CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 22 March 2019
Accepted 12 April 2019

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: LiCl flux; neodymium borosilicate; lanthanum borosilicate; glass-ceramic waste form; powder diffraction.

CCDC reference: 1909612

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Synthesis and crystal structure of a neodymium borosilicate, $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$

Saehwa Chong, Jared O. Kroll, Jarrod V. Crum* and Brian J. Riley

Pacific Northwest National Laboratory, Richland, WA 99352, USA. *Correspondence e-mail: jarrod.crum@pnnl.gov

A lanthanide borosilicate, trineodymium borosilicate or $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$, was synthesized using a flux method with LiCl , and its structure was determined from X-ray powder diffraction (XRD) and electron probe microanalysis (EPMA). The structure is composed of layers with $\left[\mathrm{SiO}_{4}\right]^{4-}$ and $\left[\mathrm{BSiO}_{6}\right]^{5-}$ anions alternating along the c axis linked by Nd^{3+} cations between them.

1. Chemical context

Lanthanide borosilicates (i.e. $\mathrm{Ln}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$) crystallize as one of the major phases within the residual glass matrix in some formulations of the glass-ceramic waste form for treatment of raffinate high-level waste (Crum et al., 2012, 2014, 2016). Studies on the crystal chemistry and crystallization mechanism of lanthanide borosilicates are important in understanding the formation and durability of crystalline phases in the glassceramic waste forms (Crum et al., 2012, 2014, 2016). In this work, we report the synthesis method and crystal structure of $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ solved by powder XRD and EPMA analysis.

Different compositions of lanthanide borosilicates including $L n \mathrm{BSiO}_{5}$ ($L n=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm} ;$ McAndrew \& Scott, 1955; Neumann et al., 1966; Nekrasov \& Nekrasova, 1971; Voronkov \& Pyatenko, 1967; Burns et al., 1993; Chi et al., 1997; Shi et al., 1997), $L n_{5} \mathrm{Si}_{2} \mathrm{BO}_{13}(L n=\mathrm{La}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Dy}$; Mazza et al., 2000; Yuan et al., 2007; Naidu et al., 2010), and $L n_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}(L n=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}$; Chi et al., 1996a,b; Müller-Bunz \& Schleid, 1998; Chi et al., 1998, Shvanskii et al., 2000; Müller-Bunz et al., 2001; Bräuchle \& Huppertz, 2015) have been reported in the literature. $L n \mathrm{BSiO}_{5}$ has the stillwellite structure containing single or mixed lanthanide cations with infinite helical chains composed of six-membered rings formed by two $\left[\mathrm{BO}_{4}\right]^{5-}$ and one $\left[\mathrm{SiO}_{4}\right]^{4-}$ tetrahedral units (Chi et al., 1997; Burns et al., 1993; Voronkov \& Pyatenko, 1967; Shi et al., 1997). $L n_{5} \mathrm{Si}_{2} \mathrm{BO}_{13}$ has an apatite-like structure in which the non-tetrahedral cation sites are occupied by trivalent rare-earth cations, and B and Si occupy the same tetrahedral site (Mazza et al., 2000). $L n_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ contains layers with $\left[\mathrm{SiO}_{4}\right]^{4-}$ and $\left[\mathrm{BSiO}_{6}\right]^{5-}$ anions alternating along the c axis linked by trivalent cations between them, and $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ in this work is isostructural to previously reported $L n_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ compounds (Chi et al., 1996a,b, 1998, Braeuchle \& Huppertz, 2015; Shvanskii et al., 2000; Müller-Bunz et al., 2001).

2. Structural commentary

The $\left[\mathrm{BSiO}_{6}\right]^{5-}$ anion in $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ is formed by $\left[\mathrm{SiO}_{4}\right]^{4-}$ and $\left[\mathrm{BO}_{3}\right]^{3-}$ anions sharing an oxygen atom, with an average

Figure 1
(a) Structure of the BSiO_{6} anion and (b) coordination of oxygen atoms around Nd cations ($\mathrm{Nd} 1, \mathrm{Nd} 2$, and Nd 3).
$<\mathrm{Si} 1-\mathrm{O}>$ distance of $1.613 \AA$ and an average $<\mathrm{B}-\mathrm{O}>$ distance of $1.466 \AA$ (Fig. 1a), while the $\left[\mathrm{Si2O}_{4}\right]^{4-}$ ion has an average < $\mathrm{Si} 2-\mathrm{O}>$ distance of $1.590 \AA$. The $\left[\mathrm{BSi1O}_{6}\right]^{5-}$ and $\left[\mathrm{Si}_{2} \mathrm{O}_{4}\right]^{4-}$ anions are arranged alternately along the c axis (Fig. 2). The Nd cations occupy the interlayer sites between the anion units. Nd 1 and Nd 3 are coordinated by eight oxygen atoms with average $\langle\mathrm{Nd} 1-\mathrm{O}\rangle$ and $\langle\mathrm{Nd} 3-\mathrm{O}\rangle$ distances of 2.477 and $2.520 \AA$, respectively, and Nd 2 is coordinated by nine oxygen atoms with an average $<\mathrm{Nd} 2-\mathrm{O}>$ distance of $2.575 \AA$ (Fig. 1b). In our previous paper (Kroll et al., 2019), we summarized the crystallographic data from the literature on other $L n_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ chemistries (Braeuchle \& Huppertz, 2015; Chi et al., 1996a,b, 1998; Müller-Bunz et al., 2001; Shvanskii et al., 2000) as a function of the ionic crystal radii $\left(r_{c}\right)$ for the VIII-coordinated Ln^{3+} constituent according to Shannon (1976) to create predictive models for the unit-cell parameters (i.e., a, b, and c), cell volume, and cell density. The measured values of $a(9.7889 \AA), b(7.1077 \AA), c \quad(23.0893 \AA)$, cell volume ($1606.5 \AA^{3}$), and density $\left(5.4551 \mathrm{Mg} \mathrm{m}^{-3}\right)$ all fit reasonably well with the values calculated using the r_{c} for Nd $(1.109 \AA)$, i.e., $a(9.799 \AA), b(7.111 \AA), c(23.095 \AA)$, cell volume ($1608.4 \AA^{3}$), and cell density ($5.49 \mathrm{Mg} / \mathrm{m}^{3}$). Detailed atomic coordinates, bond lengths, and angles are given in Tables S1 and S2 in the supporting information.

3. Synthesis and crystallization

$\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ was synthesized by a LiCl flux method; more details are provided elsewhere (Kroll et al., 2019). Powdered $\mathrm{B}_{2} \mathrm{O}_{3}$ was placed into a $\mathrm{Pt}-10 \% \mathrm{Rh}$ crucible, melted at 1273 K in air to dehydrate fully and quenched on an Inconel plate. Appropriate amounts of $\mathrm{Nd}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$, and $\mathrm{B}_{2} \mathrm{O}_{3}$ were mixed in an agate mortar and pestle. LiCl was dried at 378 K for several hours and mixed with oxides in a $1: 1$ ratio by mass in a Diamonite ${ }^{\mathrm{TM}}$ mortar and pestle. Mixed powder was placed into a fused quartz tube, covered with a quartz lid, heated to

Figure 2
Crystal structure of $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ showing alternating $\left[\mathrm{BSiO}_{6}\right]^{5-}$ and $\left[\mathrm{SiO}_{4}\right]^{4-}$ anions along the c axis with Nd cations between them.

Figure 3
Comparison of oxide mass $\%$ between targeted and measured $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ from EPMA measurement.

1173 K at $5 \mathrm{~K} \mathrm{~min}^{-1}$, held for 24 h at 1173 K , and then cooled down to room temperature at $1 \mathrm{~K} \mathrm{~min}{ }^{-1}$. The $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ was recovered from the LiCl through vacuum filtration with several rinsing steps using deionized water and a Büchner funnel. The recovered heat-treated powder was ground finer in the mortar and pestle and pressed into a 20 mm diameter pellet using a cold press with 110 MPa . The pellet was sintered at 1373 K . The heating condition included ramping up at $2 \mathrm{~K} \mathrm{~min}^{-1}$ to 1373 K , dwelling for 4 h , and cooling to room temperature at $2 \mathrm{~K} \mathrm{~min}^{-1}$. The heat-treated pellet, which was blue-violet in color, was ground for XRD and EPMA. Two EPMA measurements were performed on the sample to verify the composition of the crystal and showed that it closely matches the calculated value (Fig. 3).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. A Rietveld plot is shown in Fig. 4. The structure of $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ was determined using Rietveld refinement on the initial model with a similar chemistry and structure using TOPAS (version 4.2; Bruker, 2009). Based on the fitting of peak positions and profile of experimental XRD patterns to a reference pattern, $\mathrm{Ce}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$ (ICSD 94423) was used as a starting model. The Ce atoms in ICSD 94423 were replaced with Nd atoms, and all the atomic positions for Nd, B, Si , and O were refined. The profile of the model was refined from 14.5° to avoid a hump around 13.5° in the fitting of the background resulting from an instrumental artifact. The displacement parameters ($B_{\text {eq }}$) were not refined and fixed to $1 \AA^{2}$ to avoid divergence and unreasonable error values. In addition, parameters for unit cell, scale factors, microstructure effects, and preferred orientation with spherical harmonic function (Järvinen, 1993) were refined, and the background was fitted with a Chebychev polynomial.

Figure 4
Observed, calculated, and difference XRD profiles of $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$.

Funding information

The authors acknowledge financial support from the US Department of Energy Office of Nuclear Energy (DOE-NE). The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05-76RL01830.

References

Bräuchle, S. \& Huppertz, H. (2015). Z. Naturforsch. Teil B, 70, 929934.

Bruker (2009). TOPAS., Bruker AXS, Karlsruhe, Germany.
Burns, P. C., Hawthorne, F. C., MacDonald, D. J., della Ventura, G. \& Parodi, G. C. (1993). Can. Mineral. 31, 147-152.
Chi, L., Chen, H., Deng, S., Zhuang, H. \& Huang, J. (1996a). Acta Cryst. C52, 2385-2387.
Chi, L., Chen, H., Deng, S., Zhuang, H. \& Huang, J. (1996b). J. Alloys Compd. 242, 1-5.
Chi, L., Chen, H., Lin, X., Zhuang, H. \& Huang, J. (1998). J. Struct. Chem. China, 17, 297-301.
Chi, L., Chen, H., Zhuang, H. \& Huang, J. (1997). J. Alloys Compd. 252, L12-L15.
Crum, J., Maio, V., McCloy, J., Scott, C., Riley, B., Benefiel, B., Vienna, J., Archibald, K., Rodriguez, C., Rutledge, V., Zhu, Z., Ryan, J. \& Olszta, M. (2014). J. Nucl. Mater. 444, 481-492.
Crum, J. V., Neeway, J. J., Riley, B. J., Zhu, Z., Olszta, M. J. \& Tang, M. (2016). J. Nucl. Mater. 482, 1-11.

Crum, J. V., Turo, L., Riley, B., Tang, M. \& Kossoy, A. (2012). J. Am. Ceram. Soc. 95, 1297-1303.
Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.
Kienle, M. \& Jacob, M. (2003). DIFFRAC plus XRD Commander. Bruker AXS GmbH, Karlsruhe, Germany.

Table 1
Experimental details.
Crystal data

Chemical formula	$\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$
M_{r}	659.7
Crystal system, space group	Orthorhombic, $P b c a$
Temperature (K)	295
$a, b, c(\AA)$	$9.78891(17), 7.10774(12)$,
$V\left(\AA^{3}\right)$	$23.0893(4)$
Z	$1606.49(5)$
Radiation type	8
Specimen shape, size (mm)	$\mathrm{Cu} K \alpha, \lambda=1.54188 \AA$
	Flat sheet, 25×25
Data collection	
Diffractometer	Bruker D8 Advance
Specimen mounting	Packed powder pellet
Data collection mode	Reflection
Scan method	Step
2θ values $\left({ }^{\circ}\right)$	$2 \theta_{\text {min }}=14.52 \theta_{\text {max }}=902 \theta_{\text {step }}=$
	0.014
Refinement	
R factors and goodness of fit	$R_{\mathrm{p}}=0.03, R_{\text {wp }}=0.04, R_{\text {exp }}=0.011$,
	$R_{\mathrm{Bragg}}=0.013, \chi^{2}=13.250$
No. of parameters	82

Computer programs: XRD Commander (Kienle et al., 2003), TOPAS (Bruker, 2009), VESTA (Momma \& Izumi, 2011) and publCIF (Westrip, 2010).

Kroll, J. O., Crum, J. V., Riley, B. J., Neeway, J. J., Asmussen, R. M. \& Liezers, M. (2019). J. Nucl. Mater. 515, 370-381.
Mazza, D., Tribaudino, M., Delmastro, A. \& Lebech, B. (2000). J. Solid State Chem. 155, 389-393.
McAndrew, J. \& Scott, T. (1955). Nature, 176, 509-510.
Momma, K. \& Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
Müller-Bunz, H., Grossholz, H. \& Schleid, T. (2001). Z. Anorg. Allg. Chem. 627, 1436-1438.
Müller-Bunz, H. \& Schleid, T. (1998). Z. Kristallogr. Suppl. 15, 48.
Naidu, S. A., Varadaraju, U. V. \& Raveau, B. (2010). J. Solid State Chem. 183, 1847-1852.
Nekrasov, I. I. \& Nekrasova, R. A. (1971). Dokl. Akad. Nauk SSSR, 201, 1202.
Neumann, H., Bergstøl, S. \& Nilssen, B. (1966). Nor. Geo. Tidsskr, 46, 327-334.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Shi, Y., Liang, J. K., Zhang, H., Yang, J. L., Zhuang, W. D. \& Rao, G. H. (1997). J. Alloys Compd. 259, 163-169.

Shvanskii, E. V., Leonyuk, N. I., Bocelli, G. \& Righi, L. (2000). J. Solid State Chem. 154, 312-316.
Voronkov, A. A. \& Pyatenko, Y. A. (1967). Sov. Phys. Cryst. 12, 258265.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yuan, J.-L., Zhang, Z.-J., Wang, X.-J., Chen, H.-H., Zhao, J.-T., Zhang, G.-B. \& Shi, C.-S. (2007). J. Solid State Chem. 180, 1365-1371.

supporting information

Acta Cryst. (2019). E75, 700-702 [https://doi.org/10.1107/S2056989019005024]
Synthesis and crystal structure of a neodymium borosilicate, $\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$
Saehwa Chong, Jared O. Kroll, Jarrod V. Crum and Brian J. Riley

Computing details

Data collection: XRD Commander (Kienle et al., 2003); cell refinement: TOPAS (Bruker, 2009); program(s) used to solve structure: TOPAS (Bruker, 2009); program(s) used to refine structure: TOPAS (Bruker, 2009); molecular graphics: VESTA (Momma \& Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Trineodymium borosilicate

Crystal data

$\mathrm{Nd}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$
$M_{r}=659.7$
Orthorhombic, Pbca
$a=9.78891$ (17) \AA
$b=7.10774$ (12) \AA
$c=23.0893(4) \AA$
$V=1606.49(5) \AA^{3}$

Data collection

Bruker D8 Advance
diffractometer
Radiation source: sealed X-ray tube
Specimen mounting: packed powder pellet
Refinement
$R_{\mathrm{p}}=0.03$
$R_{\text {wp }}=0.04$
$R_{\text {exp }}=0.011$
$R_{\text {Bragg }}=0.013$
5738 data points
Profile function: pseudo-Voigt
Special details

$$
\begin{aligned}
& Z=8 \\
& D_{\mathrm{x}}=5.455 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation, } \lambda=1.54188 \AA \\
& T=295 \mathrm{~K} \\
& \text { blue_violet } \\
& \text { flat_sheet, } 25 \times 25 \mathrm{~mm}
\end{aligned}
$$

Data collection mode: reflection
Scan method: step
$2 \theta_{\min }=14.5^{\circ}, 2 \theta_{\max }=90^{\circ}, 2 \theta_{\text {step }}=0.014^{\circ}$

82 parameters
Weighting scheme based on measured s.u.'s
$(\Delta / \sigma)_{\max }=0.011$
Background function: Chebychev
Preferred orientation correction: spherical harmonic

Refinement. background fitted from 14.5 degree to avoid a hump from instrumental artifact

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$B_{\text {iso }} * / B_{\text {eq }}$
Nd1	$0.4909(2)$	$0.3621(3)$	$0.42810(6)$	1
Nd2	$0.1338(2)$	$0.3296(4)$	$0.33652(7)$	1
Nd3	$0.2655(2)$	$0.0934(3)$	$0.18257(7)$	1
B1	$0.249(4)$	$0.387(7)$	$0.9703(13)$	1
Si1	$0.3810(10)$	$0.3516(16)$	$0.0787(3)$	1

Si2	$0.4381(9)$	$0.3240(17)$	$0.2814(4)$	1
O1	$0.2558(17)$	$0.254(3)$	$0.9191(7)$	1
O2	$0.1165(18)$	$0.399(3)$	$0.9903(7)$	1
O3	$0.3697(19)$	$0.348(3)$	$0.0088(6)$	1
O4	$0.4525(17)$	$0.170(3)$	$0.1055(7)$	1
O5	$0.2286(15)$	$0.346(3)$	$0.1083(7)$	1
O6	$0.4662(17)$	$0.537(3)$	$0.0938(8)$	1
O7	$0.6028(18)$	$0.293(2)$	$0.2773(7)$	1
O8	$0.4151(15)$	$0.369(2)$	$0.2120(7)$	1
O9	$0.3903(18)$	$0.466(2)$	$0.3239(7)$	1
O10	$0.3481(15)$	$0.138(3)$	$0.2880(6)$	1

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
$?$	$?$	$?$	$?$	$?$	$?$	$?$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Nd} 1-\mathrm{Ol}^{1}$	2.454 (17)	$\mathrm{Nd} 3-\mathrm{O} 7{ }^{\text {vi }}$	2.325 (16)
$\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.460 (19)	$\mathrm{B} 1-\mathrm{O} 2$	1.38 (4)
$\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.265 (17)	Sil-O3	1.618 (16)
$\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iv }}$	2.39 (2)	Si1-O4	1.59 (2)
Nd1- $\mathrm{O}^{\text {v }}$	2.40 (2)	Sil-O5	1.641 (18)
Nd2-O1 ${ }^{\text {i }}$	2.327 (17)	Si1-O6	1.60 (2)
$\mathrm{Nd} 2-\mathrm{O} 8{ }^{\text {vi }}$	2.432 (15)	Si2-07	1.63 (2)
$\mathrm{Nd} 2-\mathrm{O} 10^{\text {vii }}$	2.47 (2)	Si2-08	1.649 (19)
Nd3-Nd3 ${ }^{\text {viii }}$	3.567 (3)	Si2-09	1.483 (19)
$\mathrm{Nd} 3-\mathrm{Nd} 3{ }^{\text {vii }}$	3.567 (3)	Si2-O10	1.60 (2)
Nd3-O5 ${ }^{\text {viii }}$	2.457 (19)		
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {ii }}$	83.2 (6)	O3-Si1-O6	105.4 (11)
$\mathrm{O} 1^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 2^{\text {iii }}$	128.2 (6)	O4-Si1-O5	102.6 (11)
$\mathrm{O} 1^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iv }}$	119.9 (6)	O4-Si1-O6	110.7 (11)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O}^{\text {v }}$	79.8 (6)	O5-Si1-O6	113.8 (11)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {iii }}$	70.5 (6)	O7-Si2-O8	96.0 (9)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iv }}$	69.9 (6)	O7-Si2-09	116.3 (11)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O}^{\mathrm{v}}$	149.5 (6)	O7-Si2-O10	116.1 (11)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iv }}$	92.2 (7)	O8-Si2-09	117.9 (11)
$\mathrm{O} 2^{\mathrm{iii}}-\mathrm{Nd} 1-\mathrm{O}^{\mathrm{V}}$	101.0 (7)	O8-Si2-O10	100.3 (9)
$\mathrm{O} 4{ }^{\text {iv }}-\mathrm{Nd} 1-\mathrm{O}^{\mathrm{v}}$	140.6 (6)	O9-Si2-O10	109.0 (10)
$\mathrm{O} 1^{\text {i }}-\mathrm{Nd} 2-\mathrm{O} 8^{\text {vi }}$	149.1 (6)	$\mathrm{Nd} 1{ }^{\text {ix }}-\mathrm{O} 1-\mathrm{Nd} 2{ }^{\text {ix }}$	117.7 (7)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Nd} 2-\mathrm{O} 10^{\text {vii }}$	124.2 (6)	$\mathrm{Nd} 1^{\mathrm{x}}-\mathrm{O} 2-\mathrm{Nd} 1^{\mathrm{xi}}$	109.5 (7)
$\mathrm{O} 8^{\text {vi }}-\mathrm{Nd} 2-\mathrm{O} 10^{\text {vii }}$	75.6 (5)	$\mathrm{Nd} 1 \times-\mathrm{O} 2-\mathrm{B} 1$	104 (2)
$\mathrm{Nd} 3{ }^{\text {viii- }}$ - $\mathrm{Nd} 3-\mathrm{Nd} 3{ }^{\text {vii }}$	170.24 (8)	$\mathrm{Nd} 1{ }^{\text {xi }}-\mathrm{O} 2-\mathrm{B} 1$	141.4 (17)
$\mathrm{Nd} 3{ }^{\text {viii }}$ - $\mathrm{Nd} 3-\mathrm{O} 5^{\text {viii }}$	44.7 (4)	Nd1 ${ }^{2}-\mathrm{O} 4-\mathrm{Sil}$	135.9 (10)
$\mathrm{Nd} 3{ }^{\text {viii }}-\mathrm{Nd} 3-\mathrm{O} 7^{\text {vi }}$	123.3 (4)	Nd3 ${ }^{\text {vii }}$-O5-Si1	104.6 (9)
Nd3 ${ }^{\text {vii }}-\mathrm{Nd} 3-\mathrm{O} 5^{\text {viii }}$	135.7 (4)	Nd1 ${ }^{\text {iv }}$-O6-Sil	147.0 (11)

supporting information

$\mathrm{Nd} 3^{\text {vii }}-\mathrm{Nd} 3-\mathrm{O} 7^{\mathrm{vi}}$	$48.2(4)$
$\mathrm{O} 5^{\text {viii }}-\mathrm{Nd} 3-\mathrm{O} 7^{\text {vi }}$	$137.0(5)$
$\mathrm{O} 3 — \mathrm{Si}-\mathrm{O} 4$	$113.9(11)$
$\mathrm{O} 3 — \mathrm{Si}-\mathrm{O} 5$	$110.7(10)$

$\mathrm{Nd} 3{ }^{\text {xii }}-\mathrm{O} 7-\mathrm{Si} 2$	$137.5(9)$
$\mathrm{Nd} 2 \mathrm{xii}-\mathrm{O} 8-\mathrm{Si} 2$	$107.8(8)$
$\mathrm{Nd} 2{ }^{\text {viii }}-\mathrm{O} 10-\mathrm{Si} 2$	$137.7(9)$

33
Symmetry codes: (i) $x,-y+1 / 2, z-1 / 2$; (ii) $-x+1 / 2,-y+1, z-1 / 2$; (iii) $x+1 / 2, y,-z+3 / 2$; (iv) $-x+1, y+1 / 2,-z+1 / 2$; (v) $-x+1, y-1 / 2,-z+1 / 2$; (vi) $x-1 / 2, y$, $-z+1 / 2$; (vii) $-x+1 / 2, y+1 / 2, z$; (viii) $-x+1 / 2, y-1 / 2, z$; (ix) $x,-y+1 / 2, z+1 / 2$; (x) $-x+1 / 2,-y+1, z+1 / 2$; (xi) $x-1 / 2, y,-z+3 / 2$; (xii) $x+1 / 2, y,-z+1 / 2$.

