CRYSTALLOGRAPHIC communications

ISSN 2056-9890

Received 13 March 2019
Accepted 27 March 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; $\mathrm{Mn}(\mathrm{CO})_{5}$ derivatives; Mn - S bond; intermolecular contacts.

CCDC reference: 1906042

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of pentacarbonyl(2,2-difluoro-propanethioato-kS)manganese(I)

Jean-Claude Daran, ${ }^{\text {a* }}$ Roberto Morales-Cerrada, ${ }^{\text {a,b }}$ Christophe Fliedel, ${ }^{\text {a }}$ Florence Gayet, ${ }^{\text {a }}$ Vincent Ladmiral, ${ }^{\text {b }}$ Bruno Ameduri ${ }^{\text {b }}$ and Rinaldo Poli ${ }^{\text {a }}$

${ }^{\text {a }}$ LCC-CNRS, Université de Toulouse, CNRS, INPT, Toulouse, France, and ${ }^{\text {b }}$ ICGM CNRS, Univ Montpellier, ENSCM, Montpellier, France. *Correspondence e-mail: daran@lcc-toulouse.fr

The title compound, $\left[\mathrm{Mn}\left\{\mathrm{SC}(\mathrm{O}) \mathrm{CF}_{2} \mathrm{CH}_{3}\right\}(\mathrm{CO})_{5}\right]$, has been isolated as a byproduct during the reaction of $\mathrm{K}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$ with $\mathrm{CH}_{3} \mathrm{CF}_{2} \mathrm{COCl}$. It is built up from a difluoromethylpropanethioate bonded to an $\mathrm{Mn}(\mathrm{CO})_{5}$ moiety through the S atom. The Mn atom has an almost perfect octahedral coordination sphere. It is one of the rare examples of compounds containing the (CO) $)_{5} \mathrm{MnS}-\mathrm{C}$ fragment. In the crystal, the methyl group occupies a pocket surrounded by the O atoms of three carbonyl groups of the $\mathrm{Mn}(\mathrm{CO})_{5}$ moiety; however, the $\mathrm{H} \cdots \mathrm{O}$ distances are rather long. These interactions lead to the formation of layers lying parallel to (101), which enclose $R_{4}^{4}(15)$ and $R_{4}^{4}(16)$ ring motifs. The CF_{2} group is disordered over two sets of sites with occupancies of 0.849 (3) and 0.151 (3).

1. Chemical context

Alkylpentacarbonylmanganese(I) complexes containing fluorinated alkyl groups, $\left[\mathrm{Mn} R_{\mathrm{F}}(\mathrm{CO})_{5}\right]$, have been known since 1960 (Kaesz et al., 1960; Beck et al., 1961) but X-ray structures have been scarcely investigated until recently (Morales-Cerrada, Fliedel, Daran et al., 2019). Our interest in these compounds is related to a study of the homolytic $\mathrm{Mn}-\mathrm{C}$ bond strength and how this is affected by the F substitution at the α and β positions of the alkyl chain (Morales-Cerrada, Fliedel, Gayet et al., 2019). The compounds where R_{F} stands for $\mathrm{CH}_{2} \mathrm{CF}_{3}$ and $\mathrm{CF}_{2} \mathrm{CH}_{3}$ may be considered as models for the role of $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$ as a radical-trapping species in the polymerization of vinylidene fluoride, where the $\mathrm{Mn}-\mathrm{C}$ bonds may be formed and cleaved reversibly. While the synthesis of the $\mathrm{CH}_{2} \mathrm{CF}_{3}$ derivative could be accomplished as planned and the product could be obtained in a pure form and crystallized (Morales-Cerrada, Fliedel, Daran et al., 2019), the synthesis of the $\mathrm{CF}_{2} \mathrm{CH}_{3}$ derivative led to the unexpected compound, $\left[\mathrm{Mn}\left\{\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3} \mathrm{CF}_{2}\right\}(\mathrm{CO})_{5}\right]$ (1), reported here.

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Mn1-C11	$1.8376(17)$	Mn1-C14	$1.8631(17)$
Mn1-C12	$1.8807(17)$	Mn1-C15	$1.8849(17)$
Mn1-C13	$1.8720(17)$		
C11-Mn1-C12	$91.08(7)$	C13-Mn1-C15	$174.92(7)$
C11-Mn1-C13	$90.69(7)$	C13-Mn1-S1	$88.91(5)$
C11-Mn1-C14	$90.47(7)$	C14-Mn1-C12	$177.58(7)$
C11-Mn1-C15	$94.32(7)$	C14-Mn1-C13	$90.77(7)$
C11-Mn1-S1	$176.45(5)$	C14-Mn1-C15	$90.07(7)$
C12-Mn1-C15	$87.96(7)$	C14-Mn1-S1	$86.01(5)$
C12-Mn1-S1	$92.46(5)$	C15-Mn1-S1	$86.14(5)$
C13-Mn1-C12	$91.07(7)$		

2. Structural commentary

The title compound (1), is built up from a difluoromethylpropanethioate bonded to an $\mathrm{Mn}(\mathrm{CO})_{5}$ moiety through the S atom (Fig. 1). Selected bond distances and bond angles involving atom Mn 1 are given in Table 1, and it can be seen that this atom has a nearly perfect octahedral coordination sphere. As expected, the $\mathrm{Mn} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$ fragment is almost planar, as shown by the value of the torsion angle of $-177.98(11)^{\circ}$. This plane roughly bisects the dihedral angle formed by the $\mathrm{C} 11 / \mathrm{Mn} 1 / \mathrm{C} 12 / \mathrm{S} 1$ and $\mathrm{C} 11 / \mathrm{Mn} 1 / \mathrm{C} 13 / \mathrm{S} 1$ planes with values of $50.06(7)$ and $39.9(1)^{\circ}$, respectively, placing the O 2 atom relatively close to the O atoms of the two carbonyl groups $\mathrm{C} 12=\mathrm{O} 12$ and $\mathrm{C} 13=\mathrm{O} 13$ with distances $\mathrm{O} 2 \cdots \mathrm{O} 12=$ 3.058 (2) \AA and $\mathrm{O} 2 \cdots \mathrm{O} 13=3.257$ (2) \AA. The smallest bond angles, $86.01(5)^{\circ}$ for $\mathrm{C} 14-\mathrm{Mn} 1-\mathrm{S} 1$ and $86.14(5)^{\circ}$ for $\mathrm{C} 15-$ $\mathrm{Mn} 1-\mathrm{S} 1$, are certainly related to steric hindrance resulting from these relatively short intramolecular $\mathrm{O} \cdots \mathrm{O}$ contacts. These short interactions might force the $\mathrm{Mn} 1-\mathrm{S} 1$ bond to bend slightly towards the equatorial plane [C12/C13/C14/C15]. The shortest $\mathrm{Mn}-\mathrm{C}(\mathrm{O})$ distance is observed for the carbonyl group trans to the S atom; $\mathrm{Mn} 1-\mathrm{C} 11=1.8376$ (17) \AA

Figure 1
A view of the molecular structure of compound (1), with the atom labelling. For clarity, only the major disordered component of the $-\mathrm{CF}_{2}$ group is shown. Displacement ellipsoids are drawn at the 50% probability level.

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 A-\mathrm{H} 3 A 1 \cdots \mathrm{O} 14^{\text {i }}$	0.98	2.81	3.732 (3)	158
$\mathrm{C} 3 A-\mathrm{H} 3 A 2 \cdots \mathrm{O} 12^{\text {ii }}$	0.98	2.79	3.753 (3)	166
$\mathrm{C} 3 A-\mathrm{H} 3 \mathrm{~A} 3 \cdots \mathrm{O} 11^{\text {iii }}$	0.98	2.79	3.564 (3)	136
$\mathrm{C} 3 B-\mathrm{H} 3 \mathrm{~B} 2 \cdots \mathrm{O} 12^{\mathrm{ii}}$	0.98	2.81	3.777 (19)	168
$\mathrm{C} 3 B-\mathrm{H} 3 \mathrm{~B} 3 \cdots \mathrm{O} 11^{\text {iii }}$	0.98	2.37	3.165 (15)	138
$\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 3 \cdots \mathrm{O} 11^{\text {iii }}$	0.98	2.37	3.165 (15)	138

Symmetry codes: (i) $-x+1,-y+1,-z+1 ;$ (ii) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$;
(iii)
$x+1,-y+\frac{1}{2}, z-\frac{1}{2}$.

3. Supramolecular features

In the crystal, the methyl group occupies a pocket surrounded by O atoms of three carbonyl groups, $\mathrm{C} 11=\mathrm{O} 11, \mathrm{C} 12=\mathrm{O} 12$ and $\mathrm{C} 14=\mathrm{O} 14$, forming a two-dimensional network that develops parallel to (101); see Table 2 and Fig. 2. These rather weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions result in the formation of two graph-set motifs, $R_{4}^{4}(15)$ and $R_{4}^{4}(16)$, as shown in Fig. 2.

4. Database survey

A search in the Cambridge Structural Database (CSD, V5.40, update February 2019; Groom et al., 2016) using a $(\mathrm{CO})_{5} \mathrm{MnS}-\mathrm{C}$ fragment revealed only three hits. These include, [μ_{2}-1,2-bis(p-fluorophenyl)-ethylene-1,2-dithiolatoS, S^{\prime}]decacarbonyldi-manganese (CSD refcode CECCES; Lindner et al., 1983), pentacarbonyl-[(N-pentafluorothio)-fluorothioformimido-S]manganese (JEBNOT; Damerius et al., 1989) and μ-1,2-dithiooxalatobis(pentacarbonyl)manganese (TOXCMN; Weber \& Mattes, 1979). The Mn-S, S-C, MnC bond distances and $\mathrm{Mn}-\mathrm{S}-\mathrm{C}$ bond angles are compared to those for compound (1) in Table 3. As in compound (1), the $\mathrm{Mn}-\mathrm{C}$ bond trans to the S atom is significantly shorter than the four other $\mathrm{Mn}-\mathrm{C}$ bonds. The longest $\mathrm{Mn}-\mathrm{S}$ bond, $2.405 \AA$ in CECCES, may be related to the presence of the bulky fluorophenyl group attached to the $C(S)$ atom. For compound (1) and TOXCMN, both having an oxo group

Figure 2
A view of the crystal packing of compound (1). The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2) involving the major component of the disordered $-\mathrm{CF}_{2}$ group, are shown as dashed lines.

Table 3
Comparison of selected bond lengths (A) and bond angle $\left({ }^{\circ}\right)$ in the title compound (1) and related compounds having an $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{SC}$ fragment.

Parameter	(1)	CECCES a	JEBNOT b	TOXCMN c
$\mathrm{Mn}-\mathrm{S}$	$2.3768(5)$	2.405	2.384	2.379
$\mathrm{C}-\mathrm{S}$	$1.725(2)$	1.741	1.723	1.737
$\mathrm{Mn}-\mathrm{S}-\mathrm{C}$	$106.26(6)$	108.84	108.12	105.64
$\mathrm{Mn}-\mathrm{C} 11$	$1.838(2)$	1.803	1.835	1.840
$\mathrm{Mn}-\mathrm{C} 12$	$1.881(2)$	1.867	1.871	1.883
$\mathrm{Mn}-\mathrm{C} 13$	$1.872(2)$	1.861	1.891	1.857
$\mathrm{Mn}-\mathrm{C} 14$	$1.863(3)$	1.864	1.871	1.880
$\mathrm{Mn}-\mathrm{C} 15$	$1.885(2)$	1.878	1.891	1.857

Notes: (a) Lindner et al. (1983); (b) Damerius et al. (1989); (b) Weber \& Mattes (1979).
attached to the $\mathrm{C}(\mathrm{S})$ atom, the $\mathrm{Mn}-\mathrm{S}-\mathrm{C}$ angle is nearly identical, 106.26 (6) and ca 105.64°, respectively (Table 3). In contrast, this angle is slightly larger for CECCES and for JEBNOT, ca 108.8 and 108.1°, respectively.

5. Synthesis and crystallization

The synthesis of the target compound, $\left[\mathrm{Mn}\left(\mathrm{CF}_{2} \mathrm{CH}_{3}\right)(\mathrm{CO})_{5}\right]$, requires transit through the corresponding acyl derivative, $\left[\mathrm{Mn}\left(\mathrm{COCF}_{2} \mathrm{CH}_{3}\right)(\mathrm{CO})_{5}\right]$, because direct alkylation of $\mathrm{CH}_{3} \mathrm{CF}_{2}-X(X=\mathrm{Cl}, \mathrm{Br})$ reagents by the powerful $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$ nucleophile suffers from the inverted polarity of the $\mathrm{C}-X$ bond, leading to $\left[\mathrm{Mn} X(\mathrm{CO})_{5}\right]$ instead (Beck et al., 1961). The corresponding acylation using $\mathrm{CH}_{3} \mathrm{CF}_{2} \mathrm{COCl}$ as acylating agent was successful (Morales-Cerrada, Fliedel, Daran et al., 2019). However, the pure product could only be obtained when the 2,2-difluoropropanoyl chloride was synthesized by the action of oxalyl chloride on 2,2-difluoropropionic acid. In a first synthetic study, 2,2-difluoropropionic acid was chlorinated by the more common thionyl chloride reagent, SOCl_{2}. When the resulting acyl chloride was used to acylate $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$, the title compound crystallized as colourless single crystals. The sulfur atom must have been provided by the thionyl chloride remaining as a contaminant in the acyl chloride reagent.

2,2-Difluoropropanoyl chloride was freshly prepared as follows. To a 50 ml round flask equipped with a reflux condenser, was introduced 5.28 g of 2,2-difluoropropionic acid (47.97 mmol) and 10.05 g of thionyl chloride $(84.48 \mathrm{mmol}$; previously purified by reflux in the presence of sulfur powder and then distilled) was added dropwise. The mixture was then heated up to 363 K over 2 h (reflux). The product was purified by distillation (b.p. 308-313 K), giving 4.85 g of a colourless liquid. The amount of thionyl chloride contaminant in the distilled product could not be estimated by NMR spectroscopy.

Synthesis of the title compound (1): To a Schlenk tube were introduced 390 mg (9.97 mmol) of metallic potassium and 358 mg (15.57 mmol) of metallic sodium under argon. They were crushed together to generate a liquid NaK alloy. A solution of dimanganese decacarbonyl $(2.00 \mathrm{~g}, 5.13 \mathrm{mmol})$ in 30 ml of dry THF was added and the resulting mixture was stirred for 3 h at room temperature, leading to the formation

Table 4
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.023,0.062,1.04$
No. of reflections	2554
No. of parameters	175
No. of restraints	6
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$0.55,-0.28$

Computer programs: APEX2 and SAINT (Bruker, 2014), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2015), ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).
of $\mathrm{K}^{+}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$. The mixture was filtered through Celite to yield a greenish brown solution, rinsing the Celite with 10 ml of dry THF. Then, 2,2-trifluoropropanoyl chloride (1.31 g , 10.19 mmol), made as described above, was added dropwise at room temperature. The resulting solution was further stirred at room temperature for 3 h , followed by evaporation of the solvents under reduced pressure. The product was purified by column chromatography through a silica gel column, using n pentane as the mobile phase. After elimination of a first yellow fraction corresponding to $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$, the mobile phase polarity was increased using a mixture of n-pentane and diethyl ether (2:1). An orange band was collected, followed by evaporation to dryness under reduced pressure to afford the product as an orange-brown liquid. The product was stored in the fridge ($276-277 \mathrm{~K}$), leading to the growth of thin colourless plate-like crystals of the title compound which were collected after two days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The methyl H atoms were fixed geometrically and treated as riding: $\mathrm{C}-\mathrm{H}=0.98 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{CH}_{3}\right)$. The two fluorine atoms presented elongated ellipsoids, which could be related to disorder. To consider a realistic chemical disorder, we defined a model by rotation around the $\mathrm{C} 1-\mathrm{C} 2$ bond. Initially, the model could be refined isotropically to define the occupancy factors using a
free variable. The result showed a major component with an occupancy factor of 85% and a minor one at 15%. As a result, it was impossible to freely refine the thermal ellipsoids for the disordered CF_{2} group. The anisotropic refinement has been realized using severe EADP restraints for the C and F atoms.

Funding information

Funding for this research was provided by: Centre National de la Recherche Scientifique and Agence Nationale de la Recherche (ANR, French National Agency) through the project FLUPOL (grant No. ANR-14-CE07-0012).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Beck, W., Hieber, W. \& Tengler, H. (1961). Chem. Ber. 94, 862-872. Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.

Damerius, R., Leopold, D., Schulze, W. \& Seppelt, K. (1989). Z. Anorg. Allg. Chem. 578, 110-118.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kaesz, H. D., King, R. B. \& Stone, F. G. A. (1960). Z. Naturforsch. Teil B, 15, 763-764.
Lindner, E., Butz, I. P., Hiller, W., Fawzi, R. \& Hoehne, S. (1983). Angew. Chem. Int. Ed. 22, 996-997.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Morales-Cerrada, R., Fliedel, C., Daran, J.-C., Gayet, F., Ladmiral, V., Améduri, B. \& Poli, R. (2019). Chem. Eur. J. 25, 296-308.
Morales-Cerrada, R., Fliedel, C., Gayet, F., Ladmiral, V., Améduri, B. \& Poli, R. (2019). Organometallics, 38, 1021-1030. .
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Weber, H. \& Mattes, R. (1979). Chem. Ber. 112, 95-98.

supporting information

Acta Cryst. (2019). E75, 529-532 [https://doi.org/10.1107/S2056989019004134]

Crystal structure of pentacarbonyl(2,2-difluoropropanethioato- κ S $)$ manganese(I)

Jean-Claude Daran, Roberto Morales-Cerrada, Christophe Fliedel, Florence Gayet, Vincent Ladmiral, Bruno Ameduri and Rinaldo Poli

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Pentacarbonyl(2,2-difluoropropanethioato- κ S $)$ manganese(I)

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~F}_{2} \mathrm{OS}\right)(\mathrm{CO})_{5}\right]$
$M_{r}=320.10$
Monoclinic, $P 2_{1} / c$
$a=6.3503$ (4) \AA
$b=14.9583$ (9) \AA
$c=12.3127$ (9) \AA
$\beta=97.149(3)^{\circ}$
$V=1160.49(13) \AA^{3}$
$Z=4$

Data collection

Nonius CAD-4 with APEXII CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.621, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.062$
$S=1.04$
2554 reflections
175 parameters
6 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=632$
$D_{\mathrm{x}}=1.832 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9996 reflections
$\theta=2.2-28.9^{\circ}$
$\mu=1.36 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Thin_plate, colourless
$0.40 \times 0.26 \times 0.04 \mathrm{~mm}$

43723 measured reflections
2554 independent reflections
2261 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=27.1^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-8 \rightarrow 8$
$k=-19 \rightarrow 19$
$l=-15 \rightarrow 15$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.033 P)^{2}+0.5266 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.55$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$	Occ. (<1)
Mn1	$0.43292(4)$	$0.29392(2)$	$0.45193(2)$	$0.01827(8)$	
S1	$0.53795(7)$	$0.42961(3)$	$0.37381(4)$	$0.02705(11)$	
O2	$0.6662(2)$	$0.32546(9)$	$0.22242(11)$	$0.0380(3)$	
O11	$0.2678(2)$	$0.13030(8)$	$0.54815(10)$	$0.0335(3)$	
O12	$0.8262(2)$	$0.19606(9)$	$0.40668(12)$	$0.0386(3)$	
O13	$0.1947(2)$	$0.24358(10)$	$0.23502(10)$	$0.0374(3)$	
O14	$0.0554(2)$	$0.39501(10)$	$0.50870(13)$	$0.0429(3)$	
O15	$0.6894(2)$	$0.35866(9)$	$0.65865(11)$	$0.0361(3)$	
C1	$0.6470(3)$	$0.40015(11)$	$0.25739(14)$	$0.0258(3)$	
C11	$0.3361(3)$	$0.19238(11)$	$0.51356(13)$	$0.0231(3)$	$0.849(3)$
C12	$0.6773(3)$	$0.23362(11)$	$0.41940(14)$	$0.0249(3)$	$0.849(3)$
C13	$0.2873(3)$	$0.26287(11)$	$0.31555(14)$	$0.0246(3)$	$0.849(3)$
C14	$0.1982(3)$	$0.35751(11)$	$0.48685(14)$	$0.0264(3)$	$0.849(3)$
C15	$0.5915(3)$	$0.33322(10)$	$0.58282(14)$	$0.0238(3)$	$0.849(3)$
C2	$0.7351(3)$	$0.47775(12)$	$0.19361(16)$	$0.0348(4)$	$0.849(3)$
C3A	$0.9645(4)$	$0.4925(2)$	$0.2222(2)$	$0.0413(6)$	$0.151(3)$
H3A1	0.993454	0.510299	0.299223	0.062^{*}	$0.151(3)$
H3A2	1.011515	0.539893	0.175822	0.062^{*}	$0.151(3)$
H3A3	1.041157	0.437149	0.210635	0.062^{*}	$0.151(3)$
F1A	$0.6207(3)$	$0.55205(11)$	$0.2005(2)$	$0.0672(7)$	$0.151(3)$
F2A	$0.6999(3)$	$0.45454(13)$	$0.08233(12)$	$0.0604(6)$	$0.151(3)$
C3B	$0.952(2)$	$0.4766(13)$	$0.1799(15)$	$0.0413(6)$	0.062^{*}
H3B1	1.037235	0.468084	0.251102	0.062^{*}	0.062^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.01945(13)$	$0.01603(13)$	$0.01948(13)$	$0.00083(8)$	$0.00298(9)$	$0.00078(9)$
S1	$0.0315(2)$	$0.01629(19)$	$0.0345(2)$	$0.00001(15)$	$0.00874(18)$	$0.00293(16)$
O2	$0.0568(9)$	$0.0261(7)$	$0.0341(7)$	$-0.0052(6)$	$0.0176(6)$	$0.0000(5)$
O11	$0.0430(7)$	$0.0257(6)$	$0.0326(7)$	$-0.0076(5)$	$0.0081(6)$	$0.0041(5)$
O12	$0.0318(7)$	$0.0426(8)$	$0.0422(8)$	$0.0146(6)$	$0.0076(6)$	$0.0002(6)$
O13	$0.0402(7)$	$0.0454(8)$	$0.0250(7)$	$-0.0088(6)$	$-0.0029(6)$	$0.0005(6)$
O14	$0.0294(7)$	$0.0434(8)$	$0.0570(9)$	$0.0104(6)$	$0.0106(6)$	$-0.0062(7)$
O15	$0.0456(8)$	$0.0279(7)$	$0.0319(7)$	$-0.0035(6)$	$-0.0072(6)$	$-0.0033(5)$

C1	$0.0239(8)$	$0.0256(8)$	$0.0276(8)$	$-0.0028(6)$	$0.0021(6)$	$0.0077(7)$
C11	$0.0254(8)$	$0.0241(8)$	$0.0197(8)$	$0.0009(6)$	$0.0028(6)$	$-0.0022(6)$
C12	$0.0285(9)$	$0.0223(8)$	$0.0238(8)$	$-0.0002(7)$	$0.0025(6)$	$0.0010(6)$
C13	$0.0263(8)$	$0.0217(8)$	$0.0266(9)$	$-0.0010(6)$	$0.0069(7)$	$0.0047(6)$
C14	$0.0265(8)$	$0.0247(8)$	$0.0279(9)$	$-0.0010(7)$	$0.0026(7)$	$0.0008(7)$
C15	$0.0270(8)$	$0.0163(8)$	$0.0286(8)$	$0.0014(6)$	$0.0053(7)$	$0.0018(6)$
C2	$0.0370(10)$	$0.0293(9)$	$0.0384(10)$	$-0.0031(8)$	$0.0065(8)$	$0.0118(8)$
C3A	$0.0401(12)$	$0.0418(16)$	$0.0438(18)$	$-0.0138(10)$	$0.0117(13)$	$0.0001(13)$
F1A	$0.0639(12)$	$0.0365(8)$	$0.1106(19)$	$0.0244(9)$	$0.0482(12)$	$0.0455(11)$
F2A	$0.0864(14)$	$0.0664(12)$	$0.0267(8)$	$-0.0336(10)$	$0.0003(8)$	$0.0110(7)$
C3B	$0.0401(12)$	$0.0418(16)$	$0.0438(18)$	$-0.0138(10)$	$0.0117(13)$	$0.0001(13)$
F1B	$0.0639(12)$	$0.0365(8)$	$0.1106(19)$	$0.0244(9)$	$0.0482(12)$	$0.0455(11)$
F2B	$0.0864(14)$	$0.0664(12)$	$0.0267(8)$	$-0.0336(10)$	$0.0003(8)$	$0.0110(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Mn1-C11	1.8376 (17)	$\mathrm{C} 1-\mathrm{C} 2$	1.545 (2)
Mn1-C12	1.8807 (17)	C2-F2B	1.264 (9)
Mn1-C13	1.8720 (17)	C2-F1A	1.336 (2)
Mn1-C14	1.8631 (17)	C2-F2A	1.404 (3)
Mn1-C15	1.8849 (17)	$\mathrm{C} 2-\mathrm{C} 3 \mathrm{~B}$	1.409 (13)
Mn1-S1	2.3768 (5)	$\mathrm{C} 2-\mathrm{C} 3 \mathrm{~A}$	1.472 (3)
S1-C1	1.7250 (18)	C2-F1B	1.492 (11)
$\mathrm{O} 2-\mathrm{C} 1$	1.209 (2)	C3A-H3A1	0.9800
O11-C11	1.131 (2)	C3A-H3A2	0.9800
O12-C12	1.127 (2)	C3A-H3A3	0.9800
O13-C13	1.126 (2)	C3B-H3B1	0.9800
O14-C14	1.127 (2)	C3B-H3B2	0.9800
O15-C15	1.122 (2)	C3B-H3B3	0.9800
C11-Mn1-C12	91.08 (7)	F1A-C2-F2A	104.25 (18)
C11-Mn1-C13	90.69 (7)	$\mathrm{F} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{C} 3 \mathrm{~B}$	119.9 (9)
C11-Mn1-C14	90.47 (7)	F1A-C2-C3A	112.9 (2)
C11-Mn1-C15	94.32 (7)	$\mathrm{F} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{C} 3 \mathrm{~A}$	107.65 (19)
C11-Mn1-S1	176.45 (5)	F2B-C2-F1B	98.7 (7)
C12-Mn1-C15	87.96 (7)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2-\mathrm{F} 1 \mathrm{~B}$	103.2 (8)
C12-Mn1-S1	92.46 (5)	F2B-C2-C1	108.2 (4)
C13-Mn1-C12	91.07 (7)	F1A-C2-C1	110.99 (16)
C13-Mn1-C15	174.92 (7)	F2A-C2-C1	106.65 (15)
C13-Mn1-S1	88.91 (5)	C3B-C2-C1	118.3 (8)
C14-Mn1-C12	177.58 (7)	$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2-\mathrm{C} 1$	113.66 (18)
C14-Mn1-C13	90.77 (7)	F1B-C2-C1	105.3 (4)
C14-Mn1-C15	90.07 (7)	$\mathrm{C} 2-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 1$	109.5
C14-Mn1-S1	86.01 (5)	$\mathrm{C} 2-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A} 2$	109.5
C15-Mn1-S1	86.14 (5)	H3A1-C3A-H3A2	109.5
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Mn} 1$	106.26 (6)	C2-C3A-H3A3	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.03 (16)	H3A1-C3A-H3A3	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{S} 1$	126.92 (13)	H3A2-C3A-H3A3	109.5

supporting information

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$116.02(13)$	$\mathrm{C} 2-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 1$	109.5
$\mathrm{O} 11-\mathrm{C} 11-\mathrm{Mn} 1$	$176.70(15)$	$\mathrm{C} 2-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	109.5
$\mathrm{O} 12-\mathrm{C} 12-\mathrm{Mn} 1$	$175.65(15)$	$\mathrm{H} 3 \mathrm{~B} 1-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 2$	109.5
$\mathrm{O} 13-\mathrm{C} 13-\mathrm{Mn} 1$	$177.98(15)$	$\mathrm{C} 2-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 3$	109.5
$\mathrm{O} 14-\mathrm{C} 14-\mathrm{Mn} 1$	$179.09(17)$	$\mathrm{H} 3 \mathrm{~B} 1-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 3$	109.5
$\mathrm{O} 15-\mathrm{C} 15-\mathrm{Mn} 1$	$177.59(15)$	$\mathrm{H} 3 \mathrm{~B} 2-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B} 3$	109.5
$\mathrm{Mn} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$			

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 A-\mathrm{H} 3 A 1 \cdots \mathrm{O} 14^{\mathrm{i}}$	0.98	2.81	$3.732(3)$	158
$\mathrm{C} 3 A-\mathrm{H} 3 A 2 \cdots \mathrm{O} 12^{\mathrm{ii}}$	0.98	2.79	$3.753(3)$	166
$\mathrm{C} 3 A-\mathrm{H} 3 A 3 \cdots \mathrm{O} 11^{\mathrm{iii}}$	0.98	2.79	$3.564(3)$	136
$\mathrm{C} 3 B-\mathrm{H} 3 B 2 \cdots \mathrm{O} 12^{\mathrm{ii}}$	0.98	2.81	$3.777(19)$	168
$\mathrm{C} 3 B-\mathrm{H} 3 B 3 \cdots \mathrm{O} 11^{\mathrm{iii}}$	0.98	2.37	$3.165(15)$	138
$\mathrm{C} 3 B — \mathrm{H} 3 B 3 \cdots \mathrm{O} 11^{\mathrm{iii}}$	0.98	2.37	$3.165(15)$	138

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2, y+1 / 2,-z+1 / 2$; (iii) $x+1,-y+1 / 2, z-1 / 2$.

