

Received 25 March 2019 Accepted 6 April 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; sonochemical synthesis; chromium(II) complex anion; dimethylammonium; hydrogen bonding; supramolecular framework.

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 3 ACCESS

Meriem Saidi,^a Michel Giorgi^b and Leila Boukli-hacene^a*

^aLaboratoire de Chimie Inorganique et Environnement, Faculty of Science, University of Tlemcen, Tlemcen - 13000, Algeria, and ^bAix-Marseille University, Spectropole, Campus St. Jerome, 52 av. Escadrille Normandie Niemen, 13013 Marseille, France. *Correspondence e-mail: leila.bouklihacene@univ-tlemcen.dz

The title complex, $[(CH_3)_2NH_2][Cr(C_6H_{10}NO_4)_2Cl]\cdotH_2O$, was synthesized sonochemically. The complex anion consists of a chromium(II) ion ligated by two 3-carboxy-2-(dimethylamino)propanoate anions. They coordinate in a bidentate manner, with a carboxylate oxygen atom and the nitrogen atom *cis* to each other in the equatorial plane, while the apical position is occupied by a Cl⁻ ion. Hence, the chromium(II) ion is five-coordinate with a quasi-ideal square-pyramidal geometry; τ_5 parameter = 0.01. The complex crystallizes as a monohydrate and in the crystal, the water molecule and the dimethylammonium counter-ion link the complex cations *via* N-H···O, N-H···Cl, O_{water}-H···O, O-H···O_{water} and O-H···O hydrogen bonds, forming a supramolecular framework. There are also a number of C-H···O hydrogen bonds present that reinforce the framework structure. The crystal studied was refined as a racemic twin.

1. Chemical context

Fumaric acid, also known as *trans*-butenedioic acid, boletic acid, lichenic acid or allomaleic acid, occurs naturally in many plants and is named after *Fumaria officinalis*, a climbing annual plant (Felthouse *et al.*, 2001). Besides being 'practically non-toxic' (European Commission, 2003), it is used as an acidity regulator in the food industry (Linstrom & Mallard, 1998), in medicine (Gold *et al.*, 2012), and as a raw material in the manufacture of unsaturated polyester resins (Duty & Liu, 1980).

Since the beginning of the 21st century, fumaric acid has been used to synthesize one of the first metal–organic frameworks for commercial applications (Al-MOF: A520), presenting remarkable adsorption and mechanical properties, combined with low toxicity (Gaab *et al.*, 2012). In this context, the novel title compound was obtained during an attempt to synthesize a Cr–Fum MOF.

. [(CH₃)₂NH₂]⁺ . H₂O

The reaction of fumaric acid and chromium(II)acetate dihydrate in the presence of dimethylamine hydrochloride resulted in the hydroamination of fumaric acid to form N,N-dimethylaspartic acid, which coordinates in a bidentate fashion to the chromium(II) ion.

2. Structural commentary

The molecular structure of the title complex anion is illustrated in Fig. 1. The chromium(II) ion, atom Cr1, is coordinated to two 3-carboxy-2-(dimethylamino) propanoate anions in a bidentate manner with a carboxylate oxygen atom O1 and the nitrogen N1 cis to each other for one ligand and for the other ligand atoms O5 and N2 are cis to each other. The chloride anion, Cl1, occupies the apical position. The fivecoordinate chromium ion is displaced by 0.3469 (7) Å from the mean plane through atoms O1, N1, O5 and N2. The equatorial Cu-O bond lengths are Cr1-O1 = 1.960 (5) Å and Cr1 - O5 = 1.954 (5) Å, while the equatorial Cu - N bond lengths are slightly longer viz. Cr1-N1 = 2.025(5) Å and Cr1-N2 = 2.030(5) Å. The axial Cr1-Cl1 bond length is 2.5301 (16) Å. The C–C, C–O, and C–N bond lengths of the ligands are close to those reported for similar compounds (Zheng et al., 2003; Devereux et al., 2000; Kim et al., 2002). The cisoid and transoid bond angles vary from 83.62 (19) to $100.88 (16)^{\circ}$ and from 159.6 (2) to 160.3 (2)°, respectively. This leads to a quasi-ideal square-pyramidal geometry for atom Cr1 with a τ_5 parameter of 0.01 ($\tau_5 = 0$ for an ideal square-pyramidal geometry and 1 for an ideal trigonal-bipyramidal geometry; Addison et al., 1984). An intramolecular C6-H6 $C \cdots$ O5 hydrogen bond (Table 1) occurs.

3. Supramolecular features

The crystal structure is stabilized by an extensive array of hydrogen bonds, forming a supramolecular framework (Fig. 2 and Table 1). Beyond metal coordination, the ligand has potential sites for hydrogen bonding. Ten of the thirteen heteroatoms are involved in strong and moderate hydrogen bonds (Fig. 2 and Table 1). The complex crystallizes as a monohydrate and in the crystal, the water molecule and the dimethylammonium counter-ion link the complex cations *via*

Figure 1

The molecular structure of the title complex anion, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. For clarity, the dimethylammonium counter-ion and the water molecule of crystallization have been omitted.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O4 - H4O \cdots O1W$	0.82	1 77	2 591 (8)	180
$O8-H8O\cdots O2^{i}$	0.82	1.91	2.585 (7)	139
$N3-H3C\cdots Cl1^{ii}$	0.89	2.24	3.121 (7)	172
$N3-H3D\cdots O3^{iii}$	0.89	1.94	2.763 (9)	153
$O1W-H1WA\cdots O7^{ii}$	0.86(3)	2.17 (8)	2.895 (8)	142 (12)
$O1W-H1WB\cdots O6^{iv}$	0.86 (3)	2.18 (3)	3.006 (9)	160 (7)
$C6-H6B\cdots O8^{v}$	0.96	2.51	3.351 (9)	146
C6-H6C···O5	0.96	2.46	3.038 (9)	119
$C12-H12C\cdots O6^{vi}$	0.96	2.52	3.193 (10)	127
$C13-H13B\cdots O8^{vi}$	0.96	2.56	3.451 (12)	154

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, -z + 2; (ii) -x + 2, $y + \frac{1}{2}$, -z + 1; (iii) x + 1, y, z; (iv) -x + 1, $y + \frac{1}{2}$, -z + 1; (v) x - 1, y, z - 1; (vi) -x + 2, $y + \frac{1}{2}$, -z + 2.

 $N-H\cdots O$, $N-H\cdots Cl$, $O_{water}-H\cdots O$, $O-H\cdots O_{water}$ and $O-H\cdots O$ hydrogen bonds, forming a supramolecular framework. There are also a number of $C-H\cdots O$ hydrogen bonds present that reinforce the framework structure.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update February 2019; Groom *et al.*, 2016) indicated that there are no reports of chromium complexes of fumaric acid and no reports of the structure of the title ligand, N,N-dimethylaspartic acid. There is only one report of a complex containing a similar ligand, *viz.* [(R,S)-dimethyl 3-(diphenylphosphino)-N,N-dimethylaspartate]dichloropalla-dium(II) [CASTIB; Chen *et al.*, 2012]. This chiral P,N-ligand was synthesized by hydrophosphination using diphenylphosphine followed by hydroamination with a secondary amine.

A view along the a axis of the crystal packing of the title complex. The hydrogen bonds (Table 1) are shown as dashed lines and, for clarity, all the C-bound H atoms have been omitted.

research communications

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$(C_2H_8N)[Cr(C_6H_{10}NO_4)_2Cl]\cdot H_2O$
M _r	471.86
Crystal system, space group	Monoclinic, $P2_1$
Temperature (K)	298
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.2246 (2), 15.1419 (4), 8.6851 (2)
β (°)	93.339 (2)
$V(Å^3)$	1079.77 (5)
Ζ	2
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	5.94
Crystal size (mm)	$0.16\times0.10\times0.06$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Super- Nova, Dual, Cu at home/near, AtlasS2
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.917, 1.000
No. of measured, independent and	11333, 3930, 3864
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.039
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.605
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.146, 1.08
No. of reflections	3930
No. of parameters	268
No. of restraints	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	1.14, -0.36
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.422 (11)

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2008), PLATON (Spek, 2009), OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

5. Synthesis and crystallization

A mixture of fumaric acid (25 mg, 0.22 mmol) and dimethylamine hydrochloride (0.09 ml) dissolved in 20 ml methanol was stirred for 1 h. Chromium(II) acetate dihydrate $[Cr_2(OAc)_4 \cdot 2H_2O; 25.2 \text{ mg}, 0.11 \text{ mmol}]$ in 10 ml of water was added with magnetic stirring for a further 30 min. The mixture was then put in an ultrasonic bath (353 K, 45 KHz, 90 W) for 2h. The solution was then left to evaporate slowly and blue prismatic crystals were collected after two months.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The crystal was refined as a racemic twin [BASF = 0.422 (11)]. The water H atoms were located in a difference-Fourier map and refined with a distance restraint of O-H = 0.85 (2) Å with $U_{iso}(H) = 1.5U_{eq}(O)$. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: O-H = 0.82 Å, N-H = 0.89 Å, C-H = 0.96–0.99 Å with $U_{iso}(H) = 1.5U_{eq}(O)$ -hydroxyl, C-methyl) and $1.2U_{eq}(N, C)$ for other H atoms.

Funding information

The authors are grateful for the support provided by the Algerian Ministry for Education and Research.

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Chen, K., Pullarkat, S. A., Ma, M., Li, Y. & Leung, P.-H. (2012). Dalton Trans. 41, 5391–5400.
- Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). *Polyhedron*, **19**, 1205–1211.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Duty, R. C. & Liu, H. F. (1980). Fuel, 59, 546-550.
- European Commission (2003). *Report of the Scientific Committee on Animal Nutrition on the Safety of Fumaric Acid*, pp. 1–18. https:// ec.europa.eu/food/sites/food/files/safety/docs/animal-feed_additives_rules_scan-old_report_out112.pdf.
- Felthouse, T. R., Burnett, J. C., Horrell, B., Mummey, M. J. & Kuo, Y.-J. (2001). J. ECT, 15, 893–928.
- Gaab, M., Trukhan, N., Maurer, S., Gummaraju, R. & Müller, U. (2012). *Microporous Mesoporous Mater.* **157**, 131–136.
- Gold, R., Kappos, L., Arnold, D. L., Bar-Or, A., Giovannoni, G., Selmaj, K., Tornatore, C., Sweetser, M. T., Yang, M., Sheikh, S. I. & Dawson, K. T. (2012). N. Engl. J. Med. 367, 1098–1107.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kim, J. C., Lough, A. J. & Jo, H. (2002). Inorg. Chem. Commun. 5, 616–620.
- Linstrom, P. J. & Mallard, W. G. (1998). NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom & W. G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi. org/10.18434/ T4D303
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zheng, Y.-Q., Lin, J.-L. & Chen, B.-Y. (2003). J. Mol. Struct. 646, 151– 159.

supporting information

Acta Cryst. (2019). E75, 604-606 [https://doi.org/10.1107/S2056989019004717]

Sonochemical synthesis and crystal structure of dimethylammonium bis[3-carboxy-2-(dimethylamino)propanoato- $\kappa^2 N$, O^1]chloridochromium(II) monohydrate

Meriem Saidi, Michel Giorgi and Leila Boukli-hacene

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2008) and *PLATON* (Spek, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Dimethylammonium bis[3-carboxy-2-(dimethylamino)propanoato- $\kappa^2 N, O^1$] \ chloridochromium(II) monohydrate

Crystal data

 $\begin{array}{l} (C_{2}H_{8}N)[Cr(C_{6}H_{10}NO_{4})_{2}Cl]\cdot H_{2}O\\ M_{r}=471.86\\ Monoclinic, P2_{1}\\ a=8.2246\ (2)\ Å\\ b=15.1419\ (4)\ Å\\ c=8.6851\ (2)\ Å\\ \beta=93.339\ (2)^{\circ}\\ V=1079.77\ (5)\ Å^{3}\\ Z=2 \end{array}$

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 5.3048 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.146$ S = 1.083930 reflections 268 parameters F(000) = 496 $D_x = 1.451 \text{ Mg m}^{-3}$ Cu *Ka* radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 7960 reflections $\theta = 5.4-68.8^{\circ}$ $\mu = 5.94 \text{ mm}^{-1}$ T = 298 KPrism, blue $0.16 \times 0.10 \times 0.06 \text{ mm}$

 $T_{\min} = 0.917, T_{\max} = 1.000$ 11333 measured reflections 3930 independent reflections 3864 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.039$ $\theta_{\text{max}} = 69.0^{\circ}, \theta_{\text{min}} = 5.1^{\circ}$ $h = -8 \rightarrow 9$ $k = -18 \rightarrow 18$ $l = -10 \rightarrow 10$

4 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1071P)^2 + 0.4201P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \rho_{\text{max}} = 1.14 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.36 \text{ e } \text{\AA}^{-3}$ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.422 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Cr1	0.77728 (9)	0.46008 (6)	0.77478 (8)	0.0331 (3)
C11	0.96891 (19)	0.44269 (11)	0.55923 (19)	0.0567 (4)
01	0.7158 (5)	0.5842 (3)	0.7439 (5)	0.0467 (10)
O2	0.5397 (6)	0.6689 (3)	0.6095 (6)	0.0507 (10)
O3	0.2468 (7)	0.6241 (5)	0.2902 (6)	0.0647 (16)
O4	0.4927 (7)	0.5814 (5)	0.2465 (7)	0.0727 (16)
H4O	0.473620	0.609797	0.167158	0.109*
05	0.7816 (6)	0.3408 (3)	0.8608 (6)	0.0568 (12)
O6	0.8881 (8)	0.2659 (4)	1.0581 (7)	0.0679 (14)
O7	1.2888 (7)	0.2838 (4)	1.0339 (6)	0.0686 (15)
08	1.2813 (7)	0.2989 (4)	1.2885 (6)	0.0578 (14)
H8O	1.366024	0.270333	1.290499	0.087*
N1	0.5641 (6)	0.4365 (3)	0.6532 (6)	0.0439 (11)
N2	0.9374 (6)	0.4869 (3)	0.9555 (6)	0.0422 (11)
C1	0.6020 (7)	0.5955 (4)	0.6425 (7)	0.0388 (12)
C2	0.5452 (7)	0.5140 (4)	0.5487 (6)	0.0395 (12)
H2	0.622057	0.505921	0.467737	0.047*
C3	0.3768 (8)	0.5244 (5)	0.4683 (7)	0.0469 (13)
H3A	0.337458	0.466321	0.437155	0.056*
H3B	0.303802	0.547195	0.542577	0.056*
C4	0.3661 (8)	0.5834 (4)	0.3295 (7)	0.0458 (13)
C5	0.4376 (8)	0.4347 (6)	0.7677 (9)	0.062 (2)
H8A	0.470785	0.395257	0.850250	0.093*
H8B	0.336623	0.414570	0.718912	0.093*
H8C	0.423522	0.492985	0.808217	0.093*
C6	0.5626 (11)	0.3524 (5)	0.5675 (11)	0.067 (2)
H6A	0.635292	0.356419	0.485227	0.100*
H6B	0.454227	0.340600	0.525437	0.100*
H6C	0.597207	0.305432	0.636040	0.100*
C7	0.8884 (8)	0.3294 (4)	0.9699 (7)	0.0438 (12)
C8	1.0189 (7)	0.4011 (4)	0.9867 (7)	0.0395 (12)
H8	1.093246	0.391531	0.904066	0.047*
C9	1.1207 (9)	0.3964 (4)	1.1380 (8)	0.0499 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9A	1.181580	0.450948	1.151865	0.060*
H9B	1.048333	0.391704	1.221919	0.060*
C10	1.2384 (7)	0.3197 (4)	1.1473 (7)	0.0436 (12)
C11	0.8385 (11)	0.5139 (6)	1.0840 (9)	0.067 (2)
H11A	0.790995	0.570782	1.061941	0.100*
H11B	0.906629	0.517222	1.177456	0.100*
H19C	0.753661	0.471417	1.096277	0.100*
C12	1.0545 (10)	0.5576 (5)	0.9208 (11)	0.067 (2)
H12A	1.108472	0.542490	0.829352	0.100*
H12B	1.133630	0.563742	1.005790	0.100*
H12C	0.997048	0.612331	0.904808	0.100*
N3	1.0276 (9)	0.7370 (4)	0.4178 (8)	0.0607 (15)
H3C	1.036403	0.795574	0.417595	0.073*
H3D	1.101606	0.715613	0.356926	0.073*
C13	1.0657 (14)	0.7039 (7)	0.5796 (11)	0.079 (3)
H13A	1.055159	0.640779	0.581505	0.119*
H13B	0.991100	0.729742	0.647664	0.119*
H13C	1.175078	0.720115	0.612551	0.119*
C14	0.8635 (12)	0.7125 (7)	0.3526 (12)	0.078 (2)
H14A	0.854076	0.727475	0.245084	0.118*
H14B	0.782581	0.743983	0.406017	0.118*
H14C	0.847500	0.650115	0.364519	0.118*
O1W	0.4309 (7)	0.6707 (5)	-0.0045 (7)	0.0703 (15)
H1WA	0.492 (14)	0.704 (8)	-0.056 (13)	0.105*
H1WB	0.341 (10)	0.699 (8)	0.004 (8)	0.105*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.0310 (4)	0.0267 (4)	0.0401 (4)	-0.0011 (3)	-0.0118 (3)	0.0011 (3)
Cl1	0.0540 (8)	0.0532 (10)	0.0636 (8)	-0.0009 (6)	0.0104 (6)	-0.0049 (6)
01	0.049 (2)	0.033 (2)	0.056 (2)	-0.0003 (16)	-0.016 (2)	-0.0034 (17)
O2	0.053 (2)	0.033 (2)	0.064 (3)	0.0047 (18)	-0.017 (2)	0.0016 (19)
O3	0.057 (3)	0.079 (4)	0.057 (3)	0.025 (3)	-0.001 (2)	0.010 (3)
O4	0.058 (3)	0.094 (5)	0.067 (3)	0.023 (3)	0.008 (2)	0.022 (3)
05	0.060 (3)	0.040 (2)	0.067 (3)	-0.009 (2)	-0.025 (2)	0.009 (2)
06	0.082 (4)	0.047 (3)	0.072 (3)	-0.004 (2)	-0.015 (3)	0.019 (2)
O7	0.073 (3)	0.077 (4)	0.056 (3)	0.029 (3)	0.003 (2)	0.005 (3)
08	0.071 (4)	0.048 (3)	0.052 (3)	0.016 (2)	-0.016 (2)	0.000 (2)
N1	0.040 (2)	0.035 (3)	0.055 (3)	0.0016 (18)	-0.011 (2)	0.002 (2)
N2	0.046 (3)	0.034 (3)	0.045 (2)	-0.0006 (19)	-0.009 (2)	0.0015 (18)
C1	0.038 (3)	0.033 (3)	0.045 (3)	-0.003 (2)	-0.005 (2)	-0.002 (2)
C2	0.037 (3)	0.038 (3)	0.043 (3)	-0.003 (2)	-0.006 (2)	0.000 (2)
C3	0.040 (3)	0.046 (3)	0.054 (3)	-0.007(2)	-0.011 (2)	0.002 (3)
C4	0.046 (3)	0.041 (3)	0.049 (3)	-0.001 (3)	-0.010 (2)	-0.001 (3)
C5	0.044 (3)	0.071 (5)	0.071 (4)	-0.008 (3)	-0.003 (3)	0.026 (4)
C6	0.071 (5)	0.035 (4)	0.090 (6)	-0.001 (3)	-0.035 (4)	-0.008 (3)
C7	0.051 (3)	0.029 (3)	0.051 (3)	0.002 (2)	-0.005 (3)	-0.001 (2)

supporting information

C8	0.044 (3)	0.030 (3)	0.044 (3)	0.004 (2)	-0.004 (2)	-0.002 (2)
C9	0.061 (4)	0.035 (3)	0.051 (3)	0.008 (3)	-0.016 (3)	-0.004(2)
C10	0.042 (3)	0.039 (3)	0.048 (3)	0.001 (2)	-0.010 (2)	0.002 (2)
C11	0.080 (5)	0.061 (5)	0.059 (4)	0.027 (4)	0.001 (4)	-0.011 (3)
C12	0.063 (4)	0.046 (4)	0.086 (5)	-0.013 (3)	-0.039 (4)	0.013 (4)
N3	0.069 (4)	0.047 (3)	0.066 (3)	0.001 (3)	0.008 (3)	0.000 (3)
C13	0.101 (7)	0.066 (6)	0.072 (5)	0.011 (5)	0.010 (5)	0.003 (4)
C14	0.072 (5)	0.071 (6)	0.093 (6)	0.000 (4)	0.008 (5)	-0.014 (5)
O1W	0.063 (3)	0.070 (4)	0.080 (4)	0.001 (3)	0.013 (3)	0.019 (3)

Geometric parameters (Å, °)

Cr1—05	1.954 (5)	С5—Н8С	0.9600
Cr1—O1	1.960 (5)	С6—Н6А	0.9600
Cr1—N1	2.025 (5)	С6—Н6В	0.9600
Cr1—N2	2.030 (5)	С6—Н6С	0.9600
Cr1—Cl1	2.5301 (16)	C7—C8	1.527 (8)
01—C1	1.259 (7)	C8—C9	1.518 (9)
O2—C1	1.250 (8)	C8—H8	0.9800
O3—C4	1.191 (8)	C9—C10	1.511 (9)
O4—C4	1.300 (9)	С9—Н9А	0.9700
O4—H4O	0.8200	С9—Н9В	0.9700
O5—C7	1.266 (8)	C11—H11A	0.9600
O6—C7	1.230 (8)	C11—H11B	0.9600
O7—C10	1.220 (9)	С11—Н19С	0.9600
O8—C10	1.294 (8)	C12—H12A	0.9600
O8—H8O	0.8200	C12—H12B	0.9600
N1—C6	1.475 (9)	C12—H12C	0.9600
N1—C5	1.481 (9)	N3—C14	1.480 (12)
N1—C2	1.485 (8)	N3—C13	1.507 (11)
N2—C11	1.477 (9)	N3—H3C	0.8900
N2—C8	1.480 (7)	N3—H3D	0.8900
N2—C12	1.483 (9)	C13—H13A	0.9600
C1—C2	1.536 (8)	C13—H13B	0.9600
C2—C3	1.523 (8)	C13—H13C	0.9600
С2—Н2	0.9800	C14—H14A	0.9600
C3—C4	1.499 (9)	C14—H14B	0.9600
С3—НЗА	0.9700	C14—H14C	0.9600
С3—Н3В	0.9700	O1W—H1WA	0.86 (3)
C5—H8A	0.9600	O1W—H1WB	0.86 (3)
С5—Н8В	0.9600		
O5—Cr1—O1	159.6 (2)	N1—C6—H6C	109.5
O5—Cr1—N1	91.9 (2)	H6A—C6—H6C	109.5
O1—Cr1—N1	83.62 (19)	H6B—C6—H6C	109.5
O5—Cr1—N2	83.8 (2)	O6—C7—O5	123.1 (6)
O1—Cr1—N2	93.71 (19)	O6—C7—C8	121.5 (6)
N1—Cr1—N2	160.3 (2)	O5—C7—C8	115.3 (5)

O5—Cr1—Cl1	100.87 (19)	N2—C8—C9	114.9 (5)
O1—Cr1—Cl1	99.51 (15)	N2—C8—C7	107.3 (5)
N1—Cr1—Cl1	98.83 (16)	C9—C8—C7	113.5 (5)
N2—Cr1—Cl1	100.88 (16)	N2—C8—H8	106.9
C1	113.7 (4)	С9—С8—Н8	106.9
C4—O4—H4O	109.5	С7—С8—Н8	106.9
C7—O5—Cr1	114.1 (4)	C10—C9—C8	113.7 (5)
C10—O8—H8O	109.5	С10—С9—Н9А	108.8
C6—N1—C5	109.7 (6)	С8—С9—Н9А	108.8
C6—N1—C2	112.1 (6)	С10—С9—Н9В	108.8
C5—N1—C2	111.9 (5)	С8—С9—Н9В	108.8
C6—N1—Cr1	113.4 (4)	H9A—C9—H9B	107.7
C5—N1—Cr1	105.9 (4)	O7—C10—O8	124.7 (6)
C2—N1—Cr1	103.7 (3)	O7—C10—C9	123.1 (6)
C11—N2—C8	111.6 (5)	O8—C10—C9	112.1 (6)
C11—N2—C12	110.2 (7)	N2—C11—H11A	109.5
C8—N2—C12	112.3 (5)	N2—C11—H11B	109.5
C11—N2—Cr1	106.2 (5)	H11A—C11—H11B	109.5
C8—N2—Cr1	103.4 (4)	N2—C11—H19C	109.5
C12—N2—Cr1	112.8 (4)	H11A—C11—H19C	109.5
O2—C1—O1	124.0 (6)	H11B—C11—H19C	109.5
O2—C1—C2	119.0 (5)	N2—C12—H12A	109.5
O1—C1—C2	116.9 (5)	N2—C12—H12B	109.5
N1—C2—C3	115.0 (5)	H12A—C12—H12B	109.5
N1-C2-C1	107.0 (4)	N2—C12—H12C	109.5
C3—C2—C1	113.6 (5)	H12A—C12—H12C	109.5
N1—C2—H2	106.9	H12B-C12-H12C	109.5
С3—С2—Н2	106.9	C14—N3—C13	114.1 (8)
C1—C2—H2	106.9	C14—N3—H3C	108.7
C4—C3—C2	116.1 (5)	C13—N3—H3C	108.7
С4—С3—НЗА	108.3	C14—N3—H3D	108.7
С2—С3—НЗА	108.3	C13—N3—H3D	108.7
C4—C3—H3B	108.3	H3C—N3—H3D	107.6
С2—С3—Н3В	108.3	N3—C13—H13A	109.5
НЗА—СЗ—НЗВ	107.4	N3—C13—H13B	109.5
O3—C4—O4	121.7 (7)	H13A—C13—H13B	109.5
O3—C4—C3	123.2 (6)	N3—C13—H13C	109.5
O4—C4—C3	114.9 (6)	H13A—C13—H13C	109.5
N1—C5—H8A	109.5	H13B—C13—H13C	109.5
N1—C5—H8B	109.5	N3—C14—H14A	109.5
H8A—C5—H8B	109.5	N3—C14—H14B	109.5
N1—C5—H8C	109.5	H14A—C14—H14B	109.5
H8A—C5—H8C	109.5	N3—C14—H14C	109.5
H8B—C5—H8C	109.5	H14A—C14—H14C	109.5
N1—C6—H6A	109.5	H14B—C14—H14C	109.5
N1—C6—H6B	109.5	H1WA—O1W—H1WB	107 (10)
H6A—C6—H6B	109.5		

Cr1-01-C1-02	176.8 (5)	Cr1-05-C7-06	164.7 (6)	
Cr1-01-C1-C2	-6.8 (7)	Cr1—O5—C7—C8	-14.7 (7)	
C6—N1—C2—C3	70.4 (7)	C11—N2—C8—C9	-53.9 (8)	
C5—N1—C2—C3	-53.3 (7)	C12—N2—C8—C9	70.4 (7)	
Cr1—N1—C2—C3	-166.9 (4)	Cr1—N2—C8—C9	-167.7 (5)	
C6—N1—C2—C1	-162.4 (6)	C11—N2—C8—C7	73.3 (7)	
C5—N1—C2—C1	73.9 (6)	C12—N2—C8—C7	-162.4 (6)	
Cr1—N1—C2—C1	-39.8 (5)	Cr1—N2—C8—C7	-40.5 (5)	
O2-C1-C2-N1	-150.3 (5)	O6—C7—C8—N2	-140.5 (6)	
01-C1-C2-N1	33.1 (7)	O5—C7—C8—N2	38.9 (7)	
O2—C1—C2—C3	-22.4 (8)	O6—C7—C8—C9	-12.5 (9)	
O1—C1—C2—C3	161.1 (5)	O5—C7—C8—C9	166.9 (6)	
N1—C2—C3—C4	-162.3 (5)	N2-C8-C9-C10	-163.7 (5)	
C1—C2—C3—C4	74.0 (7)	C7—C8—C9—C10	72.3 (7)	
C2—C3—C4—O3	-150.8 (7)	C8—C9—C10—O7	23.7 (10)	
C2—C3—C4—O4	34.8 (9)	C8—C9—C10—O8	-157.9 (6)	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
04—H4 <i>O</i> …O1 <i>W</i>	0.82	1.77	2.591 (8)	180
O8—H8 <i>O</i> ···O2 ⁱ	0.82	1.91	2.585 (7)	139
N3—H3C···Cl1 ⁱⁱ	0.89	2.24	3.121 (7)	172
N3—H3 <i>D</i> ···O3 ⁱⁱⁱ	0.89	1.94	2.763 (9)	153
O1W—H1 WA ···O7 ⁱⁱ	0.86 (3)	2.17 (8)	2.895 (8)	142 (12)
$O1W$ — $H1WB$ ··· $O6^{iv}$	0.86 (3)	2.18 (3)	3.006 (9)	160 (7)
C6—H6 <i>B</i> ···O8 ^v	0.96	2.51	3.351 (9)	146
С6—Н6С…О5	0.96	2.46	3.038 (9)	119
C12—H12 <i>C</i> ···O6 ^{vi}	0.96	2.52	3.193 (10)	127
C13—H13 <i>B</i> ···O8 ^{vi}	0.96	2.56	3.451 (12)	154

Symmetry codes: (i) -x+2, y-1/2, -z+2; (ii) -x+2, y+1/2, -z+1; (iii) x+1, y, z; (iv) -x+1, y+1/2, -z+1; (v) x-1, y, z-1; (vi) -x+2, y+1/2, -z+2.