

ISSN 2056-9890

Received 18 March 2019 Accepted 20 March 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; azamacrocyclic ligand; diazacyclam; copper; pamoic acid; hydrogen bonds.

CCDC reference: 1904400

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of *trans*-diaqua(3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane)copper(II) pamoate

Liudmyla V. Tsymbal,^a Irina L. Andriichuk,^a Vladimir B. Arion^b and Yaroslaw D. Lampeka^a*

^aL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028, Ukraine, and ^bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str. 42, 1090 Vienna, Austria. *Correspondence e-mail: lampeka@adamant.net

The asymmetric unit of the title compound, trans-diaqua(3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane- $\kappa^4 N^1$, N^5 , N^8 , N^{12}) copper(II) 4,4'-methylenebis(3-hydroxynaphthalene-2-carboxylate), $[Cu(C_{10}H_{26}N_6)(H_2O)_2]$ - $(C_{23}H_{14}O_6)$ {[Cu(L)(H₂O)₂](pam), where L = 3,10-dimethyl-1,3,5,8,10,12hexaazacyclotetradecane and pam = dianion of pamoic acid} consists of two independent halves of the $[Cu(L)(H_2O)_2]^{2+}$ cation and one dicarboxylate anion. The Cu^{II} atoms, lying on inversion centres, are coordinated by the four secondary N atoms of the macrocyclic ligands and the mutually trans O atoms of the water molecules in a tetragonally elongated octahedral geometry. The average equatorial Cu-N bond length is significantly shorter than the average axial Cu-O bond length [2.007 (10) and 2.486 (18) Å, respectively]. The macrocyclic ligand in the complex cations adopts the most energetically stable trans-III conformation. The complex cations and anions are connected via hydrogen-bonding interactions between the N-H groups of the macrocycles and the O-H groups of coordinated water molecules as the proton donors and the O atoms of the carboxylate as the proton acceptors into layers lying parallel to the $(1\overline{1}1)$ plane.

1. Chemical context

Coordination compounds of cyclam-like tetradentate azamacrocyclic ligands (cyclam = 1,4,8,11-tetraazacyclotetradecane) have attracted considerable attention because of their high thermodynamic stability, kinetic inertness, unusual redox properties and spectroscopic features (Melson, 1979; Yatsimirskii & Lampeka, 1985). Transition-metal complexes of this type of equatorial ligand possess two trans vacant sites in the axial positions and are suitable building blocks for the construction of metal-organic frameworks (MOFs) with potential applications in many areas including sorption, separation, gas storage, heterogeneous catalysis etc (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018; Lee & Moon, 2018). The Cu^{II} complexes of N^3 , N^{10} -dialkyl-substituted diazacyclam (diazacyclam = 1.3.5.8.10.12-hexaazacvclotetradecane), readily obtainable via template-directed Mannich condensation of bis(ethylenediamine) complexes with formaldehyde and primary amines (Costisor & Linert, 2000), represent widespread systems in this kind of investigation.

Pamoic acid [4,4'-methylene-bis(3-hydroxynaphthalene-2carboxylic acid), H₂pam] is widely used as a counter-ion in

research communications

pharmaceutical formulations (Du *et al.*, 2007 and references cited therein). This dicarboxylic acid is built from two naphthalene fragments, each bearing carboxylic and hydroxyl substituents and linked by a methylene bridge. The combination of this potentially bridging ligand with a biometal complex (*e.g.* Cu^{II}) could be a promising candidate for the construction of the Bio–MOFs attracting currently considerable attention (Cai *et al.*, 2019).

Here, we report the synthesis and the crystal structure of the title diaqua–Cu^{II} complex with a diazacyclam ligand and pamoate dianion, namely *trans*-diaqua(3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane- $\kappa^4 N^1$, N^5 , N^8 , N^{12})-copper(II) pamoate, [CuL(H₂O)₂](pam), (I).

2. Structural commentary

The title compound (I) contains two crystallographically independent centrosymmetric complex cations. Each Cu^{II} ion lies on an inversion centre and is coordinated in the equatorial plane by four secondary amine N atoms of the azamacrocyclic ligand in a square-planar fashion, and by two O atoms from the water molecules in the axial positions, resulting in a tetragonally distorted octahedral geometry (Table 1, Fig. 1).

Figure 1

View of the molecular structure of (I), showing the partial atom-labelling scheme, with thermal displacement ellipsoids drawn at the 30% probability level. H atoms at carbon atoms have been omitted for clarity. Intra-anion hydrogen-bonding interactions are shown as dashed lines.

Table 1			
Selected	bond	lengths	(Å).

Cu1-N3	2.000 (2)	Cu2-N4	1.9987 (19)
Cu1-N1	2.017 (2)	Cu2-N6	2.0113 (19)
Cu1-O1w	2.5033 (19)	Cu2-O2w	2.4681 (18)

The CuN_4 fragments in (I) are strictly planar; at the same time they display some rhombic distortion. In particular, the Cu1–N3 and Cu2–N4 distances [av. 2.000 (1) Å] are shorter than those for Cu1–N1 and Cu2–N6 bonds [av. 2.014 (3) Å]. The axial bonds Cu-OW [av. 2.486 (17) Å] are longer than the equatorial bonds, which can be attributed to a large Jahn-Teller distortion. The coordinated macrocyclic ligand in both cations adopts the most energetically favourable trans-III (R,R,S,S) conformation (Bosnich *et al.*, 1965) with the fiveand six-membered chelate rings in gauche and chair conformations, respectively. The bite angles in the five- and sixmembered chelate rings equal 86.53(8) and $93.47(8)^{\circ}$, respectively. The methyl substituents at the distal nitrogen atoms in the six-membered chelate rings are axially oriented. Therewith, the C-N-C angles at non-coordinated nitrogen atoms (ca 115°) are larger than the canonical value for an sp^3 hybridized nitrogen atom (109°), thus indicating their partial sp^2 character.

The V-shaped pamoate dianion is fully deprotonated to counterbalance the charge of the complex unit and possesses a twisted conformation with the joint angle between the naph-thalene rings being 115.6 (2)° and the angle between the mean planes of naphthalene fragments being 88.6 (2)°. The carboxylic groups adopt a transoid configuration to minimize unfavorable steric hindrance (Du *et al.*, 2007). The C–O bond lengths in each carboxylic group are somewhat different [1.248 (3) *versus* 1.271 (3) and 1.245 (3) *versus* 1.279 (4) Å for the O1–C11–O2 and O4–C22–O5 fragments, respectively], thus indicating their incomplete delocalization. As expected, each hydroxylic group exhibits a strong intra-anion O–H···O bond with the adjacent carboxyl oxygen ($D \cdot \cdot A$ distances *ca* 2.5 Å; Table 2).

3. Supramolecular features

Each carboxylate group of the pamoate anion acts as a proton acceptor by the formation of N-H···O hydrogen bonds with adjacent secondary amine groups of the azamacrocyclic ligand and bifurcated $OW-H \cdots (O,O)$ hydrogen bonds with a coordinated water molecule of the same cation (Fig. 2 and Table 2). Additionally, the benzene fragments of the naphthalene rings are involved in two kinds of intermolecular $\pi - \pi$ interactions [interplanar separation of 3.470 and 3.717 Å; centroid-to-centroid distances of 3.8996 (15) and 4.2107 (15) Å, respectively] (Fig. 2). These supramolecular interactions (Steed & Atwood, 2009) generate sheets of interacting ions parallel to (111), and additional N1-H1 \cdots O3 contacts and C-H···O interactions link these sheets into a three-dimensional network.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O3^{i}$	1.00	2.50	3.272 (3)	134
N3-H3···O5	1.00	1.89	2.836 (3)	156
$N4-H4\cdots O2^{i}$	1.00	1.90	2.822 (3)	152
O3−H3C···O2	0.84	1.75	2.502(2)	148
O6−H6C···O5	0.84	1.75	2.514 (3)	150
$O1W-H1WA\cdots O1^{ii}$	0.86	1.88	2.746 (2)	178
$O1W - H1WB \cdots O4$	0.86	2.31	3.136 (3)	162
$O1W - H1WB \cdots O5$	0.86	2.41	3.087 (3)	136
$O2W-H2WA\cdots O1^{i}$	0.86	2.05	2.901(2)	169
$O2W-H2WA\cdots O2^{i}$	0.86	2.61	3.280 (2)	136
$O2W - H2WB \cdots O4^{iii}$	0.86	1.88	2.743 (3)	176
$C2-H2B\cdots O1^{iv}$	0.99	2.48	3.435 (3)	162
$C5-H5B\cdots O2^{i}$	0.98	2.45	3.316 (3)	147

Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x-1, y, z; (iv) -x+1, -y, -z+1.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom *et al.*, 2016) indicated that 65 Cu^{II} complexes of N^3 , N^{10} -disubstituted diazacyclams with various alkyl pendant groups have been reported and the majority of them were investigated as building blocks for supramolecular chemistry. Among them, eight hits deal with a diaqua azamacrocyclic Cu^{II} cation. Surprisingly, only one structure with the dimethyl-substituted macrocycle *L* has been reported, *i.e.* [Cu(*L*)](ClO₄)₂ (LAWXIR; Zhang *et al.*, 2005) and the title compound (I) is the first example of a [Cu(*L*)(H₂O)₂]²⁺ cation described so far.

A search for pamoic acid gave 97 hits, only four of which concern compounds consisting of uncoordinated pamoate dianion and metal complex cations, *i.e.*, $[M(H_2O)_2(\text{phen})_2]$ -(pam)·H₂O $[M = \text{Zn}^{II} \text{ (MEBGOQ)}, \text{Mn}^{II} \text{ (SIQDOM)},$ Cd^{II} (YOLDEJ), phen = phenanthroline] and $[Mn(H_2O)_4(\text{DMF})_2](\text{pam})$ (SIQCOL) (Ma *et al.*, 2006; Du *et al.*, 2007; Shi *et al.*, 2008). Except for nine hits concerning the non-deprotonated pamoic acid, all other 84 structures are coordination polymers, thus demonstrating the availability of the pamoic acid anion for the design of MOFs.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The starting complex, $[Cu(L)](ClO_4)_2$, was prepared by a method reported in the literature (Suh & Kang, 1988). The title compound (I) was prepared as follows. To a water/DMF solution (1/3 by volume, 5 ml) of $[Cu(L)](ClO_4)_2$ (123 mg, 0.25 mmol) was added a DMF solution (10 ml) containing pamoic acid (97 mg, 0.25 mmol) and 0.2 ml of triethylamine. A pink precipitate was formed in three days. This was filtered off, washed with a small amount of DMF and diethyl ether, and dried in air. Yield: 82 mg (46%). Analysis calculated for $C_{33}H_{44}N_6CuO_8$: C 55.33, H 6.19, N 11.73%. Found: C 55.42, H 6.24, N 11.62%. Single crystals suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

Figure 2

Sheets of complex molecules parallel to the $(1\overline{1}1)$ plane. Supramolecular interactions are shown as dashed lines (black for hydrogen bonding and green for π - π interactions). H atoms at carbon atoms and intra-anion hydrogen bonds are not shown.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.95 (ring H atoms) or 0.98–0.99 Å (open-chain H atoms), N-H distance of 1.0 Å, hydroxyl O-H distance of 0.84 Å and aqua O-H distance of 0.86 Å with U_{iso} (H) values of 1.2 or $1.5U_{eq}$ times that of the parent atoms.

References

- Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). *Inorg. Chem.* 4, 1102–1108.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, H., Huang, Y.-L. & Li, D. (2019). Coord. Chem. Rev. 378, 207– 221.
- Costisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 1, 63-126.
- Du, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Lampeka, Ya. D. & Tsymbal, L. V. (2004). *Theor. Exp. Chem.* **40**, 345–371.
- Lee, J. H. & Moon, H. R. (2018). J. Incl. Phenom. Macrocycl. Chem. 92, 237–249.
- Ma, A.-Q., Jia, Z.-B. & Wang, G.-P. (2006). Acta Cryst. E62, m21–m23.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds, New York: Plenum Press.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shi, Q., Sun, Y., Sheng, L., Ma, K., Hu, M., Hu, X. & Huang, S. (2008). Cryst. Growth Des. 8, 3401–3407.
- Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.
- Steed, J. W. & Atwood, J. L. (2009). *Supramolecular Chemistry*, 2nd ed. Chichester: John Wiley & Sons.
- Suh, M. P. & Kang, S.-G. (1988). Inorg. Chem. 27, 2544-2546.

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$[Cu(C_{10}H_{26}N_6)(H_2O)_2]C_{23}H_{14}O_6$
M _r	716.28
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
a, b, c (Å)	9.8877 (6), 12.1406 (7), 14.5760 (9)
α, β, γ (°)	71.594 (3), 81.128 (3), 88.249 (3)
$V(Å^3)$	1640.06 (17)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.73
Crystal size (mm)	$0.20 \times 0.18 \times 0.12$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2007)
T_{\min}, T_{\max}	0.868, 0.918
No. of measured, independent and	52866, 6401, 4540
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.080
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.090, 1.03
No. of reflections	6401
No. of parameters	438
No. of restraints	6
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.34, -0.39

Computer programs: *APEX2* and *SAINT* (Bruker, 2007), *SHELXS2014* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *Mercury* (Macrae *et al.*, 2008) and *publCIF* (Westrip, 2010).

- Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.
- Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). *Physicochemistry of Metals Complexes with Macrocyclic Ligands*. Kiev: Naukova Dumka. [In Russian.]
- Zhang, B., Kou, H.-Z., Cui, A.-L. & Wang, R.-J. (2005). Jiegou Huaxue (Chin. J. Struct. Chem.), 24, 1259–1263.

Acta Cryst. (2019). E75, 533-536 [https://doi.org/10.1107/S2056989019003852]

Crystal structure of *trans*-diaqua(3,10-dimethyl-1,3,5,8,10,12-hexaazacyclo-tetradecane)copper(II) pamoate

Liudmyla V. Tsymbal, Irina L. Andriichuk, Vladimir B. Arion and Yaroslaw D. Lampeka

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

trans-Diaqua(3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane- $\kappa^4 N^1$, N^5 , N^8 , N^{12}) copper(II) 4,4'-methylenebis(3-hydroxynaphthalene-2-carboxylate)

Crystal data

 $[Cu(C_{10}H_{26}N_6)(H_2O)_2]C_{23}H_{14}O_6$ $M_r = 716.28$ Triclinic, $P\overline{1}$ a = 9.8877 (6) Å b = 12.1406 (7) Å c = 14.5760 (9) Å a = 71.594 (3)° $\beta = 81.128$ (3)° $\gamma = 88.249$ (3)° V = 1640.06 (17) Å³

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.868, T_{\max} = 0.918$ 52866 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.090$ S = 1.036401 reflections 438 parameters 6 restraints Z = 2 F(000) = 754 $D_x = 1.450 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8230 reflections $\theta = 2.4-25.6^{\circ}$ $\mu = 0.73 \text{ mm}^{-1}$ T = 100 KBlock, pink $0.20 \times 0.18 \times 0.12 \text{ mm}$

6401 independent reflections 4540 reflections with $I > 2\sigma(I)$ $R_{int} = 0.080$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 1.9^\circ$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -17 \rightarrow 17$

Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0378P)^2 + 0.6293P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	1.0000	0.5000	0.5000	0.01499 (12)
Cu2	0.5000	0.5000	0.0000	0.01582 (12)
N1	0.8280 (2)	0.58002 (17)	0.45737 (15)	0.0199 (5)
H1	0.8412	0.6050	0.3843	0.024*
N2	0.7064 (2)	0.40151 (18)	0.47031 (15)	0.0239 (5)
N3	0.9443 (2)	0.34915 (17)	0.48721 (14)	0.0194 (5)
H3	0.9644	0.3562	0.4162	0.023*
C4	0.8207 (3)	0.6863 (2)	0.48671 (19)	0.0223 (6)
H4A	0.7880	0.6669	0.5578	0.027*
H4B	0.7566	0.7417	0.4510	0.027*
C1	0.6994 (3)	0.5083 (2)	0.49364 (19)	0.0239 (6)
H1A	0.6785	0.4901	0.5656	0.029*
H1B	0.6232	0.5545	0.4650	0.029*
C2	0.7977 (3)	0.3164 (2)	0.52012 (19)	0.0235 (6)
H2A	0.7810	0.2416	0.5096	0.028*
H2B	0.7761	0.3046	0.5912	0.028*
C3	1.0361 (3)	0.2604 (2)	0.53813 (19)	0.0224 (6)
H3A	1.0350	0.1910	0.5164	0.027*
H3B	1.0057	0.2365	0.6097	0.027*
C5	0.7162 (3)	0.4154 (2)	0.3666 (2)	0.0332 (7)
H5A	0.7205	0.3388	0.3573	0.050*
H5B	0.6356	0.4560	0.3418	0.050*
H5C	0.7991	0.4607	0.3309	0.050*
N6	0.5743 (2)	0.35155 (17)	0.08194 (14)	0.0190 (5)
H6	0.6453	0.3239	0.0379	0.023*
N4	0.6263 (2)	0.58227 (17)	0.05243 (14)	0.0169 (5)
H4	0.5701	0.6038	0.1072	0.020*
N5	0.5995 (2)	0.77617 (18)	-0.06320 (15)	0.0234 (5)
C7	0.4716 (3)	0.2553 (2)	0.13005 (19)	0.0244 (6)
H7A	0.5187	0.1862	0.1671	0.029*
H7B	0.4038	0.2788	0.1776	0.029*
C8	0.6454 (3)	0.3839 (2)	0.15230 (18)	0.0229 (6)
H8A	0.7082	0.3217	0.1807	0.028*
H8B	0.5780	0.3952	0.2061	0.028*
C9	0.7253 (3)	0.4959 (2)	0.09671 (19)	0.0222 (6)
H9A	0.7709	0.5232	0.1418	0.027*
H9B	0.7963	0.4836	0.0452	0.027*
C6	0.6926 (3)	0.6918 (2)	-0.01746 (19)	0.0223 (6)
H6A	0.7471	0.7270	0.0181	0.027*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H6B	0.7568	0.6723	-0.0690	0.027*
C10	0.5140 (3)	0.8320 (2)	-0.0004(2)	0.0290 (7)
H10A	0.4544	0.8878	-0.0391	0.043*
H10B	0.4577	0.7730	0.0525	0.043*
H10C	0.5724	0.8727	0.0276	0.043*
C11	0.4511 (3)	-0.3050(2)	0.24922 (17)	0.0210(6)
C12	0.4904 (3)	-0.1995(2)	0.27246 (17)	0.0169 (6)
C13	0.6302 (3)	-0.1758(2)	0.27572 (17)	0.0188 (6)
C14	0.6685 (3)	-0.0783(2)	0.29585 (17)	0.0181 (6)
C15	0.5639 (3)	-0.0083(2)	0.32585(17)	0.0191 (6)
C16	0.5905(3)	0.0822(2)	0.36370 (18)	0.0250(6)
H16	0.6820	0.0984	0.3687	0.0200 (0)
C17	0.0020 0.4868 (3)	0.1461(2)	0.3929(2)	0.030
H17	0.4008 (3)	0.2043	0.3727 (2)	0.0327 (7)
C18	0.3508 (3)	0.2043	0.4177 0.3835 (2)	0.037
U18	0.3308 (3)	0.1271(2) 0.1730	0.3833 (2)	0.0340(7)
C10	0.2733 0.2211 (2)	0.1739	0.4022 0.24780 (10)	0.041°
U10	0.3211 (3)	0.0418 (2)	0.34780 (19)	0.0273(7)
H19 C20	0.2292	0.0299	0.3409	0.033*
C20	0.424/(3)	-0.0295 (2)	0.32067 (17)	0.0200 (6)
C21	0.3934 (3)	-0.1235 (2)	0.29063 (17)	0.0187 (6)
H21	0.3018	-0.1346	0.2827	0.022*
C22	1.0315 (3)	0.3478 (3)	0.2154 (2)	0.0297 (7)
C23	0.9735 (2)	0.2584 (2)	0.17946 (19)	0.0199 (6)
C24	0.9275 (3)	0.1467 (2)	0.24487 (18)	0.0216 (6)
C25	0.8696 (2)	0.0657 (2)	0.21366 (17)	0.0178 (6)
C26	0.8648 (2)	0.0906 (2)	0.11176 (18)	0.0168 (5)
C27	0.8225 (2)	0.0078 (2)	0.07126 (18)	0.0203 (6)
H27	0.7934	-0.0675	0.1132	0.024*
C28	0.8227 (3)	0.0346 (2)	-0.02714 (19)	0.0250 (6)
H28	0.7950	-0.0227	-0.0526	0.030*
C29	0.8634 (3)	0.1459 (2)	-0.09125 (19)	0.0285 (7)
H29	0.8607	0.1640	-0.1593	0.034*
C30	0.9069 (3)	0.2277 (2)	-0.05578 (19)	0.0253 (6)
H30	0.9349	0.3025	-0.0995	0.030*
C31	0.9107 (2)	0.2024 (2)	0.04560 (18)	0.0189 (6)
C32	0.9621 (2)	0.2839 (2)	0.08278 (19)	0.0203 (6)
H32	0.9897	0.3589	0.0393	0.024*
C33	0.8189 (3)	-0.0505(2)	0.28762 (18)	0.0208 (6)
H33A	0.8729	-0.1128	0.2698	0.025*
H33B	0.8376	-0.0519	0.3528	0.025*
01	0.32781 (19)	-0.32344(15)	0.24857 (13)	0.0262 (4)
O2	0.54697 (19)	-0.37048 (15)	0.23045 (13)	0.0253 (4)
03	0.72922 (18)	-0.25007(14)	0.25674 (13)	0.0242 (4)
H3C	0.6944	-0.3007	0.2389	0.036*
04	1.06005 (19)	0.44690 (16)	0.15717 (16)	0.0377 (5)
05	1.0477 (2)	0.31618 (19)	0.30534 (15)	0.0416 (6)
06	0.9387(2)	0.11959 (17)	0.34181 (13)	0.0319 (5)
H6C	0.9751	0.1758	0.3514	0.048*
				0.010

O1W	1.07942 (19)	0.56232 (16)	0.31930 (13)	0.0303 (5)
H1WA	1.1574	0.5988	0.2985	0.045*
H1WB	1.0603	0.5205	0.2849	0.045*
O2W	0.32694 (18)	0.51823 (16)	0.13556 (13)	0.0289 (5)
H2WA	0.3381	0.5611	0.1708	0.043*
H2WB	0.2426	0.4986	0.1394	0.043*
H1WA H1WB O2W H2WA H2WB	1.1574 1.0603 0.32694 (18) 0.3381 0.2426	0.5988 0.5205 0.51823 (16) 0.5611 0.4986	0.2985 0.2849 0.13556 (13) 0.1708 0.1394	0.045* 0.045* 0.0289 (5) 0.043* 0.043*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0177 (2)	0.0117 (2)	0.0152 (2)	-0.00018 (18)	-0.00184 (18)	-0.00397 (17)
Cu2	0.0159 (2)	0.0148 (2)	0.0163 (2)	-0.00108 (18)	-0.00325 (18)	-0.00389 (18)
N1	0.0235 (12)	0.0179 (11)	0.0181 (11)	-0.0009 (9)	-0.0016 (9)	-0.0062 (9)
N2	0.0277 (13)	0.0216 (12)	0.0224 (12)	-0.0033 (10)	-0.0082 (10)	-0.0044 (10)
N3	0.0248 (12)	0.0166 (11)	0.0157 (10)	0.0005 (9)	-0.0033 (9)	-0.0036 (9)
C4	0.0272 (15)	0.0188 (14)	0.0218 (14)	0.0048 (11)	-0.0041 (12)	-0.0075 (11)
C1	0.0198 (15)	0.0239 (15)	0.0252 (14)	0.0004 (11)	-0.0018 (11)	-0.0043 (12)
C2	0.0266 (16)	0.0189 (14)	0.0235 (14)	-0.0052 (12)	-0.0056 (12)	-0.0030 (12)
C3	0.0297 (16)	0.0142 (13)	0.0221 (14)	0.0029 (11)	-0.0045 (12)	-0.0040 (11)
C5	0.0401 (18)	0.0313 (16)	0.0332 (16)	-0.0010 (14)	-0.0185 (14)	-0.0109 (13)
N6	0.0192 (12)	0.0179 (11)	0.0183 (11)	0.0017 (9)	-0.0026 (9)	-0.0038 (9)
N4	0.0126 (11)	0.0189 (11)	0.0190 (11)	0.0020 (9)	-0.0014 (9)	-0.0065 (9)
N5	0.0256 (13)	0.0190 (12)	0.0239 (12)	-0.0029 (10)	0.0006 (10)	-0.0061 (10)
C7	0.0265 (16)	0.0194 (14)	0.0215 (14)	-0.0014 (12)	0.0010 (12)	-0.0003 (11)
C8	0.0223 (15)	0.0265 (15)	0.0206 (13)	0.0054 (12)	-0.0069 (11)	-0.0068 (12)
C9	0.0177 (14)	0.0282 (15)	0.0240 (14)	0.0044 (12)	-0.0077 (11)	-0.0111 (12)
C6	0.0169 (15)	0.0235 (15)	0.0260 (14)	-0.0055 (12)	0.0035 (12)	-0.0100 (12)
C10	0.0319 (17)	0.0210 (15)	0.0339 (16)	0.0007 (12)	-0.0008 (13)	-0.0106 (13)
C11	0.0306 (17)	0.0190 (14)	0.0108 (12)	-0.0038 (13)	-0.0002 (11)	-0.0021 (11)
C12	0.0226 (15)	0.0136 (13)	0.0131 (12)	-0.0037 (11)	0.0000 (10)	-0.0030 (10)
C13	0.0231 (15)	0.0154 (13)	0.0154 (13)	0.0013 (11)	0.0009 (11)	-0.0035 (11)
C14	0.0234 (15)	0.0148 (13)	0.0126 (12)	-0.0040 (11)	-0.0018 (11)	0.0004 (10)
C15	0.0287 (16)	0.0134 (13)	0.0112 (12)	-0.0029 (11)	0.0016 (11)	-0.0002 (10)
C16	0.0308 (16)	0.0223 (14)	0.0195 (14)	-0.0076 (12)	0.0022 (12)	-0.0050 (12)
C17	0.050 (2)	0.0204 (15)	0.0275 (15)	-0.0080 (14)	0.0092 (14)	-0.0135 (13)
C18	0.0360 (19)	0.0261 (16)	0.0377 (17)	0.0003 (14)	0.0134 (14)	-0.0137 (14)
C19	0.0242 (16)	0.0229 (15)	0.0311 (15)	-0.0015 (12)	0.0072 (12)	-0.0076 (13)
C20	0.0250 (15)	0.0139 (13)	0.0169 (13)	-0.0004 (11)	0.0029 (11)	-0.0016 (11)
C21	0.0182 (14)	0.0167 (13)	0.0175 (13)	-0.0047 (11)	-0.0009 (11)	-0.0007 (11)
C22	0.0136 (15)	0.0359 (18)	0.048 (2)	-0.0057 (13)	0.0084 (13)	-0.0299 (16)
C23	0.0114 (13)	0.0225 (14)	0.0286 (15)	-0.0029 (11)	0.0009 (11)	-0.0135 (12)
C24	0.0182 (14)	0.0287 (15)	0.0205 (13)	-0.0029 (12)	-0.0017 (11)	-0.0118 (12)
C25	0.0153 (14)	0.0188 (13)	0.0193 (13)	-0.0010 (11)	-0.0021 (11)	-0.0061 (11)
C26	0.0112 (13)	0.0169 (13)	0.0228 (13)	0.0003 (10)	-0.0025 (10)	-0.0072 (11)
C27	0.0176 (14)	0.0205 (14)	0.0233 (14)	-0.0017 (11)	-0.0018 (11)	-0.0080 (11)
C28	0.0206 (15)	0.0325 (16)	0.0267 (15)	-0.0009 (12)	-0.0049 (12)	-0.0151 (13)
C29	0.0248 (16)	0.0410 (18)	0.0190 (14)	0.0022 (13)	-0.0064 (12)	-0.0073 (13)
C30	0.0190 (15)	0.0272 (15)	0.0234 (14)	0.0004 (12)	-0.0025 (12)	0.0003 (12)

C31	0.0135 (13)	0.0205 (14)	0.0211 (13)	0.0040 (11)	-0.0024 (11)	-0.0047 (11)
C32	0.0110 (13)	0.0167 (13)	0.0317 (15)	0.0002 (10)	0.0000 (11)	-0.0070 (12)
C33	0.0237 (15)	0.0168 (13)	0.0206 (13)	-0.0015 (11)	-0.0072 (11)	-0.0020 (11)
01	0.0259 (11)	0.0282 (10)	0.0274 (10)	-0.0085 (8)	-0.0012 (8)	-0.0133 (8)
O2	0.0339 (11)	0.0203 (10)	0.0270 (10)	0.0040 (9)	-0.0069 (9)	-0.0139 (8)
03	0.0240 (10)	0.0182 (10)	0.0325 (11)	0.0020 (8)	-0.0035 (8)	-0.0116 (8)
O4	0.0215 (11)	0.0226 (11)	0.0751 (15)	-0.0041 (9)	-0.0059 (10)	-0.0245 (11)
05	0.0363 (13)	0.0581 (15)	0.0435 (13)	-0.0177 (11)	0.0053 (10)	-0.0381 (12)
06	0.0359 (12)	0.0423 (12)	0.0222 (10)	-0.0133 (10)	-0.0075 (9)	-0.0143 (9)
O1W	0.0328 (11)	0.0330 (11)	0.0267 (10)	-0.0130 (9)	0.0071 (9)	-0.0159 (9)
O2W	0.0228 (10)	0.0384 (11)	0.0321 (11)	-0.0106 (9)	0.0054 (8)	-0.0237 (9)

Geometric parameters (Å, °)

Cu1—N3	2.000 (2)	C10—H10A	0.9800
Cu1—N3 ⁱ	2.000 (2)	C10—H10B	0.9800
Cu1—N1	2.017 (2)	C10—H10C	0.9800
Cu1—N1 ⁱ	2.017 (2)	C11—O1	1.248 (3)
Cu1—O1w	2.5033 (19)	C11—O2	1.271 (3)
Cu1—O1w ⁱ	2.5033 (18)	C11—C12	1.501 (3)
Cu2—N4	1.9987 (19)	C12—C21	1.364 (3)
Cu2—N4 ⁱⁱ	1.9987 (19)	C12—C13	1.431 (4)
Cu2—N6	2.0113 (19)	C13—O3	1.367 (3)
Cu2—N6 ⁱⁱ	2.0114 (19)	C13—C14	1.383 (3)
Cu2—O2w	2.4681 (18)	C14—C15	1.424 (4)
Cu2—O2w ⁱⁱ	2.4681 (18)	C14—C33	1.514 (3)
N1-C4	1.479 (3)	C15—C16	1.423 (3)
N1—C1	1.491 (3)	C15—C20	1.426 (4)
N1—H1	1.0000	C16—C17	1.363 (4)
N2—C1	1.438 (3)	C16—H16	0.9500
N2-C2	1.442 (3)	C17—C18	1.406 (4)
N2—C5	1.455 (3)	C17—H17	0.9500
N3—C3	1.476 (3)	C18—C19	1.355 (4)
N3—C2	1.480 (3)	C18—H18	0.9500
N3—H3	1.0000	C19—C20	1.411 (4)
C4—C3 ⁱ	1.518 (4)	C19—H19	0.9500
C4—H4A	0.9900	C20—C21	1.403 (3)
C4—H4B	0.9900	C21—H21	0.9500
C1—H1A	0.9900	C22—O4	1.245 (3)
C1—H1B	0.9900	C22—O5	1.279 (4)
C2—H2A	0.9900	C22—C23	1.507 (4)
C2—H2B	0.9900	C23—C32	1.366 (4)
$C3-C4^i$	1.518 (4)	C23—C24	1.429 (4)
С3—НЗА	0.9900	C24—O6	1.367 (3)
С3—Н3В	0.9900	C24—C25	1.378 (3)
С5—Н5А	0.9800	C25—C26	1.427 (3)
С5—Н5В	0.9800	C25—C33	1.523 (3)
С5—Н5С	0.9800	C26—C27	1.417 (3)

N6—C8	1.481 (3)	C26—C31	1.434 (3)
N6—C7	1.492 (3)	C27—C28	1.366 (4)
N6—H6	1.0000	С27—Н27	0.9500
N4—C9	1,476 (3)	C28—C29	1.407 (4)
N4—C6	1.493 (3)	C28—H28	0.9500
N4—H4	1.0000	C29—C30	1.362 (4)
N5—C6	1.429 (3)	С29—Н29	0.9500
N5—C7 ⁱⁱ	1.432 (3)	C30—C31	1.418 (3)
N5-C10	1.460 (3)	C30—H30	0.9500
C7—N5 ⁱⁱ	1 432 (3)	$C_{31} - C_{32}$	1409(3)
C7—H7A	0.9900	C32—H32	0.9500
C7—H7B	0.9900	C33—H33A	0.9900
$C_8 - C_9$	1 518 (4)	C33—H33B	0.9900
C8—H8A	0.9900	O3—H3C	0.8400
C8—H8B	0.9900	06—H6C	0.8400
	0.9900	01W H1WA	0.8641
C9H9B	0.9900	O1W—H1WB	0.8606
C6 H6A	0.9900	O^{2W} H2WA	0.8578
C6 H6B	0.9900	O2W H2WB	0.8578
C0—110B	0.9900	02 w—112 wB	0.8029
N3—Cu1—N3 ⁱ	180.00	H9A—C9—H9B	108.6
N3—Cu1—N1	93.47 (8)	N5—C6—N4	114.6 (2)
N3 ⁱ —Cu1—N1	86.53 (8)	N5—C6—H6A	108.6
N3—Cu1—N1 ⁱ	86.53 (8)	N4—C6—H6A	108.6
$N3^{i}$ —Cu1—N1 ⁱ	93.47 (8)	N5—C6—H6B	108.6
N1—Cu1—N1 ⁱ	180.0	N4—C6—H6B	108.6
N4—Cu2—N4 ⁱⁱ	180.00	H6A—C6—H6B	107.6
N4—Cu2—N6	86.53 (8)	N5-C10-H10A	109.5
N4 ⁱⁱ —Cu2—N6	93.47 (8)	N5—C10—H10B	109.5
N4—Cu2—N6 ⁱⁱ	93.47 (8)	H10A—C10—H10B	109.5
N4 ⁱⁱ —Cu2—N6 ⁱⁱ	86.53 (8)	N5—C10—H10C	109.5
N6—Cu2—N6 ⁱⁱ	180.0	H10A—C10—H10C	109.5
C4—N1—C1	112.6 (2)	H10B—C10—H10C	109.5
C4—N1—Cu1	105.83 (15)	O1—C11—O2	123.7 (2)
C1—N1—Cu1	115.85 (15)	O1—C11—C12	118.9 (2)
C4—N1—H1	107.4	O2—C11—C12	117.4 (2)
C1—N1—H1	107.4	C21—C12—C13	118.5 (2)
Cu1—N1—H1	107.4	C21—C12—C11	120.6 (2)
C1—N2—C2	115.5 (2)	C13—C12—C11	120.9 (2)
C1—N2—C5	114.8 (2)	O3—C13—C14	118.8 (2)
C2—N2—C5	113.9 (2)	O3—C13—C12	119.5 (2)
C3—N3—C2	112.89 (18)	C14—C13—C12	121.7 (2)
C3—N3—Cu1	106.69 (15)	C13—C14—C15	118.4 (2)
C2—N3—Cu1	115.45 (16)	C13—C14—C33	119.6 (2)
C3—N3—H3	107.1	C15—C14—C33	122.0 (2)
C2—N3—H3	107.1	C16—C15—C14	123.1 (2)
Cu1—N3—H3	107.1	C16—C15—C20	117.2 (2)
$N1-C4-C3^{i}$	107.4 (2)	C14—C15—C20	119.7 (2)

N1—C4—H4A	110.2	C17—C16—C15	121.1 (3)
C3 ⁱ —C4—H4A	110.2	С17—С16—Н16	119.5
N1—C4—H4B	110.2	C15—C16—H16	119.5
C3 ⁱ —C4—H4B	110.2	C16—C17—C18	120.9 (3)
H4A—C4—H4B	108.5	C16—C17—H17	119.5
N2-C1-N1	113.6 (2)	C18—C17—H17	119.5
N2-C1-H1A	108.8	C19 - C18 - C17	119.8 (3)
N1 - C1 - H1A	108.8	C19-C18-H18	120.1
N2_C1_H1B	108.8	C17 - C18 - H18	120.1
N1 C1 H1P	108.8	$C_{17} = C_{10} = C_{10}$	120.1 121.0(3)
	107.7	$C_{10} = C_{10} = C_{20}$	121.0 (5)
$\Pi A - C I - \Pi I B$	107.7	С18—С19—Н19	119.5
$N_2 = C_2 = N_3$	113.07 (19)	C20—C19—H19	119.5
N2—C2—H2A	108.8	$C_{21} = C_{20} = C_{19}$	121.3 (2)
N3—C2—H2A	108.8	C21—C20—C15	118.8 (2)
N2—C2—H2B	108.8	C19—C20—C15	119.9 (2)
N3—C2—H2B	108.8	C12—C21—C20	122.1 (2)
H2A—C2—H2B	107.7	C12—C21—H21	118.9
$N3-C3-C4^{i}$	107.57 (19)	C20—C21—H21	118.9
N3—C3—H3A	110.2	O4—C22—O5	124.0 (3)
C4 ⁱ —C3—H3A	110.2	O4—C22—C23	119.0 (3)
N3—C3—H3B	110.2	O5—C22—C23	117.0 (3)
C4 ⁱ —C3—H3B	110.2	C32—C23—C24	118.5 (2)
НЗА—СЗ—НЗВ	108.5	C32—C23—C22	120.0 (2)
N2—C5—H5A	109.5	C24—C23—C22	121.4 (2)
N2—C5—H5B	109.5	O6—C24—C25	118.7 (2)
H5A—C5—H5B	109.5	Q6—C24—C23	119.3 (2)
N2-C5-H5C	109.5	$C_{25} - C_{24} - C_{23}$	122.0 (2)
H5A—C5—H5C	109.5	C_{24} C_{25} C_{26}	1190(2)
H5B-C5-H5C	109.5	C_{24} C_{25} C_{23}	119.0(2) 119.4(2)
C8 - N6 - C7	113 11 (19)	$C_{26} = C_{25} = C_{33}$	121.5(2)
$C_8 = N_6 = C_{12}$	105.86 (15)	$C_{20} = C_{20} = C_{20} = C_{20}$	121.3(2) 123.1(2)
C_{0} N6 C_{12}	105.00(15) 115.22(15)	$C_{27} = C_{20} = C_{23}$	123.1(2)
C^{2} N6 H6	107.4	$C_{2}^{-} = C_{2}^{-} = C_{3}^{-} = C_{3}^{-}$	117.0(2)
	107.4	$C_{23} = C_{20} = C_{31}$	119.2(2)
C = NO = HO	107.4	$C_{28} = C_{27} = C_{26}$	121.1 (2)
	107.4	$C_{28} = C_{27} = H_{27}$	119.4
C9—N4—C6	113.30 (18)	C26—C2/—H2/	119.4
C9—N4—Cu2	106.73 (14)	C27—C28—C29	120.9 (2)
C6—N4—Cu2	116.27 (15)	С27—С28—Н28	119.6
C9—N4—H4	106.6	C29—C28—H28	119.6
C6—N4—H4	106.6	C30—C29—C28	120.0 (2)
Cu2—N4—H4	106.6	С30—С29—Н29	120.0
C6—N5—C7 ⁱⁱ	115.2 (2)	С28—С29—Н29	120.0
C6—N5—C10	116.4 (2)	C29—C30—C31	120.7 (2)
C7 ⁱⁱ —N5—C10	114.1 (2)	С29—С30—Н30	119.6
N5 ⁱⁱ —C7—N6	113.9 (2)	С31—С30—Н30	119.6
N5 ⁱⁱ —C7—H7A	108.8	C32—C31—C30	121.4 (2)
N6—C7—H7A	108.8	C32—C31—C26	119.0 (2)
N5 ⁱⁱ —C7—H7B	108.8	C30—C31—C26	119.5 (2)

N6—C7—H7B	108.8	C23—C32—C31	122.0 (2)
H7A—C7—H7B	107.7	С23—С32—Н32	119.0
N6—C8—C9	107.5 (2)	C31—C32—H32	119.0
N6—C8—H8A	110.2	C14—C33—C25	115.6 (2)
C9 - C8 - H8A	110.2	C14 - C33 - H33A	108.4
	110.2	C14 - C35 - H33A	100.4
	110.2	C_{23} — C_{33} — H_{33} P	108.4
С9—С8—Н8В	110.2	C14—C33—H33B	108.4
H8A—C8—H8B	108.5	С25—С33—Н33В	108.4
N4—C9—C8	107.08 (19)	H33A—C33—H33B	107.4
N4—C9—H9A	110.3	С13—О3—Н3С	109.5
С8—С9—Н9А	110.3	C24—O6—H6C	109.5
N4—C9—H9B	110.3	H1WA—O1W—H1WB	114.2
С8—С9—Н9В	110.3	H2WA—O2W—H2WB	113.5
C1—N1—C4—C3 ⁱ	169.94 (19)	C18—C19—C20—C15	-3.3(4)
$Cu1 - N1 - C4 - C3^{i}$	42.4 (2)	C16-C15-C20-C21	-175.3(2)
$C_{2}N_{2}C_{1}N_{1}$	68 3 (3)	C_{14} C_{15} C_{20} C_{21}	33(3)
$C_2 = N_2 = C_1 = N_1$	-673(3)	$C_{14} = C_{15} = C_{20} = C_{21}$	3.3(3)
C_{3} N_{1} C_{1} N_{2}	(7.3(3))	$C_{10} = C_{15} = C_{20} = C_{10}$	3.2(3)
C4— $N1$ — $C1$ — $N2$	-177.0(2)	C14 - C13 - C20 - C19	-1/8.3(2)
Cul—NI—Cl—N2	-55.0 (2)	C13—C12—C21—C20	-5.8 (3)
C1—N2—C2—N3	-69.9 (3)	C11—C12—C21—C20	174.5 (2)
C5—N2—C2—N3	66.1 (3)	C19—C20—C21—C12	-174.1 (2)
C3—N3—C2—N2	-179.3 (2)	C15—C20—C21—C12	4.4 (3)
Cu1—N3—C2—N2	57.6 (2)	O4—C22—C23—C32	4.7 (4)
$C2-N3-C3-C4^{i}$	-169.0(2)	O5—C22—C23—C32	-175.6 (2)
Cu1—N3—C3—C4 ⁱ	-41.1(2)	O4—C22—C23—C24	-174.3(2)
C8—N6—C7—N5 ⁱⁱ	179.2 (2)	Q5—C22—C23—C24	5.4 (4)
$Cu2 - N6 - C7 - N5^{ii}$	57.3 (3)	$C_{32} - C_{23} - C_{24} - O_{6}$	179.7 (2)
C7 - N6 - C8 - C9	-1693(2)	C^{22} C^{23} C^{24} C^{6}	-1.2(4)
$C_{\rm H}^2$ N6 C8 C0	-42.3(2)	$C_{22}^{22} C_{23}^{23} C_{24}^{24} C_{25}^{25}$	-1.5(4)
$C_{10} = C_{10} = C_{10} = C_{10}$	42.3(2)	$C_{32} = C_{23} = C_{24} = C_{25}$	1.3(+)
$C_0 = N_4 = C_9 = C_8$	-1/1.1(2)	$C_{22} = C_{23} = C_{24} = C_{23}$	177.0(2)
Cu2—N4—C9—C8	-41.8 (2)	06-024-025-026	-1/6.4(2)
N6—C8—C9—N4	57.0 (3)	C23—C24—C25—C26	4.8 (4)
$C7^{n}$ —N5—C6—N4	-67.8 (3)	O6—C24—C25—C33	0.5 (4)
C10—N5—C6—N4	69.6 (3)	C23—C24—C25—C33	-178.3(2)
C9—N4—C6—N5	178.7 (2)	C24—C25—C26—C27	172.3 (2)
Cu2—N4—C6—N5	54.5 (3)	C33—C25—C26—C27	-4.5 (4)
O1—C11—C12—C21	-1.3 (3)	C24—C25—C26—C31	-4.7 (4)
O2-C11-C12-C21	178.1 (2)	C33—C25—C26—C31	178.5 (2)
O1—C11—C12—C13	178.9 (2)	C25—C26—C27—C28	-178.4(2)
O2-C11-C12-C13	-1.6(3)	C31—C26—C27—C28	-1.3 (4)
C21—C12—C13—O3	-1793(2)	C26—C27—C28—C29	-0.8(4)
$C_{11} - C_{12} - C_{13} - O_{3}$	0.5(3)	C_{27} C_{28} C_{29} C_{30}	18(4)
C_{1} C_{12} C_{13} C_{14}	-0.5(3)	C_{28} C_{29} C_{30} C_{31}	
$C_{11} C_{12} C_{13} C_{14}$	170.2(2)	$C_{20} = C_{20} = C_{30} = C_{31} = C_{31}$	1766(2)
$C_{11} = C_{12} = C_{13} = C_{14}$	177.2(2)	$C_{29} = C_{30} = C_{31} = C_{32}$	170.0(2)
	-1/3.3(2)	129 - 130 - 131 - 120	-1./(4)
C12—C13—C14—C15	7.9 (3)	$C_2/-C_{20}-C_{31}-C_{32}$	-1/5.8 (2)
O3—C13—C14—C33	5.4 (3)	C25—C26—C31—C32	1.4 (3)

C12—C13—C14—C33	-173.4 (2)	C27—C26—C31—C30	2.6 (3)	
C13—C14—C15—C16	169.3 (2)	C25—C26—C31—C30	179.7 (2)	
C33—C14—C15—C16	-9.4 (3)	C24—C23—C32—C31	-2.1 (4)	
C13—C14—C15—C20	-9.2 (3)	C22—C23—C32—C31	178.9 (2)	
C33—C14—C15—C20	172.1 (2)	C30—C31—C32—C23	-176.3 (2)	
C14—C15—C16—C17	-179.0 (2)	C26—C31—C32—C23	2.1 (4)	
C20-C15-C16-C17	-0.5 (3)	C13—C14—C33—C25	119.6 (3)	
C15—C16—C17—C18	-2.1 (4)	C15—C14—C33—C25	-61.7 (3)	
C16—C17—C18—C19	2.0 (4)	C24—C25—C33—C14	120.9 (3)	
C17—C18—C19—C20	0.7 (4)	C26—C25—C33—C14	-62.3 (3)	
C18—C19—C20—C21	175.1 (2)			

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N1—H1···O3 ⁱⁱⁱ	1.00	2.50	3.272 (3)	134
N3—H3…O5	1.00	1.89	2.836 (3)	156
N4—H4···O2 ⁱⁱⁱ	1.00	1.90	2.822 (3)	152
O3—H3C···O2	0.84	1.75	2.502 (2)	148
O6—H6 <i>C</i> ···O5	0.84	1.75	2.514 (3)	150
O1W—H1 WA ···O1 ^{iv}	0.86	1.88	2.746 (2)	178
O1 <i>W</i> —H1 <i>WB</i> ···O4	0.86	2.31	3.136 (3)	162
O1 <i>W</i> —H1 <i>WB</i> ···O5	0.86	2.41	3.087 (3)	136
O2W— $H2WA$ ···O1 ⁱⁱⁱ	0.86	2.05	2.901 (2)	169
O2W—H2WA···O2 ⁱⁱⁱ	0.86	2.61	3.280 (2)	136
O2W— $H2WB$ ···O4 ^v	0.86	1.88	2.743 (3)	176
C2—H2 B ···O1 ^{vi}	0.99	2.48	3.435 (3)	162
С5—Н5 <i>В</i> …О2 ^{ііі}	0.98	2.45	3.316 (3)	147

Symmetry codes: (iii) *x*, *y*+1, *z*; (iv) *x*+1, *y*+1, *z*; (v) *x*-1, *y*, *z*; (vi) -*x*+1, -*y*, -*z*+1.