

Received 4 January 2019 Accepted 20 March 2019

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; intra- and intermolecular bonding; hydrogen-bonded dimer.

CCDC reference: 1904525

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of diethyl 2-amino-5-{4-[bis(4methylphenyl)amino]benzamido}thiophene-3,4-dicarboxylate

Yohan Gautier, Thierry Maris and W. G. Skene*

Département de chimie, Université de Montréal, CP 6128, Centre-ville Montreal, QC, H3C 3J7, Canada. *Correspondence e-mail: w.skene@umontreal.ca

In the title compound, $C_{31}H_{31}N_3O_5S$, the regioselective substitution of the thiophene is confirmed with the amine and the amide at the 2- and 5-positions, respectively. In the molecule, the thiophene ring is twisted by 12.82 (3)° with respect to the aromatic ring of the benzamido group. Intramolecular N-H···O hydrogen bonds are present involving the N atoms of the primary amine and the amide groups, forming *S*(6) ring motifs. In the crystal, centrosymmetrically related molecules are linked by pairs of N-H···O hydrogen bonds involving the amide carbonyl O atoms and the primary amine N atoms to form dimers of $R_2^2(16)$ ring motif.

1. Chemical context

Azomethines are prepared by the condensation of amines with aldehydes. Using aromatic precursors, the reaction results in the preparation of conjugated azomethines having colors that are readily detectable in the visible spectrum (Dufresne et al., 2007). This is particularly the case with azomethines that are prepared from 2,5-diaminothiophene derivatives (Bolduc et al., 2013). These derivatives can be electrochemically oxidized (Yeh et al., 2016). The collective properties (reversible color change with applied potential) have proven ideal for use as electrochromic materials (Ma et al., 2016). While various azomethines have been studied for understating the impact of structure on the absorption and electrochemical properties (Liu et al., 2018), modifying the terminal amine has remained relatively underexplored. Such modification allows property tuning, including reversible oxidation. This is a key property for electrochromic use. Given the underexplored modification of 2-aminothiophenes, we investigated its conversion to a triphenylamide. The triphenylamide moiety was targeted because of its electrochemically reversible oxidation. Meanwhile, the amide functional group was chosen because of its robustness that could sustain electrochemical redox cycles. More importantly, it would be inert towards imination reactions for constructing conjugated azomethines having both various terminal groups and cores. Given the challenge of unequivocally identifying the configuration and absolute structural identification of aminothiophene derivatives with the concomitant limited number of reported triphenylamine amides, the X-ray crystal structure analysis of the title compound (I) was evaluated and it is reported on herein.

2. Structural commentary

In the molecule of I (Fig. 1), the mean plane through the 2,5diaminotihophene ring (r.m.s. deviation = 0.0116 Å) is inclined to the C1–C6 benzene (ring A) by 12.82 (3)°. The dihedral angles formed by the benzene rings A. B (C18–C23) and C (C25-C30) of the triphenylamide moiety are: $A^{A}B =$ $65.56 (3)^{\circ}, A^{\wedge}C = 55.22 (4)^{\circ}, B^{\wedge}C = 66.80 (4)^{\circ}.$ The O1-C7, N2-C7, N2-C8 and N3-C11 bond lengths are 1.2315 (13), 1.3644 (13), 1.3829 (13) and 1.3529 (14) Å, respectively. While the reactivity of the primary amine of I is less than that expected for typical arylamines owing to the electron-withdrawing esters, it nonetheless acts as a hydrogen donor. In fact, two $N-H \cdots O$ intramolecular hydrogen bonds occur, one each between the ester carbonyl and its adjacent nitrogen, forming rings of S(6) graph-set motif (Table 1). The intramolecular hydrogen bonds observed are consistent with those reported in other 2-amino-3-ester thiophenes (Dufresne & Skene, 2010a,b; Skene et al., 2006; Bourgeaux & Skene, 2007; Bourgeaux et al., 2006; Bolduc et al., 2010; Tshibaka et al., 2011; Furuyama et al., 2014). The crystal structure of I confirms the asymmetric substitution of thiophene by a

Figure 1

The molecular structure of I with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Intramolecular hydrogen bonds are shown as dashed lines.

Table	1			
Hydro	gen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2 - H2 \cdots O2$ $N3 - H3A \cdots O1^{i}$ $N3 - H3B \cdots O4$	0.850 (17)	1.958 (17)	2.6501 (12)	137.8 (15)
	0.883 (17)	2.154 (17)	3.0316 (13)	172.5 (14)
	0.810 (17)	2.156 (16)	2.7656 (13)	132.2 (14)

Symmetry code: (i) -x - 1, -y, -z + 1.

primary amine and an amide. Of importance is that the thiophene substitution with the nitrogen atoms occurs at the 2,5-positions, rather than the 3,4-positions. The primary amine at the 2-thiophene position is also confirmed. The 2,5-configuration is desired because extended degrees of conjugation result when the azomethines are formed in these positions with arylamines. The presence of ester functionalities at the 3,4-positions is also verified by the crystal structure.

3. Supramolecular features

In the crystal structure of **I**, centrosymmetrically related molecules are linked into head-to-head hydrogen-bonded dimers (Fig. 2) by pairs of $N-H\cdots O$ hydrogen bonds (Table 1) involving the N3 amine atom and the O1 carbonyl atom of the amide group, forming rings of $R_2^2(16)$ graph-set motif. In this arrangement, the sulfur atoms of the two thiophenes are faceto-face and the two heteoratoms are separated by 3.5419 (4) Å. The crystal packing (Fig. 3) is further stabilized by van der Waals forces.

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.39, latest update August 2018; Groom *et al.*, 2016) yielded no hits. In fact, no exact thiophene derivatives substituted in the 3,4-positions with electron-withdrawing groups were found. Four structurally similarly thiophenes were identified, three of which were symmetric with amides at the 2,5-positions (refcodes LOFTAD, LOFTEH, LOFTIL;

Figure 2 Supramolecular dimer of I showing the intermolecular hydrogen bonds as dotted lines.

Figure 3 Crystal packing of **I** approximately viewed along the *a* axis.

Fabbro et al., 2014). The most closely related structure was the asymmetric 2-amino, 5-phenylamido-thiophene derivative (LOYDIM; Rodinovskaya et al., 2002). No differences greater than 3σ were found for the N2–C7, N2–C8, and O1–C7 bond lengths of I and the nine counterpart bonds for the reported similar structures. The notable difference was the C11-N3 bond length of I, which is 0.025 Å ($3\sigma = 0.004$ Å) shorter than the corresponding bond in LOYDIM [1.378(5) Å]. The dihedral angle between the planes described by the phenylamide and the 2,5-diaminotihophene rings is also different [5.74 (13)°]. The database survey yielded only four 4-amido-triphenylamines [GUWNAP, GUWNET (Ghosh et al., 2009), and UZEXAZ (Wang et al., 2011)], with one being complexed with cerium (ZOKSUP; Sun et al., 2014). No differences between the N1-phenyl and C4-C7 bond distances were found. The three phenyl-N-phenyl dihedral angles of I are also consistent with the those of the reported structures.

5. Synthesis and crystallization

To a solution of 4-(di-p-tolylamino)benzoic acid (668 mg, 1.7 mmol, 1 eq) in anhydrous dichloromethane (15 mL) were added oxalyl chloride (0.21 mL, 2.3 mmol, 1.8 eq) and one drop of anhydrous DMF. The mixture was stirred for 16 h under nitrogen at room temperature. The solvent was removed under reduced pressure and the resulting 4-(di-ptolylamino)benzoyl chloride was dissolved in anhydrous THF (20 mL). The mixture was then added dropwise to a solution of diethyl 2,5-diaminothiophene-3,4-dicarboxylate (594 mg, 2.3 mmol, 1.1 eq) and Et₃N (2.3 mmol, 0.32 mL, 1.1 eq) in anhydrous THF (5 mL). The reaction mixture was stirred for 6 h under nitrogen at room temperature. After filtering, the solvent of the filtrate was removed under reduced pressure. The residue was purified by SiO₂ column chromatography (hexanes/ethyl acetate 2:1 v/v) to afford the title compound as a yellow solid (589 mg, yield 64%). A suitable crystal of the title compound was obtained by slow evaporation of deuterated chloroform from an NMR tube. ¹H NMR (400 MHz, CDCl₃): $\delta = 11.31$ (*s*, 1H), 7.72 (*d*, ³*J* = 8.9 Hz, 2H), 7.13 (*d*, ³*J* = 8.2 Hz, 4H), 7.05 (*d*, ³*J* = 8.2 Hz, 4H), 6.97 (*d*, ³*J* = 8.9 Hz, 2H), 5.67 (*s*, 2H), 4.29 (*m*, 4H), 2.34 (*s*, 6H), 1.34 (*t*, ³*J* = 7.12 Hz, 3H), 1.32 (*t*, ³*J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.2$, 165.5, 163.4, 154.6, 152.3, 143.9, 136.4, 134.6, 130.4, 128.7, 126.2, 122.5, 119.0, 109.2, 101.8, 61.0, 60.2, 21.0, 14.5, 14.3. MS-HR: (*M* + H⁺) exp. *m*/*z* = 558.2062, (*M* + H⁺) calc. *m*/*z* = 558.2057.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{31}H_{31}N_3O_5S$
M _r	557.65
Crystal system, space group	Triclinic, P1
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.1314 (2), 13.4650 (3), 15.4586 (4)
α, β, γ (°)	106.533 (1), 97.980 (1), 102.843 (1)
$V(\text{\AA}^3)$	1354.61 (6)
Ζ	2
Radiation type	Ga $K\alpha$, $\lambda = 1.34139$ Å
$\mu \text{ (mm}^{-1})$	0.94
Crystal size (mm)	$0.16 \times 0.11 \times 0.04$
Data collection	
Diffractometer	Bruker Venture Metaljet
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.679, 0.752
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	43601, 6212, 5916
R _{int}	0.024
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.097, 1.05
No. of reflections	6212
No. of parameters	377
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.39, -0.19

Computer programs: *APEX2* and *SAINT* (Bruker, 2013), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018* (Sheldrick, 2015*b*), *OLEX2* (Dolomanov *et al.*, 2009), *Mercury* (Macrae *et al.*, 2008), *PLATON* (Spek, 2009), and *publCIF* (Westrip, 2010).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The amine H atoms were located in a difference-Fourier map and refined freely. All other H atoms were placed geometrically and refined with C-H =0.95–0.99 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms. A rotating model was used for the methyl groups.

Acknowledgements

Dr S. Simard is acknowledged for assistance with the crystallographic data collection and preliminary refinement.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (Discovery Grant to W. G. Skene); Canada Foundation for Innovation.

References

- Bolduc, A., Dufresne, S. & Skene, W. G. (2010). J. Mater. Chem. 20, 4820–4826.
- Bolduc, A., Mallet, C. & Skene, W. G. (2013). *Sci. China Chem.* **56**, 3–23.
- Bourgeaux, M. & Skene, W. G. (2007). J. Org. Chem. 72, 8882– 8892.
- Bourgeaux, M., Vomsheid, S. & Skene, W. G. (2006). Acta Cryst. E62, 05529–05531.
- Bruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

- Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166–1177.
- Dufresne, S. & Skene, W. G. (2010a). Acta Cryst. E66, o3027.
- Dufresne, S. & Skene, W. G. (2010b). Acta Cryst. E66, 03221.
- Fabbro, C., Armani, S., Carloni, L.-E., De Leo, F., Wouters, J. & Bonifazi, D. (2014). *Eur. J. Org. Chem.* pp. 5487–5500.
- Furuyama, T., Noguchi, D., Suzuki, Y. & Kobayashi, N. (2014). Can. J. Chem. 92, 765–770.
- Ghosh, K., Masanta, G., Fröhlich, R., Petsalakis, I. D. & Theodorakopoulos, G. (2009). J. Phys. Chem. B, 113, 7800-7809.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Liu, S., Wu, T., Zhu, Q., Pu, J., Chen, G., Zhang, W. & Li, Z. (2018). *RSC Adv.* 8, 12779–12784.
- Ma, X., Wu, Y., Wen, H., Niu, H., Wang, C., Qin, C., Bai, X., Lei, L. & Wang, W. (2016). RSC Adv. 6, 4564–4575.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Rodinovskaya, L. A., Shestopalov, A. M. & Chunikhin, K. S. (2002). *Tetrahedron*, **58**, 4273–4282.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Skene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). *Acta Cryst.* E62, 02382–02384.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sun, H., Zhang, Y., Yan, W., Chen, W., Lan, Q., Liu, S., Jiang, L., Chi, Z., Chen, X. & Xu, J. (2014). J. Mater. Chem. C. 2, 5812–5817.
- Tshibaka, T., Bishop, S., Roche, I. U., Dufresne, S., Lubell, W. D. & Skene, W. G. (2011). *Chem. Eur. J.* 17, 10879–10888.
- Wang, J., He, C., Wu, P., Wang, J. & Duan, C. (2011). J. Am. Chem. Soc. 133, 12402–12405.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yeh, L.-C., Huang, T.-C., Lai, F.-Y., Lai, G.-H., Lo, A.-Y., Hsu, S.-C., Yang, T.-I. & Yeh, J.-M. (2016). Surf. Coat. Technol. 303, 154–161.

supporting information

Acta Cryst. (2019). E75, 589-592 [https://doi.org/10.1107/S2056989019003864]

Crystal structure of diethyl 2-amino-5-{4-[bis(4-methylphenyl)amino]benzamido}thiophene-3,4-dicarboxylate

Yohan Gautier, Thierry Maris and W. G. Skene

Computing details

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009), *Mercury* (Macrae *et al.*, 2008), and *PLATON* for Windows Taskbar v1.19 (Spek, 2009).; software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

Diethyl 2-amino-5-{4-[bis(4-methylphenyl)amino]benzamido}thiophene-3,4-dicarboxylate

Crystal data

 $C_{31}H_{31}N_{3}O_{5}S$ $M_{r} = 557.65$ Triclinic, *P*1 *a* = 7.1314 (2) Å *b* = 13.4650 (3) Å *c* = 15.4586 (4) Å *a* = 106.533 (1)° *β* = 97.980 (1)° *γ* = 102.843 (1)° *V* = 1354.61 (6) Å³

Data collection

Bruker Venture Metaljet diffractometer Radiation source: Metal Jet, Gallium Liquid Metal Jet Source Helios MX Mirror Optics monochromator Detector resolution: 10.24 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.097$ S = 1.056212 reflections 377 parameters Z = 2 F(000) = 588 $D_x = 1.367 \text{ Mg m}^{-3}$ Ga Ka radiation, $\lambda = 1.34139 \text{ Å}$ Cell parameters from 9687 reflections $\theta = 2.7-60.6^{\circ}$ $\mu = 0.94 \text{ mm}^{-1}$ T = 100 K Block, yellow $0.16 \times 0.11 \times 0.04 \text{ mm}$

 $T_{\min} = 0.679, T_{\max} = 0.752$ 43601 measured reflections
6212 independent reflections
5916 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.024$ $\theta_{\text{max}} = 60.7^{\circ}, \theta_{\text{min}} = 2.7^{\circ}$ $h = -9 \rightarrow 9$ $k = -17 \rightarrow 17$ $l = -20 \rightarrow 20$

0 restraints Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0563P)^2 + 0.4554P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

 $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
S1	-0.27244 (4)	0.06598 (2)	0.58032 (2)	0.02122 (8)	
01	-0.20024 (12)	0.13560 (7)	0.43721 (6)	0.02656 (18)	
02	0.39650 (11)	0.18395 (7)	0.66336 (6)	0.02647 (18)	
03	0.35284 (11)	0.18307 (6)	0.80411 (5)	0.02208 (16)	
04	-0.14268 (12)	-0.01088 (7)	0.84823 (6)	0.02709 (18)	
05	0.15438 (11)	-0.00953 (7)	0.81408 (5)	0.02333 (17)	
N1	0.44925 (14)	0.35825 (8)	0.25046 (6)	0.0242 (2)	
N2	0.07397 (14)	0.15202 (8)	0.53922 (6)	0.02104 (19)	
H2	0.199 (3)	0.1717 (13)	0.5566 (11)	0.036 (4)*	
N3	-0.42204 (14)	-0.00968 (8)	0.70555 (7)	0.0234 (2)	
H3A	-0.532 (2)	-0.0409 (13)	0.6625 (11)	0.032 (4)*	
H3B	-0.405 (2)	-0.0292 (13)	0.7503 (12)	0.031 (4)*	
C1	0.33806 (16)	0.30899 (9)	0.30286 (7)	0.0214 (2)	
C2	0.13314 (16)	0.29229 (9)	0.28679 (7)	0.0226 (2)	
H2A	0.069747	0.314057	0.239990	0.027*	
C3	0.02269 (16)	0.24461 (9)	0.33822 (7)	0.0224 (2)	
H3	-0.115902	0.233884	0.326097	0.027*	
C4	0.11076 (16)	0.21182 (9)	0.40778 (7)	0.0203 (2)	
C5	0.31471 (16)	0.22772 (9)	0.42355 (7)	0.0218 (2)	
H5	0.377465	0.205919	0.470486	0.026*	
C6	0.42706 (16)	0.27486 (9)	0.37173 (8)	0.0229 (2)	
H6	0.565238	0.284067	0.383002	0.028*	
C7	-0.01919 (16)	0.16301 (9)	0.46062 (7)	0.0209 (2)	
C8	-0.01785 (15)	0.10919 (9)	0.59882 (7)	0.0200 (2)	
C9	0.07750 (15)	0.10201 (9)	0.67966 (7)	0.0196 (2)	
C10	-0.06016 (15)	0.05446 (9)	0.72744 (7)	0.0200 (2)	
C11	-0.25434 (16)	0.03304 (9)	0.68189 (7)	0.0206 (2)	
C12	0.28951 (16)	0.15762 (9)	0.71298 (7)	0.0204 (2)	
C13	0.56112 (15)	0.23930 (9)	0.83922 (8)	0.0232 (2)	
H13A	0.587955	0.312667	0.834394	0.028*	
H13B	0.641392	0.199732	0.802979	0.028*	
C14	0.61165 (18)	0.24542 (12)	0.93859 (9)	0.0330 (3)	
H14A	0.585366	0.172379	0.942452	0.049*	

H14B	0.531150	0.284569	0.973706	0.049*
H14C	0.751398	0.283289	0.964429	0.049*
C15	-0.02184 (16)	0.01050 (9)	0.80248 (7)	0.0214 (2)
C16	0.19659 (17)	-0.05354 (10)	0.88794 (8)	0.0274 (2)
H16A	0.086332	-0.116277	0.881920	0.033*
H16B	0.214461	0.001603	0.948819	0.033*
C17	0.38311 (18)	-0.08751 (11)	0.87989 (9)	0.0300 (3)
H17A	0.365227	-0.140105	0.818579	0.045*
H17B	0.412994	-0.120184	0.927395	0.045*
H17C	0.492230	-0.024286	0.888468	0.045*
C18	0.35607 (16)	0.35600 (9)	0.16150 (7)	0.0220 (2)
C19	0.24563 (16)	0.25904 (9)	0.09516 (8)	0.0226 (2)
H19	0.231993	0.193559	0.108656	0.027*
C20	0.15469 (16)	0.25789 (9)	0.00862 (8)	0.0236 (2)
H20	0.074974	0.191712	-0.035401	0.028*
C21	0.17916 (16)	0.35251 (10)	-0.01418 (8)	0.0240 (2)
C22	0.29234 (17)	0.44882 (10)	0.05301 (8)	0.0256 (2)
H22	0.310723	0.514013	0.038810	0.031*
C23	0.37864 (17)	0.45147 (9)	0.14014 (8)	0.0248 (2)
H23	0.452993	0.518152	0.185205	0.030*
C24	0.09038 (18)	0.35211 (11)	-0.10897 (8)	0.0297 (3)
H24A	0.195498	0.380647	-0.137308	0.045*
H24B	-0.000735	0.397250	-0.103306	0.045*
H24C	0.018819	0.278181	-0.147755	0.045*
C25	0.64705 (16)	0.42384 (9)	0.28755 (8)	0.0226 (2)
C26	0.71207 (18)	0.48747 (9)	0.38035 (8)	0.0261 (2)
H26	0.624280	0.486611	0.421240	0.031*
C27	0.90540 (19)	0.55223 (10)	0.41312 (9)	0.0288 (2)
H27	0.949225	0.593205	0.476904	0.035*
C28	1.03591 (17)	0.55826 (9)	0.35443 (9)	0.0278 (2)
C29	0.96756 (17)	0.49614 (10)	0.26161 (9)	0.0270 (2)
H29	1.053046	0.500286	0.220010	0.032*
C30	0.77774 (17)	0.42840 (9)	0.22849 (8)	0.0247 (2)
H30	0.736321	0.384840	0.165285	0.030*
C31	1.24615 (19)	0.62789 (12)	0.39042 (11)	0.0387 (3)
H31A	1.332337	0.583463	0.401862	0.058*
H31B	1.255322	0.684753	0.448195	0.058*
H31C	1.287141	0.660616	0.344560	0.058*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01620 (13)	0.02771 (14)	0.02086 (13)	0.00373 (10)	0.00225 (9)	0.01223 (10)
01	0.0190 (4)	0.0387 (5)	0.0239 (4)	0.0051 (3)	0.0031 (3)	0.0160 (3)
02	0.0181 (4)	0.0384 (5)	0.0246 (4)	0.0030 (3)	0.0041 (3)	0.0168 (3)
03	0.0168 (4)	0.0276 (4)	0.0197 (4)	0.0006 (3)	0.0013 (3)	0.0100 (3)
04	0.0216 (4)	0.0368 (5)	0.0266 (4)	0.0049 (3)	0.0062 (3)	0.0181 (4)
05	0.0199 (4)	0.0296 (4)	0.0241 (4)	0.0045 (3)	0.0033 (3)	0.0166 (3)

supporting information

N1	0.0211 (4)	0.0305 (5)	0.0209 (4)	0.0009 (4)	0.0023 (4)	0.0141 (4)
N2	0.0169 (4)	0.0280 (5)	0.0196 (4)	0.0034 (4)	0.0031 (3)	0.0123 (4)
N3	0.0175 (4)	0.0292 (5)	0.0241 (5)	0.0018 (4)	0.0031 (4)	0.0140 (4)
C1	0.0228 (5)	0.0229 (5)	0.0198 (5)	0.0042 (4)	0.0051 (4)	0.0101 (4)
C2	0.0234 (5)	0.0277 (5)	0.0204 (5)	0.0088 (4)	0.0043 (4)	0.0123 (4)
C3	0.0203 (5)	0.0284 (5)	0.0203 (5)	0.0076 (4)	0.0039 (4)	0.0105 (4)
C4	0.0207 (5)	0.0230 (5)	0.0175 (5)	0.0044 (4)	0.0037 (4)	0.0084 (4)
C5	0.0207 (5)	0.0257 (5)	0.0196 (5)	0.0042 (4)	0.0018 (4)	0.0112 (4)
C6	0.0193 (5)	0.0277 (5)	0.0228 (5)	0.0042 (4)	0.0032 (4)	0.0120 (4)
C7	0.0207 (5)	0.0240 (5)	0.0188 (5)	0.0055 (4)	0.0036 (4)	0.0089 (4)
C8	0.0177 (5)	0.0224 (5)	0.0209 (5)	0.0038 (4)	0.0041 (4)	0.0095 (4)
C9	0.0174 (5)	0.0221 (5)	0.0197 (5)	0.0033 (4)	0.0031 (4)	0.0095 (4)
C10	0.0180 (5)	0.0220 (5)	0.0202 (5)	0.0030 (4)	0.0036 (4)	0.0093 (4)
C11	0.0201 (5)	0.0216 (5)	0.0207 (5)	0.0042 (4)	0.0041 (4)	0.0092 (4)
C12	0.0192 (5)	0.0226 (5)	0.0211 (5)	0.0047 (4)	0.0031 (4)	0.0109 (4)
C13	0.0167 (5)	0.0259 (5)	0.0235 (5)	-0.0004 (4)	0.0006 (4)	0.0094 (4)
C14	0.0231 (6)	0.0460 (7)	0.0269 (6)	-0.0005 (5)	-0.0011 (5)	0.0182 (5)
C15	0.0191 (5)	0.0225 (5)	0.0207 (5)	0.0012 (4)	0.0016 (4)	0.0091 (4)
C16	0.0234 (5)	0.0373 (6)	0.0267 (6)	0.0055 (5)	0.0040 (4)	0.0214 (5)
C17	0.0259 (6)	0.0401 (7)	0.0298 (6)	0.0092 (5)	0.0035 (5)	0.0212 (5)
C18	0.0198 (5)	0.0288 (5)	0.0206 (5)	0.0057 (4)	0.0054 (4)	0.0133 (4)
C19	0.0215 (5)	0.0256 (5)	0.0242 (5)	0.0053 (4)	0.0071 (4)	0.0132 (4)
C20	0.0207 (5)	0.0282 (5)	0.0217 (5)	0.0046 (4)	0.0046 (4)	0.0097 (4)
C21	0.0205 (5)	0.0330 (6)	0.0228 (5)	0.0085 (4)	0.0061 (4)	0.0141 (4)
C22	0.0266 (6)	0.0283 (6)	0.0274 (6)	0.0079 (4)	0.0069 (4)	0.0164 (5)
C23	0.0246 (5)	0.0253 (5)	0.0245 (5)	0.0042 (4)	0.0038 (4)	0.0109 (4)
C24	0.0283 (6)	0.0398 (7)	0.0248 (6)	0.0093 (5)	0.0040 (5)	0.0172 (5)
C25	0.0212 (5)	0.0237 (5)	0.0242 (5)	0.0038 (4)	0.0031 (4)	0.0127 (4)
C26	0.0276 (6)	0.0261 (5)	0.0245 (5)	0.0048 (4)	0.0069 (4)	0.0097 (4)
C27	0.0312 (6)	0.0238 (5)	0.0270 (6)	0.0035 (5)	0.0012 (5)	0.0071 (4)
C28	0.0234 (5)	0.0244 (5)	0.0355 (6)	0.0035 (4)	0.0018 (5)	0.0142 (5)
C29	0.0239 (5)	0.0307 (6)	0.0324 (6)	0.0080 (5)	0.0082 (5)	0.0182 (5)
C30	0.0251 (5)	0.0282 (5)	0.0230 (5)	0.0071 (4)	0.0045 (4)	0.0121 (4)
C31	0.0258 (6)	0.0355 (7)	0.0477 (8)	-0.0015 (5)	0.0004 (6)	0.0142 (6)

Geometric parameters (Å, °)

S1—C8	1.7344 (11)	C14—H14A	0.9800	
S1-C11	1.7448 (11)	C14—H14B	0.9800	
O1—C7	1.2315 (13)	C14—H14C	0.9800	
O2—C12	1.2221 (13)	C16—H16A	0.9900	
O3—C12	1.3362 (13)	C16—H16B	0.9900	
O3—C13	1.4548 (12)	C16—C17	1.5093 (17)	
O4—C15	1.2250 (14)	C17—H17A	0.9800	
O5—C15	1.3416 (13)	C17—H17B	0.9800	
O5—C16	1.4541 (12)	C17—H17C	0.9800	
N1—C1	1.4054 (13)	C18—C19	1.3904 (16)	
N1-C18	1.4309 (13)	C18—C23	1.3970 (15)	

N1—C25	1.4254 (14)	С19—Н19	0.9500
N2—H2	0.850 (17)	C19—C20	1.3977 (15)
N2—C7	1.3644 (13)	C20—H20	0.9500
N2—C8	1.3829 (13)	C20—C21	1.3970 (16)
N3—H3A	0.883 (17)	C21—C22	1.3955 (17)
N3—H3B	0.810 (17)	C21—C24	1.5114 (15)
N3—C11	1.3529 (14)	С22—Н22	0.9500
C1—C2	1.4033 (15)	C22—C23	1.3881 (16)
C1—C6	1.4029 (15)	С23—Н23	0.9500
C2—H2A	0.9500	C24—H24A	0.9800
C2—C3	1.3799 (15)	C24—H24B	0.9800
C3—H3	0.9500	C24—H24C	0.9800
C3—C4	1,3970 (15)	C25—C26	1.3951 (16)
C4—C5	1.3978 (15)	C25—C30	1.3959 (16)
C4—C7	1.4843 (14)	C26—H26	0.9500
C5—H5	0.9500	C26—C27	1.3921 (17)
C5—C6	1.3885 (15)	C27—H27	0.9500
C6—H6	0.9500	C27—C28	1.3923 (18)
C8—C9	1.3767 (14)	C28—C29	1.3920 (18)
C9—C10	1 4527 (14)	C28—C31	1.5110(17)
C9—C12	1.4741 (14)	C29—H29	0.9500
C10—C11	1.3902 (15)	C_{29} C_{30}	1.3854 (16)
C10—C15	1.4647 (14)	C30—H30	0.9500
C13—H13A	0 9900	C31—H31A	0.9800
C13—H13B	0 9900	C31—H31B	0.9800
C13—C14	1.5025 (16)	C31—H31C	0.9800
	1.0020 (10)		0.9000
C8—S1—C11	90.70 (5)	O5—C15—C10	114.12 (9)
C12—O3—C13	115.11 (8)	O5—C16—H16A	110.2
C15—O5—C16	115.43 (8)	O5—C16—H16B	110.2
C1—N1—C18	119.80 (9)	O5—C16—C17	107.42 (9)
C1—N1—C25	122.19 (9)	H16A—C16—H16B	108.5
C25—N1—C18	117.44 (9)	C17—C16—H16A	110.2
C7—N2—H2	121.9 (11)	C17—C16—H16B	110.2
C7—N2—C8	125.56 (10)	C16—C17—H17A	109.5
C8—N2—H2	112.5 (11)	C16—C17—H17B	109.5
H3A—N3—H3B	120.2 (15)	C16—C17—H17C	109.5
C11—N3—H3A	119.3 (10)	H17A—C17—H17B	109.5
C11—N3—H3B	114.4 (11)	H17A—C17—H17C	109.5
C2-C1-N1	120.25 (10)	H17B—C17—H17C	109.5
C6—C1—N1	121.47 (10)	C19—C18—N1	120.52 (10)
C6—C1—C2	118.28 (10)	C19—C18—C23	119.47 (10)
C1—C2—H2A	119.6	C23—C18—N1	120.01 (10)
C3—C2—C1	120.74 (10)	С18—С19—Н19	120.0
С3—С2—Н2А	119.6	C18—C19—C20	120.00 (10)
С2—С3—Н3	119.4	С20—С19—Н19	120.0
C2—C3—C4	121.26 (10)	С19—С20—Н20	119.5
С4—С3—Н3	119.4	C21—C20—C19	121.05 (10)

C3—C4—C5	118.13 (10)	C21—C20—H20	119.5
C3—C4—C7	117.52 (10)	C20—C21—C24	121.84 (11)
C5—C4—C7	124.35 (10)	C22—C21—C20	118.02 (10)
С4—С5—Н5	119.5	C22—C21—C24	120.13 (10)
C6—C5—C4	121.08 (10)	C21—C22—H22	119.3
С6—С5—Н5	119.5	C23—C22—C21	121.46 (10)
С1—С6—Н6	119.8	C23—C22—H22	119.3
C5—C6—C1	120.50 (10)	C18—C23—H23	120.0
С5—С6—Н6	119.8	C_{22} C_{23} C_{18}	119.95 (11)
01-C7-N2	121.07 (10)	C22—C23—H23	120.0
01 - C7 - C4	123.05(10)	$C_{21} = C_{24} = H_{24A}$	109.5
$N_{2} - C_{7} - C_{4}$	115 86 (9)	$C_{21} = C_{24} = H_{24}R$	109.5
$N_2 = C_1 = C_1$	113.66 (9)	$C_{21} C_{24} H_{24C}$	109.5
112 - 60 - 51	121.30(8) 112 34 (8)	$H_{24} = C_{24} = H_{24} = H$	109.5
$C_{2} = C_{3} = S_{1}$	113.34(0) 125.00(10)	$H_24A = C_24 = H_24C$	109.5
$C_{2} = C_{2} = C_{10}$	123.00(10)	H24A - C24 - H24C	109.5
$C_{8} = C_{9} = C_{10}$	111.77 (9)	$H_24D - C_24 - H_24C$	109.5
	118.10 (9)	C26—C25—N1	122.05 (10)
C10—C9—C12	129.18 (9)	$C_{26} = C_{25} = C_{30}$	118.80 (10)
C9—C10—C15	129.14 (9)	C30—C25—N1	119.09 (10)
C11—C10—C9	111.57 (9)	C25—C26—H26	120.0
C11—C10—C15	118.22 (9)	C27—C26—C25	120.10 (11)
N3—C11—S1	118.63 (8)	С27—С26—Н26	120.0
N3—C11—C10	128.82 (10)	С26—С27—Н27	119.3
C10—C11—S1	112.55 (8)	C26—C27—C28	121.43 (11)
O2—C12—O3	122.47 (10)	С28—С27—Н27	119.3
O2—C12—C9	123.55 (10)	C27—C28—C31	121.27 (12)
O3—C12—C9	113.85 (9)	C29—C28—C27	117.78 (11)
O3—C13—H13A	110.2	C29—C28—C31	120.94 (12)
O3—C13—H13B	110.2	С28—С29—Н29	119.2
O3—C13—C14	107.46 (9)	C30—C29—C28	121.52 (11)
H13A—C13—H13B	108.5	С30—С29—Н29	119.2
C14—C13—H13A	110.2	С25—С30—Н30	119.8
C14—C13—H13B	110.2	C29—C30—C25	120.31 (11)
C13—C14—H14A	109.5	С29—С30—Н30	119.8
C13—C14—H14B	109.5	C28—C31—H31A	109.5
C13—C14—H14C	109.5	C28—C31—H31B	109.5
H14A— $C14$ — $H14B$	109.5	$C_{28} = C_{31} = H_{31}C_{31}$	109.5
H14A - C14 - H14C	109.5	$H_{31}A = C_{31} = H_{31}B$	109.5
H_{14B} C_{14} H_{14C}	109.5	$H_{31} = C_{31} = H_{31}C$	109.5
04 $C15$ 05	109.5	H31B C31 H31C	109.5
04 - C15 - C10	122.40(10) 122.32(10)	lisib—esi—lisie	109.5
04-013-010	125.52 (10)		
S1-C8-C9-C10	2.92 (12)	C10—C9—C12—O2	171.40 (11)
S1—C8—C9—C12	-166.93 (8)	C10—C9—C12—O3	-12.61 (16)
N1—C1—C2—C3	-179.59 (10)	C11—S1—C8—N2	-178.08 (9)
N1—C1—C6—C5	179.10 (10)	C11—S1—C8—C9	-1.65 (9)
N1—C18—C19—C20	179.76 (10)	C11—C10—C15—O4	-25.80 (17)
N1-C18-C23-C22	178.36 (10)	C11—C10—C15—O5	151.08 (10)
	× /		× /

N1-C25-C26-C27	-178.50 (10)	C12—O3—C13—C14	-171.23 (10)
N1-C25-C30-C29	176.33 (10)	C12—C9—C10—C11	165.45 (11)
N2-C8-C9-C10	179.21 (10)	C12—C9—C10—C15	-26.80 (19)
N2-C8-C9-C12	9.36 (16)	C13—O3—C12—O2	-3.21 (15)
C1—N1—C18—C19	-52.46 (15)	C13—O3—C12—C9	-179.25 (9)
C1—N1—C18—C23	128.71 (12)	C15—O5—C16—C17	170.77 (10)
C1—N1—C25—C26	-33.06 (16)	C15-C10-C11-S1	-167.48 (8)
C1—N1—C25—C30	149.85 (11)	C15-C10-C11-N3	11.52 (18)
C1—C2—C3—C4	0.17 (17)	C16—O5—C15—O4	-2.93 (15)
C2-C1-C6-C5	-1.21 (17)	C16—O5—C15—C10	-179.84 (9)
C2—C3—C4—C5	-0.57 (17)	C18—N1—C1—C2	-22.84 (16)
C2—C3—C4—C7	178.97 (10)	C18—N1—C1—C6	156.86 (11)
C3—C4—C5—C6	0.07 (17)	C18—N1—C25—C26	138.27 (11)
C3—C4—C7—O1	11.30 (17)	C18—N1—C25—C30	-38.82 (15)
C3—C4—C7—N2	-167.26 (10)	C18—C19—C20—C21	2.63 (17)
C4—C5—C6—C1	0.83 (17)	C19—C18—C23—C22	-0.49 (17)
C5-C4-C7-O1	-169.20 (11)	C19—C20—C21—C22	-1.89 (17)
C5—C4—C7—N2	12.25 (16)	C19—C20—C21—C24	176.92 (10)
C6—C1—C2—C3	0.71 (17)	C20—C21—C22—C23	-0.03 (17)
C7—N2—C8—S1	-1.59 (16)	C21—C22—C23—C18	1.21 (18)
C7—N2—C8—C9	-177.59 (11)	C23-C18-C19-C20	-1.40 (16)
C7—C4—C5—C6	-179.43 (10)	C24—C21—C22—C23	-178.86 (11)
C8—S1—C11—N3	-179.24 (9)	C25—N1—C1—C2	148.29 (11)
C8—S1—C11—C10	-0.12 (9)	C25—N1—C1—C6	-32.02 (16)
C8—N2—C7—O1	1.16 (18)	C25—N1—C18—C19	135.99 (11)
C8—N2—C7—C4	179.75 (10)	C25—N1—C18—C23	-42.84 (15)
C8—C9—C10—C11	-2.98 (14)	C25—C26—C27—C28	2.25 (18)
C8—C9—C10—C15	164.77 (11)	C26—C25—C30—C29	-0.85 (17)
C8—C9—C12—O2	-20.79 (16)	C26—C27—C28—C29	-0.79 (18)
C8—C9—C12—O3	155.21 (10)	C26—C27—C28—C31	-179.45 (11)
C9—C10—C11—S1	1.75 (12)	C27—C28—C29—C30	-1.51 (17)
C9—C10—C11—N3	-179.24 (11)	C28—C29—C30—C25	2.35 (18)
C9—C10—C15—O4	167.14 (11)	C30—C25—C26—C27	-1.40 (17)
C9—C10—C15—O5	-15.98 (16)	C31—C28—C29—C30	177.16 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2…O2	0.850 (17)	1.958 (17)	2.6501 (12)	137.8 (15)
N3—H3A···O1 ⁱ	0.883 (17)	2.154 (17)	3.0316 (13)	172.5 (14)
N3—H3 <i>B</i> …O4	0.810 (17)	2.156 (16)	2.7656 (13)	132.2 (14)

Symmetry code: (i) -x-1, -y, -z+1.