction of $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Sc}(\mu-\mathrm{OH})\right]_{2} 4(\mathrm{Cl}) 2\left(\mathrm{H}_{2} \mathrm{O}\right)$ with concentrated nitric acid at elevated and room temperatures, respectively. Similarities between $\left[\left(k^{2}-\mathrm{NO}_{3}\right)(\mu-\mathrm{OH}) \mathrm{Sc}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{2} 2(\mathrm{Cl})$ and $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Sc}\left(k^{2}-\mathrm{NO}_{3}\right)(\mu-\mathrm{OH})\right]_{2} 2\left(\mathrm{NO}_{3}\right)$ were expected and observed.

The axial water molecules are distorted from linearity more so for $\mathbf{1}\left[\mathrm{O} 1-\mathrm{Sc} 1-\mathrm{O} 4=166.48(2)^{\circ}\right]$ than for $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Sc}\left(k^{2}-\right.\right.$ $\left.\left.\mathrm{NO}_{3}\right)(\mu-\mathrm{OH})\right]_{2} 2\left(\mathrm{NO}_{3}\right)\left[\mathrm{O} 4-\mathrm{Sc}-\mathrm{O} 6=171.52(7)^{\circ}\right]$. The $\mathrm{Sc}-$ $\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ bond distances of 2.124 (1)-2.148 (1) \AA for $\mathbf{1}$ are comparable to the 2.114 (2)-2.183 (1) \AA distances reported for the other hydroxide-bridged NO_{3} salt. Bond angles between the axial water molecules and the remaining nearly coplanar equatorial ligands range from 79.56 (2)-100.60 (2) ${ }^{\circ}$ for 1 and $82.50(6)-99.96(6)^{\circ}$ for $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Sc}\left(k^{2}-\mathrm{NO}_{3}\right)(\mu-\right.$ $\mathrm{OH})]_{2} 2\left(\mathrm{NO}_{3}\right)$. The angles between the equatorial oxygen atoms range from 55.61 (2)-81.36 (2) ${ }^{\circ}$ and 55.76 (5)$83.70(6)^{\circ}$, respectively. The shortest $\mathrm{Sc}-\mathrm{O}$ bond distances, 2.0542 (5) -2.0569 (5) \AA for 1 and 2.053 (2)-2.076 (1) \AA for $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Sc}\left(k^{2}-\mathrm{NO}_{3}\right)(\mu-\mathrm{OH})\right]_{2} 2\left(\mathrm{NO}_{3}\right)$, occur for the bridging hydroxide ions. In both salts, the bidentate NO_{3} ions have the weakest interaction with $\mathrm{Sc}-\mathrm{O}$ bond distances of 2.291 (1)2.314 (1) \AA for 1 and 2.114 (2)-2.183 (1) \AA for $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Sc}\left(k^{2}-\right.\right.$ $\left.\left.\mathrm{NO}_{3}\right)(\mu-\mathrm{OH})\right]_{2} 2\left(\mathrm{NO}_{3}\right)$.
The precursor to $\mathbf{1},\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Sc}(\mu-\mathrm{OH})\right]_{2} 4(\mathrm{Cl}) 2\left(\mathrm{H}_{2} \mathrm{O}\right)$, is also a seven-coordinate Sc salt. Rotation of the precursor reveals a capped trigonal-prismatic geometry about the Sc centers that is useful for comparison. Equatorial ligand angles for $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Sc}(\mu-\mathrm{OH})\right]_{2} 4(\mathrm{Cl}) 2\left(\mathrm{H}_{2} \mathrm{O}\right)$ had a much smaller range of 83.32-95.17 ${ }^{\circ}$. Dihedral angles between axial and equatorial ligands for the precursor also have a significantly reduced

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 6^{\mathrm{i}}$	0.782 (16)	2.051 (16)	2.8175 (7)	166.6 (16)
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\text {ii }}$	0.787 (15)	2.300 (15)	3.0856 (6)	176.6 (14)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 1^{\text {iii }}$	0.692 (16)	2.617 (16)	3.2749 (5)	159.7 (17)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 1^{\text {iii }}$	0.815 (16)	2.305 (16)	3.1017 (6)	165.9 (15)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.811 (15)	1.989 (15)	2.7977 (7)	175.0 (14)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 1^{\text {v }}$	0.859 (15)	2.316 (15)	3.1722 (6)	174.5 (13)
O4-H4B $\cdots \mathrm{Cl} 1$	0.824 (16)	2.242 (16)	3.0658 (6)	179.0 (15)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$; (iii) $x+1, y, z$; (iv) $-x+2,-y+1,-z+2$; (v) $-x+1,-y,-z+2$.
range of 77.18-79.09 ${ }^{\circ}$. These differences further support the distorted pentagonal-bipyramidal geometry assigned to $\mathbf{1}$.

3. Supramolecular features

A network of scandium hydroxy nitrate dimer chains that interact via separate equatorial coordinated water molecules and nitrate ions with one another is observed for $\left[\left(k^{2}-\mathrm{NO}_{3}\right)(\mu-\right.$ $\left.\mathrm{OH}) \mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{2} 2(\mathrm{Cl})$. These chains are further linked into a three-dimensional network (Fig. 2) by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds between axially as well as equatorially coordinated water molecules and outer sphere Cl^{-}anions indicated by the symmetry operations in Table 1.

4. Database survey

There are two reports of hydrated scandium nitrates, $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Sc}\left(k^{2}-\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Boyle et al., 2015) and $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Sc}\left(k^{2}-\mathrm{NO}_{3}\right)(\mu-\mathrm{OH})\right]_{2} 2\left(\mathrm{NO}_{3}\right)$ (Wang et al., 2013; Boyle et al. 2015), and both contain outer-sphere nitrate anions. As expected a similar network is observed for $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Sc}\left(k^{2}-\right.\right.$ $\left.\left.\mathrm{NO}_{3}\right)(\mu-\mathrm{OH})\right]_{2} 2\left(\mathrm{NO}_{3}\right)$. Salt $\mathbf{1}$ is the first reported hydrated scandium nitrate to contain outer-sphere chloride anions.

Figure 2
Partial packing diagram of the title compound, showing hydrogen bonds as dashed lines.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Sc}_{2}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2(\mathrm{Cl})$
M_{r}	426.95
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	100
$a, b, c(\AA)$	$6.7221(3), 7.6279(4), 8.5181(4)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$100.904(2), 110.125(2)$,
$V\left(\AA^{3}\right)$	$102.329(2)$
Z	$383.87(3)$
Radiation type	1
$\mu\left(\mathrm{~mm}^{-1}\right)$	Mo $\mathrm{K} \alpha$
Crystal size (mm)	1.30
	$0.52 \times 0.24 \times 0.21$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan $(S A D A B S ;$ Bruker,
	$2016)$
$T_{\text {min }}, T_{\text {max }}$	$0.634,0.749$
No. of measured, independent and	$21806,5393,4597$
\quad observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.025
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	0.944
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.024,0.056,1.04$
No. of reflections	5393
No. of parameters	119
$\mathrm{H}-\mathrm{atom}$ treatment	All H-atom parameters refined
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.50,-0.35$

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

5. Synthesis and crystallization

Salt 1 was isolated from a cooled (273 K) mixture of $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Sc}(\mu-\mathrm{OH})\right]_{2} 4(\mathrm{Cl}) 2\left(\mathrm{H}_{2} \mathrm{O}\right)$ dissolved in water and an equal volume of concentrated $\mathrm{HNO}_{3}(\mathrm{aq})$. The reaction was slowly warmed to room temperature and set aside for slow evaporation until crystals formed. From this mixture, a single
crystal of 1 was selected and used for single crystal X-ray analysis. Note: Both $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Sc}\left(\kappa^{2}-\mathrm{NO}_{3}\right)_{2}\right] \mathrm{NO}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Sc}\left(\kappa^{2}-\mathrm{NO}_{3}\right)(\mu-\mathrm{OH})\right]_{2} 2\left(\mathrm{NO}_{3}\right)$ have also been isolated from this preparatory route (Boyle et al., 2015).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

References

Boyle, T. J., Sears, J. M., Neville, M. L., Alam, T. M. \& Young, V. G. Jr (2015). Inorg. Chem. 54, 11831-11841.

Bruker (2016). APEX2, SAINT andSADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cao, Y., Zhu, Z., Xu, J., Wang, L., Sun, J., Chen, X. \& Fan, Y. (2015). Dalton Trans. 44, 1942-1947.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Kobayashi, S. (1999). Eur. J. Org. Chem. pp. 15-27.
Sears, J. M. \& Boyle, T. J. (2017). Coord. Chem. Rev. 340, 154-171.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Wang, W., Chang, I.-Y., Zakharov, L., Cheong, P. H.-Y. \& Keszler, D. A. (2013). Inorg. Chem. 52, 1807-1811.

Zhang, L., Wang, L., Wang, P., Song, T., Li, D., Chen, X., Fan, Y. \& Xu, J. (2015). Eur. J. Inorg. Chem. pp. 931-938.

supporting information

Acta Cryst. (2019). E75, 540-542 [https://doi.org/10.1107/S2056989019003918]

Crystal structure of hydroxy scandium nitrate chloride

Jeremiah Sears, Roger Cramer and Timothy Boyle

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di- μ-hydroxido-bis[triaqua(nitrato- $\kappa^{2} O, O^{\prime}$)scandium(III)] dichloride

Crystal data

$\left[\mathrm{Sc}_{2}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2(\mathrm{Cl})$
$M_{r}=426.95$
Triclinic, $P \overline{1}$
$a=6.7221$ (3) Å
$b=7.6279$ (4) \AA
$c=8.5181$ (4) \AA
$\alpha=100.904(2)^{\circ}$
$\beta=110.125(2)^{\circ}$
$\gamma=102.329(2)^{\circ}$
$V=383.87(3) \AA^{3}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus tube φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
$T_{\text {min }}=0.634, T_{\text {max }}=0.749$
21806 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.056$
$S=1.04$
5393 reflections
119 parameters
0 restraints

$$
Z=1
$$

$$
F(000)=216
$$

$$
D_{\mathrm{x}}=1.847 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
$$

Cell parameters from 9960 reflections
$\theta=2.7-43.4^{\circ}$
$\mu=1.30 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.52 \times 0.24 \times 0.21 \mathrm{~mm}$

5393 independent reflections
4597 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=42.1^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-12 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-16 \rightarrow 15$

Primary atom site location: structure-invariant direct methods
Hydrogen site location: difference Fourier map
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.026 P)^{2}+0.0527 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.50$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Sc1	$0.64421(2)$	$0.20102(2)$	$0.65362(2)$	$0.00619(2)$
O1	$0.77577(9)$	$0.34667(7)$	$0.50248(7)$	$0.01145(8)$
H1A	$0.730(3)$	$0.425(2)$	$0.469(2)$	$0.037(4)^{*}$
H1B	$0.814(2)$	$0.297(2)$	$0.4330(19)$	$0.031(4)^{*}$
O2	$0.66804(8)$	$-0.04815(7)$	$0.53126(6)$	$0.00944(8)$
H2	$0.755(3)$	$-0.084(2)$	$0.562(2)$	$0.042(4)^{*}$
O3	$0.97436(9)$	$0.22378(8)$	$0.82658(7)$	$0.01256(9)$
H3A	$1.025(3)$	$0.136(2)$	$0.832(2)$	$0.036(4)^{*}$
H3B	$1.042(2)$	$0.306(2)$	$0.919(2)$	$0.030(4)^{*}$
O4	$0.54719(9)$	$0.11936(8)$	$0.84788(7)$	$0.01370(9)$
H4A	$0.639(2)$	$0.131(2)$	$0.951(2)$	$0.032(4)^{*}$
H4B	$0.425(3)$	$0.048(2)$	$0.829(2)$	$0.037(4)^{*}$
O5	$0.77362(8)$	$0.48678(7)$	$0.86375(7)$	$0.01144(8)$
O6	$0.45946(9)$	$0.42130(7)$	$0.64820(6)$	$0.01136(8)$
O7	$0.57811(11)$	$0.68156(9)$	$0.85879(8)$	$0.02282(13)$
N1	$0.60275(10)$	$0.53719(8)$	$0.79388(8)$	$0.01116(9)$
C11	$0.09630(3)$	$-0.14716(2)$	$0.78189(2)$	$0.01058(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sc1	$0.00664(4)$	$0.00485(4)$	$0.00490(4)$	$0.00172(3)$	$0.00048(3)$	$0.00005(3)$
O1	$0.0153(2)$	$0.0105(2)$	$0.0118(2)$	$0.00636(17)$	$0.00710(17)$	$0.00454(16)$
O2	$0.00739(17)$	$0.00762(18)$	$0.00909(18)$	$0.00341(14)$	$-0.00061(14)$	$-0.00082(14)$
O3	$0.01049(19)$	$0.00957(19)$	$0.0107(2)$	$0.00455(16)$	$-0.00204(16)$	$-0.00219(16)$
O4	$0.0119(2)$	$0.0173(2)$	$0.00861(19)$	$0.00022(17)$	$0.00226(16)$	$0.00464(17)$
O5	$0.00943(18)$	$0.00930(19)$	$0.01084(19)$	$0.00451(15)$	$-0.00074(15)$	$-0.00048(15)$
O6	$0.01149(19)$	$0.00946(19)$	$0.00762(18)$	$0.00380(15)$	$-0.00085(15)$	$-0.00164(15)$
O7	$0.0229(3)$	$0.0165(3)$	$0.0196(3)$	$0.0137(2)$	$-0.0006(2)$	$-0.0075(2)$
N1	$0.0113(2)$	$0.0094(2)$	$0.0092(2)$	$0.00476(17)$	$0.00089(17)$	$-0.00115(17)$
C11	$0.01037(6)$	$0.01118(6)$	$0.01048(6)$	$0.00477(5)$	$0.00374(5)$	$0.00283(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Sc} 1-\mathrm{O} 2$	$2.0542(5)$	$\mathrm{O} 2-\mathrm{Sc} 1^{\mathrm{i}}$	$2.0569(5)$
$\mathrm{Sc} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.0569(5)$	$\mathrm{O} 2-\mathrm{H} 2$	$0.692(16)$
$\mathrm{Sc} 1-\mathrm{O} 4$	$2.1238(6)$	$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	$0.815(16)$
$\mathrm{Sc} 1-\mathrm{O} 1$	$2.1399(5)$	$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$0.811(15)$
$\mathrm{Sc} 1-\mathrm{O} 3$	$2.1482(5)$	$\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A}$	$0.859(15)$

Sc1-O6	2.2910 (5)	O4-H4B	0.824 (16)
Sc1-O5	2.3140 (5)	O5-N1	1.2752 (8)
Sc1-Sc1 ${ }^{\text {i }}$	3.3085 (3)	O6-N1	1.2837 (8)
O1-H1A	0.782 (16)	O7-N1	1.2068 (8)
O1-H1B	0.787 (15)		
$\mathrm{O} 2-\mathrm{Sc} 1-\mathrm{O} 2{ }^{\text {i }}$	72.83 (2)	O4-Sc1-Sc1 ${ }^{\text {i }}$	95.494 (17)
$\mathrm{O} 2-\mathrm{Sc} 1-\mathrm{O} 4$	99.79 (2)	O1-Sc1-Sc1 ${ }^{\text {i }}$	97.895 (16)
O2 ${ }^{\text {i }}$ - $\mathrm{Sc} 1-\mathrm{O} 4$	89.10 (2)	$\mathrm{O} 3-\mathrm{Sc} 1-\mathrm{Sc} 1^{\mathrm{i}}$	117.158 (16)
$\mathrm{O} 2-\mathrm{Sc} 1-\mathrm{O} 1$	92.12 (2)	O6-Sc1-Sc1 ${ }^{\text {i }}$	114.024 (14)
O2 ${ }^{\text {i }}$-Sc1-O1	100.60 (2)	O5-Sc1-Sc1 ${ }^{\text {i }}$	168.016 (14)
$\mathrm{O} 4-\mathrm{Sc} 1-\mathrm{O} 1$	166.48 (2)	$\mathrm{Sc} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	121.1 (11)
$\mathrm{O} 2-\mathrm{Sc} 1-\mathrm{O} 3$	81.36 (2)	$\mathrm{Sc} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B}$	122.4 (10)
$\mathrm{O} 2{ }^{\text {i }}$-Sc1-O3	152.16 (2)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B}$	107.7 (15)
$\mathrm{O} 4-\mathrm{Sc} 1-\mathrm{O} 3$	85.12 (2)	$\mathrm{Sc} 1-\mathrm{O} 2-\mathrm{Sc} 1^{\mathrm{i}}$	107.17 (2)
$\mathrm{O} 1-\mathrm{Sc} 1-\mathrm{O} 3$	90.41 (2)	$\mathrm{Sc} 1-\mathrm{O} 2-\mathrm{H} 2$	125.6 (14)
$\mathrm{O} 2-\mathrm{Sc} 1-\mathrm{O} 6$	148.997 (19)	$\mathrm{Sc} 1{ }^{\mathrm{i}}-\mathrm{O} 2-\mathrm{H} 2$	125.0 (14)
O2 ${ }^{\text {i }}$ - $\mathrm{Sc} 1-\mathrm{O} 6$	78.391 (19)	$\mathrm{Sc} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	124.5 (11)
O4-Sc1-O6	90.93 (2)	$\mathrm{Sc} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	122.1 (10)
$\mathrm{O} 1-\mathrm{Sc} 1-\mathrm{O} 6$	81.93 (2)	$\mathrm{H} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	108.8 (14)
O3-Sc1-O6	128.81 (2)	$\mathrm{Sc} 1-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A}$	124.1 (10)
$\mathrm{O} 2-\mathrm{Sc} 1-\mathrm{O} 5$	154.887 (19)	Sc1-O4-H4B	125.0 (11)
O2 ${ }^{\text {i }}$-Sc1-O5	131.997 (19)	H4A-O4-H4B	108.9 (14)
O4-Sc1-O5	79.56 (2)	N1-O5-Sc1	94.62 (4)
$\mathrm{O} 1-\mathrm{Sc} 1-\mathrm{O} 5$	86.94 (2)	N1-O6-Sc1	95.45 (4)
O3-Sc1-O5	73.561 (19)	O7-N1-O5	122.93 (6)
O6-Sc1-O5	55.610 (18)	O7-N1-06	122.90 (6)
$\mathrm{O} 2-\mathrm{Sc} 1-\mathrm{Sc} 1^{\mathrm{i}}$	36.441 (14)	O5-N1-O6	114.17 (5)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Sc} 1-\mathrm{Sc} 1^{\text {i }}$	36.388 (14)		
Sc1-O5-N1-O7	176.54 (7)	Sc1-O6-N1-O7	-176.50 (7)
Sc1-O5-N1-O6	-3.65 (6)	Sc1-O6-N1-O5	3.69 (6)

Symmetry code: (i) $-x+1,-y,-z+1$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots \mathrm{A}$
O1-H1A $\cdots \mathrm{O}^{6 i}$	0.782 (16)	2.051 (16)	2.8175 (7)	166.6 (16)
$\mathrm{O} 1-\mathrm{H} 18 \cdots \mathrm{Cl1}{ }^{\text {i }}$	0.787 (15)	2.300 (15)	3.0856 (6)	176.6 (14)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Cl1}{ }^{\text {iii }}$	0.692 (16)	2.617 (16)	3.2749 (5)	159.7 (17)
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 1^{\text {iii }}$	0.815 (16)	2.305 (16)	3.1017 (6)	165.9 (15)
$\mathrm{O} 3-\mathrm{H} 3 B^{\cdots} \mathrm{O}^{\text {iv }}$	0.811 (15)	1.989 (15)	2.7977 (7)	175.0 (14)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots{ }^{\cdots} \mathrm{Cl1}^{v}$	0.859 (15)	2.316 (15)	3.1722 (6)	174.5 (13)
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{Cl}$	0.824 (16)	2.242 (16)	3.0658 (6)	179.0 (15)

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $x+1, y, z$; (iv) $-x+2,-y+1,-z+2$; (v) $-x+1,-y,-z+2$.

