

Received 8 March 2019 Accepted 31 March 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; azo compounds; diazenyl; pyridine; hydrogen bonding; C— $H \cdots \pi$ interactions; offset $\pi - \pi$ interactions; supramolecular framework; Hirshfeld surface analysis.

CCDC reference: 959013

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of (*E*)-2-[1-hydroxy-2-(pyridin-2-yl)ethyl]-4-[2-(4-methoxyphenyl)diazen-1-yl]phenol

Md. Serajul Haque Faizi,^a* Pratik Sen,^b Gyanesh Kumar Saxena^b and Irina A. Golenya^c*

^aDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar-842001, India, ^bDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India, and ^cNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str., 64, 01601, Kyiv, Ukraine. *Correspondence e-mail: faizichemiitg@gmail.com, igolenya@ua.fm

In the title compound, $C_{20}H_{19}N_3O_3$, the configuration about the azo N=N bond is *E*, and the central benzene ring is inclined to the pyridine ring by 31.43 (8)° and to the 4-methoxyphenyl ring by 4.73 (8)°. In the crystal, molecules are linked by pairs of O-H···N hydrogen bonds, forming inversion dimers with an $R_2^2(12)$ ring motif. The dimers are linked by O-H···O and C-H···O hydrogen bonds, forming layers parallel to the *ac* plane. There are C-H··· π interactions present within the layers and between the layers, leading to the formation of a supramolecular framework. The layers are also linked by offset π - π interactions, with an interplanar distance of 3.416 (2) Å.

1. Chemical context

Azo compounds have received much attention in fundamental and applied chemistry (Nishihara, 2004; İspir, 2009). The wellknown applications of azo dyes in acid-base indicators and chemical sensors and as electron-transfer catalysts have attracted the interest of many investigators (Tuncel & Serin, 2006). The versatile applications of azo compounds in various fields include dyeing textile fibres, colouring different materials, plastics, biological medical studies, lasers, liquid crystalline displays, electro-optical devices and ink-jet printers in high-technology areas (Gregory, 1991). The conversion from the trans to the cis form in azo compounds can lead to photochromism. Photochromic compounds are of great interest for the control and measurement of radiation intensity, optical computers and display systems (Dürr & Bouas-Laurent, 1990), and for potential applications in molecular electronic devices (Martin et al., 1995). Schiff bases often exhibit various biological activities, including antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). The present work is part of an ongoing structural study of heterocyclic compounds (Faizi et al., 2016, 2017) and excited state proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2018; Kumar et al., 2018; Mukherjee et al., 2018). In the present work, we report the synthesis, crystal structure and Hirshfeld surface analysis of the title (E)-2-[1-hydroxy-2-(pyridin-2-yl)ethyl]-4-[2-(4compound, methoxyphenyl)diazen-1-yl]phenol.

2. Structural commentary

The molecular structure of the title compound is illustrated in Fig. 1. The configuration about the azo N—N bond is *E*, and the N2—N3 bond length is 1.256 (2) Å. The molecule is non-planar, with the central benzene ring (C8–C13) being inclined to the pyridine ring (N1/C1–C5) by 31.43 (8)° and to the outer 4-methoxyphenyl ring (C14–C19) by 4.73 (8)°.

3. Supramolecular features

In the crystal, molecules are linked by pairs of $O-H\cdots N$ hydrogen bonds, forming inversion dimers with an $R_2^2(12)$ ring motif (Table 1 and Fig. 2). The dimers are linked by $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, forming undulating layers lying parallel to the *ac* plane (Fig. 3 and Table 1). There are $C-H\cdots \pi$ interactions present within the layers and between

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Figure 2

A view of the inversion dimer forming an $R_2^2(12)$ ring motif; see Table 1 for details of the hydrogen-bonding (dashed lines) interactions involved.

Cg2 and Cg3 are the centroids of rings C8-C13 and C14-C19, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1\cdots N1^{i}$	0.82	2.04	2.801 (2)	154
$O2-H2\cdots O1^{ii}$	0.82	1.91	2.686(2)	158
$C4-H4\cdots O2^{iii}$	0.93	2.47	3.165 (2)	132
$C3-H3\cdots Cg2^{iv}$	0.93	2.82	3.593 (3)	141
$C19-H19\cdots Cg3^{v}$	0.93	2.98	3.841 (3)	155

Symmetry codes: (i) -x + 2, -y + 2, -z + 2; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

the layers, leading to the formation of a supramolecular framework (Table 1 and Fig. 4). The layers are also linked by

Figure 3

A view along the c axis of the crystal packing of the title compound. For clarity, H atoms not involved in hydrogen bonding (dashed lines, see Table 1) have been omitted.

A view along the *b* axis of the crystal packing of the title compound. For clarity, H atoms not involved in hydrogen bonding (dashed lines, see Table 1) have been omitted. The $C-H\cdots\pi$ interactions are represented by brown arrows and the offset $\pi-\pi$ interactions by blue double arrows.

offset π - π interactions, involving inversion-related 4-methoxyphenol rings, which strengthen the supramolecular framework [$Cg3 \cdots Cg3^{vi} = 3.584$ (2) Å, interplanar distance = 3.416 (2) Å, offset = 1.085 Å; Cg3 is the centroid of the C14-C19 ring; symmetry code: (vi) -x + 1, -y + 1, -z + 1].

4. Database survey

A search of the Cambridge Structural Database (CSD, V5.40, update of February 2019; Groom et al., 2016) for compounds containing the 4-[(4-methoxyphenyl)diazenyl]phenol skeleton gave 14 hits. There are five compounds that closely resemble the title compound, namely (E)-2-acetyl-4-(4-methoxyphenyldiazenyl)phenol (CSD refcode AQIDIO; Yazici et al., 2011), 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid (FUGYIP; Basu Baul et al., 2000), 4-[(E)-(4-methoxyphenyl)diazenyl]-2-((E)-{[4-(phenylamino)phenyl]imino} methyl)phenol (MANTON; Faizi et al., 2017), 2,6-dimethyl-4-(4-methoxyphenyldiazenyl)phenol (PAHFUA; Kocaokutgen et al., 2004) and 2-methyl-4-(4-methoxyphenylazo)phenol (VEVKEN; İskeleli et al., 2006). In all five compounds, the configuration about the N=N bond is E, and the dihedral angles between the 4-methoxyphenyl ring and the other aryl ring are ca 3.04, 5.43, 11.61, 8.34 and 16.01°, respectively. In the title compound, this dihedral angle is $4.73 (8)^{\circ}$, similar to that in AQIDIO and FUGYIP.

5. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon *et al.*, 2007) were performed with *Crystal-Explorer17* (Turner *et al.*, 2017). The reader is referred to a recent article by Tiekink and collaborators (Tan *et al.*, 2019) who have published an excellent explanation of the use of Hirshfeld surface analysis and other calculations to study molecular packing.

Two views, front and back, of the Hirshfeld surface of the title compound mapped over d_{norm} are given in Fig. 5, and the two-dimensional fingerprint plots are given in Fig. 6. The latter reveals that the principal intermolecular contacts are, as is often the case, $\text{H} \cdot \cdot \cdot \text{H}$ at 47.4% (Fig. 6b). This is followed by the $\text{H} \cdot \cdot \cdot \text{C/C} \cdot \cdot \cdot \text{H}$ contacts at 24.7% (Fig. 6c), related to the $\text{C}-\text{H} \cdot \cdot \pi$ interactions (see Table 1 for details). The classical

Figure 5

Two views, (a) front and (b) back, of the Hirshfeld surface of the title compound mapped over d_{norm} .

Figure 6

(a) The full two-dimensional fingerprint plot for the title compound, and the two-dimensional fingerprint plots delineated into (b) H···H, (c) C···H/H···C, (d) N···H/H···N, (e) O···H/H···O, (f) C···C contacts.

O-H···N hydrogen bonds (Table 1) contribute, *via* N···H/ H···N contacts (11.7%; Fig. 6*d*), while the classical O-H···O and non-classical C-H···O hydrogen bonds (Table 1) contribute, *via* O···H/H···O contacts (11.5%; Fig. 6*e*). The C···C contacts contribute only 3.3% (Fig. 6*f*), but are significant when analysing the offset π - π interactions in the crystal (see §3. *Supramolecular features*) and the formation of the supramolecular framework.

6. Synthesis and crystallization

The title compound was prepared by adding *n*-butyllithium (4.91 ml, 12.29 mmol, 2.5 *M* in cyclohexane) to a solution of 2-picoline (1 ml, 10.24 mmol) in anhydrous THF (25 ml) cooled at 195 K. The orange mixture was left to warm up to 143 K and then 5-(4-methoxyphenylazo)salicyaldehyde (MPS) (2.00 g, 8.53 mmol) dissolved in THF (10 ml) was added, giving a yellow solution. The solution was then stirred for 2 h at room temperature. The reaction was quenched by the addition of an aqueous saturated solution of ammonium chloride (50 ml), and the product was extracted with diethyl ether. It was then dried over MgSO₄ and purified by column chromatography (cyclohexane/ethyl acetate 9/1) to give a yellow solid (1.10 g, 3.36 mmol, yield: 60%). Yellow needle-like crystals of the title compound were obtained by slow evaporation of a solution in methanol.

Spectroscopic and analytical data: Yellow solid: $R_f = 0.43$ (cyclohexane/ethyl acetate = 9/1); IR ν_{max} (KBr, cm⁻¹): 3170, 2837, 1596, 1500, 1480, 1440, 1428, 1339, 1281, 1257, 1206, 1178, 1140, 1103, 1052, 1032, 1005, 905, 869, 841, 824, 773, 730, 652, 570, 531, 493; ¹H NMR (500 MHz, CDCl₃) δ 3.14 (*dd*, 1H, J = 2.1, 15.8Hz), 3.44–3.49 (*m*, 1H), 3.88 (*s*, 3H), 5.46–5.49 (*m*, 1H), 6.98–7.01 (*m*, 3H), 7.21 (*d*, 1H, J = 7.6 Hz), 7.62–7.63 (*m*, 1H), 7.69–7.73 (*m*, 1H), 7.78 (*dd*, 1H, J = 2.5, 8.6 Hz), 7.84–7.86 (*m*, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 42.7, 55.6,75.1, 114.2, 118.1, 121.4, 122.4, 124.1, 124.2, 124.3, 126.6, 137.7, 146.2, 147.1, 148.0, 159.2, 159.6, 161.5; HRMS (ESI) for C₂₀H₂₀N₃O₃ ($M + H^+$): calculated 350.1504, found: 350.1507.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å and C-H = 0.93-0.98 Å, with $U_{iso}(H) = 1.5U_{eq}(O-hydroxyl and C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms.

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, for financial support, and the Department of Chemistry, Langat Singh College, B. R. A. Bihar University, for the X-ray data collection.

Funding information

Funding for this research was provided by: University Grants Commission.

References

- Basu Baul, T. S., Dhar, S. & Tiekink, E. R. T. (2000). Acta Cryst. C56, 1280–1281.
- Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dürr, H. & Bouas-Laurent, H. (1990). In *Photochromism: Molecules* and Systems. Amsterdam: Elsevier.
- Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.
- Faizi, M. S. H., Dege, N. & Goleva, K. (2017). IUCrData, 2, x170548.

Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.

- Gregory, P. (1991). Colorants for High Technology, Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- İskeleli, N. O., Karabıyık, H., Albayrak, C., Petek, H. & Ağar, E. (2006). Struct. Chem. 17, 393–399.
- İspir, E. (2009). Dyes Pigments, 82, 13-19.
- Kocaokutgen, H., Gür, M., Soylu, M. S. & Lörnnecke, P. (2004). Acta Cryst. E60, 01756–01758.
- Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.
- Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). *Biophys. J.* **15**, 955–962.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Martin, P. J., Petty, M. C., Bryce, M. R. & Bloor, D. (1995). In *An Introduction to Molecular Electronics*, ch. 6. New York: Oxford University Press.

Table 2
Experimental details

Crystal data	
Chemical formula	$C_{20}H_{19}N_3O_3$
M _r	349.38
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	18.451 (5), 8.169 (5), 11.591 (5)
β (°)	100.059 (5)
$V(Å^3)$	1720.2 (14)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.30 \times 0.25 \times 0.20$
Data collection	
Diffractometer	Bruker APEXII CCD area detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2003)
т т	0.281_0.307
¹ min, ¹ max	12516 3381 2160
observed $[I > 2\sigma(I)]$ reflections	12510, 5581, 2109
R_{int}	0.056
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.100, 1.02
No. of reflections	3381
No. of parameters	238
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.23, -0.19

Computer programs: APEX2 and SAINT (Bruker, 2003), SHELXS2018 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL2018 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). *Chem. Commun.* pp. 3814–3816.
- Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). *ChemistrySelect*, **3**, 3787–3796.
- Nishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407-428.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.
- Tunçel, M. & Serin, S. (2006). Transition Met. Chem. 31, 805-812.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17. University of Western Australia.* http://hirshfeldsurface.net
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yazici, S., Albayrak, C., Gümrükçüoğlu, I. E., Şenel, I. & Büyükgüngör, O. (2011). Turk. J. Chem. 35, 341–347.

supporting information

Acta Cryst. (2019). E75, 600-603 [https://doi.org/10.1107/S2056989019004377]

Crystal structure and Hirshfeld surface analysis of (*E*)-2-[1-hydroxy-2-(pyridin-2-yl)ethyl]-4-[2-(4-methoxyphenyl)diazen-1-yl]phenol

Md. Serajul Haque Faizi, Pratik Sen, Gyanesh Kumar Saxena and Irina A. Golenya

Computing details

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXS2018* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL2018* (Sheldrick, 2015), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

(E)-2-[1-Hydroxy-2-(pyridin-2-yl)ethyl]-4-[2-(4-methoxyphenyl)diazen-1-yl]phenol

Crystal data C₂₀H₁₉N₃O₃ F(000) = 736 $M_r = 349.38$ $D_{\rm x} = 1.349 {\rm Mg m^{-3}}$ Monoclinic, $P2_1/c$ Mo *K* α radiation, $\lambda = 0.71073$ Å a = 18.451 (5) ÅCell parameters from 1490 reflections b = 8.169(5) Å $\theta = 3.7 - 26.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ *c* = 11.591 (5) Å $\beta = 100.059 (5)^{\circ}$ T = 296 K $V = 1720.2 (14) Å^3$ Needle, yellow $0.30 \times 0.25 \times 0.20 \text{ mm}$ Z = 4Data collection Bruker APEXII CCD area detector 12516 measured reflections diffractometer 3381 independent reflections Radiation source: sealed tube 2169 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.056$ phi and ω scans $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$ Absorption correction: multi-scan $h = -22 \rightarrow 13$ (SADABS; Bruker, 2003) $k = -10 \rightarrow 10$ $T_{\rm min} = 0.281, T_{\rm max} = 0.397$ $l = -14 \rightarrow 14$ Refinement Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.045$ Hydrogen site location: inferred from $wR(F^2) = 0.100$ neighbouring sites *S* = 1.02 H-atom parameters constrained

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0428P)^2 + 0.2309P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.23 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$

Primary atom site location: structure-invariant

3381 reflections

238 parameters

direct methods

0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.92494 (7)	0.95556 (14)	0.84820 (10)	0.0173 (3)	
H1	0.911689	1.038088	0.879019	0.026*	
02	0.92659 (7)	0.63827 (16)	1.12657 (10)	0.0192 (3)	
H2	0.917704	0.591870	1.185268	0.029*	
O3	0.36888 (7)	0.68602 (17)	0.45972 (11)	0.0273 (4)	
N1	1.11161 (8)	0.82930 (19)	0.98278 (13)	0.0185 (4)	
N2	0.68013 (9)	0.68483 (19)	0.77772 (13)	0.0211 (4)	
N3	0.62436 (9)	0.6015 (2)	0.78765 (13)	0.0215 (4)	
C5	1.06621 (10)	0.7859 (2)	0.88320 (16)	0.0165 (4)	
C4	1.08607 (10)	0.8094 (2)	0.77434 (16)	0.0180 (4)	
H4	1.053929	0.778909	0.706776	0.022*	
C1	1.17713 (11)	0.8933 (2)	0.97259 (17)	0.0208 (5)	
H1A	1.209217	0.920515	1.041003	0.025*	
C2	1.20001 (11)	0.9212 (2)	0.86736 (17)	0.0220 (5)	
H2A	1.245666	0.967932	0.864834	0.026*	
C3	1.15317 (10)	0.8778 (2)	0.76592 (16)	0.0205 (5)	
Н3	1.166638	0.894338	0.693146	0.025*	
C6	0.99387 (10)	0.7089 (2)	0.89526 (16)	0.0184 (4)	
H6A	1.003179	0.620943	0.952107	0.022*	
H6B	0.972356	0.660762	0.820624	0.022*	
C7	0.93790 (10)	0.8263 (2)	0.93306 (15)	0.0155 (4)	
H7	0.958956	0.873197	1.009369	0.019*	
C8	0.86746 (10)	0.7372 (2)	0.94404 (15)	0.0150 (4)	
C9	0.80465 (10)	0.7454 (2)	0.85966 (16)	0.0171 (4)	
H9	0.805051	0.809928	0.793644	0.021*	
C10	0.74100 (10)	0.6607 (2)	0.87024 (15)	0.0167 (4)	
C11	0.74037 (10)	0.5601 (2)	0.96750 (16)	0.0200 (5)	
H11	0.698601	0.499720	0.974301	0.024*	
C12	0.80215 (10)	0.5512 (2)	1.05329 (15)	0.0176 (4)	
H12	0.801859	0.485124	1.118536	0.021*	
C13	0.86500 (10)	0.6403 (2)	1.04309 (15)	0.0155 (4)	
C14	0.56281 (10)	0.6283 (2)	0.69611 (16)	0.0199 (5)	
C15	0.56281 (10)	0.7290 (2)	0.59953 (16)	0.0208 (5)	
H15	0.605862	0.782243	0.589646	0.025*	
C16	0.49943 (11)	0.7506 (2)	0.51820 (17)	0.0216 (5)	
H16	0.499724	0.818338	0.453772	0.026*	
C17	0.43502 (10)	0.6707 (2)	0.53292 (16)	0.0213 (5)	
C18	0.43565 (11)	0.5659 (2)	0.62726 (16)	0.0235 (5)	
H18	0.393131	0.509452	0.635834	0.028*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

supporting information

0.49901 (10)	0.5451 (2)	0.70808 (16)	0.0228 (5)
0.499085	0.474861	0.771220	0.027*
0.36725 (11)	0.7824 (3)	0.35657 (17)	0.0298 (5)
0.318289	0.782488	0.311822	0.045*
0.400634	0.736834	0.310239	0.045*
0.381746	0.892552	0.378279	0.045*
	0.49901 (10) 0.499085 0.36725 (11) 0.318289 0.400634 0.381746	0.49901 (10)0.5451 (2)0.4990850.4748610.36725 (11)0.7824 (3)0.3182890.7824880.4006340.7368340.3817460.892552	0.49901 (10)0.5451 (2)0.70808 (16)0.4990850.4748610.7712200.36725 (11)0.7824 (3)0.35657 (17)0.3182890.7824880.3118220.4006340.7368340.3102390.3817460.8925520.378279

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0236 (8)	0.0129 (7)	0.0162 (7)	0.0019 (6)	0.0053 (6)	0.0002 (6)
O2	0.0192 (7)	0.0238 (8)	0.0139 (7)	-0.0022 (6)	0.0009 (6)	0.0042 (6)
03	0.0176 (8)	0.0376 (9)	0.0252 (8)	-0.0018 (7)	-0.0007 (6)	0.0062 (7)
N1	0.0175 (9)	0.0192 (9)	0.0187 (9)	0.0023 (7)	0.0028 (7)	-0.0024 (7)
N2	0.0180 (9)	0.0235 (9)	0.0221 (9)	-0.0016 (8)	0.0044 (7)	-0.0040 (8)
N3	0.0183 (9)	0.0222 (9)	0.0239 (9)	-0.0016 (8)	0.0029 (8)	-0.0038 (7)
C5	0.0169 (11)	0.0125 (9)	0.0197 (10)	0.0038 (8)	0.0019 (9)	-0.0002 (8)
C4	0.0185 (11)	0.0169 (10)	0.0180 (10)	0.0020 (9)	0.0011 (8)	-0.0029 (8)
C1	0.0178 (11)	0.0213 (11)	0.0214 (11)	0.0014 (9)	-0.0020 (9)	-0.0053 (9)
C2	0.0155 (11)	0.0189 (10)	0.0326 (12)	-0.0017 (9)	0.0068 (10)	-0.0011 (9)
C3	0.0215 (11)	0.0195 (10)	0.0222 (11)	0.0026 (9)	0.0082 (9)	0.0030 (9)
C6	0.0207 (11)	0.0163 (10)	0.0185 (10)	0.0018 (9)	0.0043 (9)	0.0020 (8)
C7	0.0168 (10)	0.0168 (10)	0.0125 (9)	0.0002 (8)	0.0014 (8)	0.0024 (8)
C8	0.0167 (11)	0.0124 (10)	0.0158 (10)	0.0005 (8)	0.0028 (9)	-0.0029 (8)
C9	0.0189 (11)	0.0182 (10)	0.0150 (10)	0.0018 (9)	0.0052 (8)	-0.0007 (8)
C10	0.0160 (11)	0.0180 (10)	0.0153 (10)	0.0032 (9)	0.0007 (8)	-0.0034 (8)
C11	0.0160 (11)	0.0209 (11)	0.0241 (11)	-0.0042 (9)	0.0063 (9)	-0.0019 (9)
C12	0.0217 (11)	0.0175 (10)	0.0150 (10)	-0.0001 (9)	0.0067 (9)	0.0010 (8)
C13	0.0160 (11)	0.0150 (10)	0.0156 (10)	0.0036 (9)	0.0029 (9)	-0.0027 (8)
C14	0.0187 (11)	0.0205 (10)	0.0201 (11)	0.0035 (9)	0.0019 (9)	-0.0054 (9)
C15	0.0166 (11)	0.0206 (10)	0.0263 (11)	-0.0020 (9)	0.0066 (9)	-0.0045 (9)
C16	0.0212 (11)	0.0245 (12)	0.0191 (11)	0.0009 (9)	0.0032 (9)	-0.0011 (9)
C17	0.0168 (11)	0.0268 (12)	0.0192 (11)	0.0002 (9)	0.0001 (9)	-0.0068 (9)
C18	0.0185 (11)	0.0281 (11)	0.0245 (11)	-0.0049 (9)	0.0052 (9)	-0.0018 (9)
C19	0.0229 (12)	0.0246 (11)	0.0215 (11)	-0.0004 (10)	0.0059 (9)	0.0015 (9)
C20	0.0236 (12)	0.0348 (13)	0.0286 (12)	-0.0001 (10)	-0.0021 (10)	0.0049 (10)

Geometric parameters (Å, °)

01—C7	1.435 (2)	С7—Н7	0.9800
01—H1	0.8200	C8—C9	1.381 (2)
O2—C13	1.358 (2)	C8—C13	1.401 (2)
O2—H2	0.8200	C9—C10	1.387 (3)
O3—C17	1.365 (2)	С9—Н9	0.9300
O3—C20	1.427 (2)	C10—C11	1.396 (3)
N1—C1	1.341 (2)	C11—C12	1.378 (2)
N1—C5	1.350 (2)	C11—H11	0.9300
N2—N3	1.256 (2)	C12—C13	1.392 (3)

N2	1.425 (2)	C12—H12	0.9300
N3—C14	1.429 (2)	C14—C19	1.387 (3)
C5—C4	1.387 (3)	C14—C15	1.389 (3)
С5—С6	1.504 (3)	C15—C16	1.379 (3)
C4—C3	1.377 (3)	C15—H15	0.9300
C4—H4	0.9300	C16-C17	1 392 (3)
C1-C2	1 378 (3)	C16—H16	0.9300
C1H1A	0.9300	C17-C18	1.388(3)
$C_2 C_3$	1 378 (3)	C18 $C19$	1.300(3) 1.375(3)
$C_2 = H_2 \Lambda$	0.0300	C18 H18	0.0300
C_2 H_2	0.9300		0.9300
	0.9300	C19—H19 C20_U204	0.9300
	1.528 (5)	C20—H20A	0.9600
С6—Н6А	0.9700	C20—H20B	0.9600
С6—Н6В	0.9700	C20—H20C	0.9600
C7—C8	1.514 (2)		
C7—O1—H1	109 5	С10—С9—Н9	119.0
$C_{13} - O_{2} - H_{2}$	109.5	C9-C10-C11	119.0
$C_{17} = O_{3} = C_{20}$	117 19 (15)	C9-C10-N2	115.44(17) 115.63(17)
C1 $N1$ $C5$	117.17(15) 117.47(16)	C_{11} C_{10} N_2	124.03(17)
$N_{1} = N_{1} = C_{1}$	117.47 (10)	$C_{11} = C_{10} = N_2$	124.93(17) 110.43(17)
$N_2 = N_2 = C_{10}$	114.01(10) 112.00(16)	C_{12} C_{11} C_{10} C_{11} C	119.45 (17)
$N_2 - N_3 - C_{14}$	113.99 (10)		120.3
NI-C5-C4	121.23(17)		120.5
NI-C5-C6	117.29 (16)	C11 = C12 = C13	120.52 (17)
C4—C5—C6	121.47 (17)	C11—C12—H12	119.7
C3—C4—C5	120.27 (18)	C13—C12—H12	119.7
С3—С4—Н4	119.9	O2—C13—C12	122.62 (16)
C5—C4—H4	119.9	O2—C13—C8	116.61 (16)
N1—C1—C2	124.26 (18)	C12—C13—C8	120.77 (16)
N1—C1—H1A	117.9	C19—C14—C15	119.35 (17)
C2—C1—H1A	117.9	C19—C14—N3	115.39 (17)
C1—C2—C3	117.98 (18)	C15—C14—N3	125.25 (18)
C1—C2—H2A	121.0	C16—C15—C14	120.48 (18)
C3—C2—H2A	121.0	C16—C15—H15	119.8
C4—C3—C2	118.78 (18)	C14—C15—H15	119.8
С4—С3—Н3	120.6	C15—C16—C17	119.75 (18)
С2—С3—Н3	120.6	C15—C16—H16	120.1
C5—C6—C7	114.81 (16)	C17—C16—H16	120.1
С5—С6—Н6А	108.6	O3—C17—C18	115.46 (18)
С7—С6—Н6А	108.6	O3-C17-C16	124.79 (18)
C5-C6-H6B	108.6	C18-C17-C16	119 75 (18)
C7—C6—H6B	108.6	C19-C18-C17	120 14 (19)
$H_{6A} - C_{6} - H_{6B}$	107.5	C19-C18-H18	110.0
$\begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	111 64 (15)	C17 $C18$ $H18$	110.0
01 - 07 - 00	107 77 (13)	$C_{18} = C_{10} = C_{14}$	119.9
$C_{1} = C_{1} = C_{0}$	107.77(14) 110.82(15)	$C_{10} - C_{17} - C_{14}$	120.47 (10)
01 07 H7	10.05 (15)	C_{10} C_{12} C_{111} C_{14} C_{10}	117.0
C° C^{7} U^{7}	100.0	C_{14} C_{19} T_{19}	117.0
U0-U/	108.8	U3-U20-H20A	109.5

C6—C7—H7	108.8	O3—C20—H20B	109.5
C9—C8—C13	117.68 (17)	H20A—C20—H20B	109.5
C9—C8—C7	122.90 (16)	O3—C20—H20C	109.5
C13—C8—C7	119.42 (16)	H20A—C20—H20C	109.5
C8—C9—C10	122.10 (17)	H20B—C20—H20C	109.5
С8—С9—Н9	118.9		
C10—N2—N3—C14	178.77 (15)	C9—C10—C11—C12	2.2 (3)
C1—N1—C5—C4	-1.1 (3)	N2—C10—C11—C12	-177.81 (17)
C1—N1—C5—C6	177.95 (16)	C10—C11—C12—C13	-0.5 (3)
N1C5C4C3 C6C5C4C3 C5N1C1C2	0.1 (3) -178.93 (17) 1.8 (3)	C11—C12—C13—O2 C11—C12—C13—C8 C9—C8—C13—O2	-1.8(3) -177.94(15)
N1—C1—C2—C3 C5—C4—C3—C2	-1.3 (3) 0.3 (3) 0.2 (2)	C7—C8—C13—O2 C9—C8—C13—C12	2.6 (2) 2.3 (3)
C1C2C3C4 N1C5C6C7 C4C5C6C7	0.2 (3) 71.7 (2) -109.2 (2)	N2—N3—C14—C19 N2—N3—C14—C15	-177.13(16) -176.48(16) 3.4(3)
C5—C6—C7—O1	58.2 (2)	C19—C14—C15—C16	2.2 (3)
C5—C6—C7—C8	-179.36 (15)	N3—C14—C15—C16	-177.72 (18)
C6-C7-C8-C9	18.4 (2)	C14—C15—C16—C17	-0.1 (3)
O1-C7-C8-C9	-101.8 (2)	C20—O3—C17—C18	-175.10 (17)
O1-C7-C8-C13	-162.15 (15)	C20—O3—C17—C16	4.5 (3)
C6-C7-C8-C13	77.7 (2)	C15—C16—C17—O3	178.39 (17)
C13-C8-C9-C10	-0.6 (3)	C15—C16—C17—C18	-2.1 (3)
C7-C8-C9-C10	178.84 (17)	O3-C17-C18-C19	-178.22 (17)
C8-C9-C10-C11	-1.7 (3)	C16-C17-C18-C19	2.2 (3)
C8-C9-C10-N2	178.37 (16)	C17-C18-C19-C14	-0.1 (3)
N3-N2-C10-C9	177.37 (16)	C15-C14-C19-C18	-2.0 (3)
N3—N2—C10—C11	-2.6 (3)	N3-C14-C19-C18	1//.85(1/)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of rings C8–C13 and C14–C19, respectively.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1…N1 ⁱ	0.82	2.04	2.801 (2)	154
O2—H2…O1 ⁱⁱ	0.82	1.91	2.686 (2)	158
C4—H4···O2 ⁱⁱⁱ	0.93	2.47	3.165 (2)	132
C3—H3··· $Cg2^{iv}$	0.93	2.82	3.593 (3)	141
C19—H19··· <i>Cg</i> 3 ^v	0.93	2.98	3.841 (3)	155

Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) x, -y+3/2, z+1/2; (iii) x, -y+3/2, z-1/2; (iv) -x+2, y+1/2, -z+3/2; (v) -x+1, y-1/2, -z+3/2.