

Received 1 April 2019 Accepted 9 April 2019

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; hydrogen bond; C—H···*π*(ring) interactions; pyrazolopyrimidine; Hirshfeld surface analysis.

CCDC reference: 1909062

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 3-(4-methoxyphenyl)-1-methyl-4-phenyl-1*H*-pyrazolo[3,4-*d*]pyrimidine

Mohamed El Hafi,^a* Sevgi Kansiz,^b* Sanae Lahmidi,^a Mohammed Boulhaoua,^a Youssef Ramli,^c Necmi Dege,^b El Mokhtar Essassi^a and Joel T. Mague^d

^aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, ^bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, ^cLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V, University Rabat, Morocco, and ^dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: elhafi.mohamed1@gmail.com, sevgi.kansiz85@gmail.com

In the title molecule, $C_{19}H_{16}N_4O$, the planar pyrazolopyrimidine moiety is inclined to the attached phenyl rings by 35.42 (4) and 54.51 (6)°. In the crystal, adjacent molecules are linked into chains parallel to [110] and [110] by C– $H \cdots O$ and C– $H \cdots N$ hydrogen bonds. Additional C– $H \cdots \pi$ (ring) interactions lead to the formation of the final three-dimensional network structure. The Hirshfeld surface analysis of the title compound suggests that the most significant contributions to the crystal packing are from $H \cdots H$ (48.2%), $C \cdots H/$ $H \cdots C$ (23.9%) and $N \cdots H/H \cdots N$ (17.4%) contacts.

1. Chemical context

Pyrazolo[3,4-*d*]pyrimidine derivatives represent an important class of compounds because of their potent biological activities and thus find applications as antiproliferative (Tallani *et al.*, 2010), antibacterial (Rostamizadeh *et al.*, 2013) or antitumor agents (Tintori *et al.*, 2015). The present contribution is a continuation of the investigation of pyrazolo[3,4-*d*]pyrimidine derivatives recently published by us (El Hafi *et al.*, 2017, 2018*a,b*). We report herein the synthesis, molecular and crystal structures of the title compound, 3-(4-methoxyphenyl)-1-methyl-4-phenyl-1*H*-pyrazolo[3,4-*d*]pyrimidine (Fig. 1), along with the results of a Hirshfeld surface analysis.

OPEN d ACCESS

2. Structural commentary

The heterocyclic ring system is planar (r.m.s. deviation of the fitted atoms = 0.0194 Å) with a maximum displacement of 0.0329 (10) Å from the mean plane for atom C1. The attached

Table 1	
Hydrogen-bond geometry (Å,	°).

 $\mathit{Cg1}$ and $\mathit{Cg4}$ are the centroids of the C3/C4/C5/N4/N3 and C13–C18 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C9-H9\cdots N2^i$	0.988 (18)	2.579 (17)	3.3995 (19)	140.3 (14)
$C12-H12B\cdots O1^{ii}$	0.98 (2)	2.49 (2)	3.2694 (19)	136.4 (15)
$C17-H17\cdots O1^{iii}$	0.983 (17)	2.618 (9)	3.4973 (17)	149.3 (14)
C19-H19 B ···Cg4 ^{iv}	1.02 (2)	2.74 (2)	3.5928 (19)	141.9 (14)
$C19-H19C\cdots Cg1^{v}$	0.995 (19)	2.947 (19)	3.9072 (19)	162.0 (15)

Symmetry codes: (i) x - 1, y + 1, z; (ii) x + 1, y - 1, z; (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) x, y + 1, z.

benzene rings (C6–C11 and C13–C18) are inclined to the above plane by 35.42 (4) and 54.51 (6)°, respectively.

3. Supramolecular features

In the crystal, a combination of $C9-H9\cdots N2$ hydrogen bonds between aromatic hydrogen atoms and one of the pyrimidine N atoms as well as $C12-H12B\cdots O1$ hydrogen bonds between a methyl H atom and the methoxy O atoms of adjacent molecules lead to the formation of chains extending alternately parallel to [110] and [110] (Table 1 and Fig. 2). Centrosymmetric dimers with an $R_2^2(8)$ graph-set motif are formed by pairwise $C17-H17\cdots O1$ hydrogen bonds. The chains are linked into layers parallel to (001) by $C19-H19C\cdots Cg1$ interactions, and pairs of layers are joined into thicker slabs by $C19-H19B\cdots Cg4$ interactions (Table 1 and Figs. 2–4).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom *et al.*, 2016) for the 1-methyl-1*H*-pyrazolo[3,4-*d*]pyrimidine skeleton yielded seven hits. In all of these structures, the pyrazolo[3,4-*d*]pyrimi-

Figure 1

The title molecule with the labeling scheme and displacement ellipsoids drawn at the 50% probability level.

Figure 2

Details of the intermolecular interactions in a view along [100]. C– H···O and C–H···N hydrogen bonds are shown, respectively, as black and light-purple dashed lines while the C–H··· π (ring) interactions are shown as green dashed lines. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y - 1, z; (iii) x - 1, y + 1, z.]

Figure 3

Packing of the crystal viewed along [100] with intermolecular interactions depicted as in Fig. 2.

research communications

Figure 5

The Hirshfeld surfaces of the title compound mapped over (a) d_{norm} , (b) d_{i} , (c) d_{e} , (d) shape-index, (e) curvedness and (f) electrostatic potential.

dine rings are planar, as in the title compound. In FEWVIP (El Hafi *et al.*, 2018*a*), centrosymmetric dimers with an $R_2^2(8)$ graph set motif are formed by pairwise N-H···O hydrogen bonds; the dimers are connected into chains parallel to [001], similar to those in the title compound. Neighbouring molecules in FAXFEP (Sheldrick & Bell, 1987*a*) and in FOGXAA, FOGXEE, FOGXII, JAGROY (Sheldrick & Bell, 1987*b*) are linked by N-H···O hydrogen bonds, whereas in XAXRUM (El Fal *et al.*, 2017), C-H···N hydrogen bonds are responsible for the formation of double chains running parallel to [100].

5. Hirshfeld surface analysis

CrystalExplorer17 (Turner *et al.*, 2017) was used to perform the Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and obtain the associated two-dimensional fingerprint plots (McKinnon *et al.*, 2007). Fig. 5 shows d_{norm} , d_i , d_e , shape-index, curvedness and electrostatic potential mapped over the Hirshfeld surface for the title compound while Fig. 6 illustrates the Hirshfeld surface of the molecule in the crystal, with the evident hydrogen-bonding interactions indicated as intense red spots.

Fig. 7a shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The fingerprint plots provide information about the percentage contributions of various interatomic

Figure 6

 $d_{\rm norm}$ mapped on Hirshfeld surfaces for visualizing the intermolecular interactions of the title compound.

Figure 7

Two-dimensional fingerprint plots for the title structure, with a d_{norm} view and relative contribution of the atom pairs to the Hirshfeld surface.

contacts in the structure. The blue color refers to the frequency of occurrence of the (d_i, d_e) pair with the full fingerprint outlined in gray. Individual fingerprint plots (Fig. 7b) reveal that the H···H contacts clearly give the most significant contribution to the Hirshfeld surface (48.2%). In addition, C···H/H···C, N···H/H···N, O···H/H···O and C···N/N···C contacts contribute 23.9%, 17.4%, 5.3% and 2.6%, respectively, to the Hirshfeld surface. In particular, the N···H/H···N and O···H/H···O contacts indicate the presence of intermolecular C–H···N and C–H···O interactions, respectively. Much weaker C···C (2.2%) and C···O/ O···C (0.5%) contacts also occur.

A view of the molecular electrostatic potential, in the range -0.0500 to 0.0500 a.u. using the 6-31G(d,p) basis set (DFT method), for the title compound is shown in Fig. 8. The donors

Figure 8 A view of the molecular electro

A view of the molecular electrostatic potential of the title compound in the range -0.05 to 0.05 a.u. using the 6-31G(d,p) basis set (DFT method).

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{19}H_{16}N_4O$
M _r	316.36
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.5227 (3), 7.8979 (4), 30.7774 (15)
β (°)	95.389 (2)
$V(Å^3)$	1578.51 (13)
Ζ	4
Radiation type	Cu Ka
$\mu (\mathrm{mm}^{-1})$	0.69
Crystal size (mm)	$0.30 \times 0.24 \times 0.04$
Data collection	
Different emotion	Deulton DO VENTURE RUOTON
Diffractometer	100 CMOS
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.85, 0.98
No. of measured, independent and	11542, 3069, 2613
observed $[I > 2\sigma(I)]$ reflections	, ,
R _{int}	0.035
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.039.0.091.1.06
No of reflections	3069
No. of parameters	282
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\text{min}} \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.190.18
$-r \max$, $-r \min ()$	

Computer programs: APEX3 and SAINT (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

and acceptors for $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogenbond acceptors) electrostatic potentials, respectively.

6. Synthesis and crystallization

Under an atmosphere of argon, a mixture of 1-methyl-4-(0.1 g, phenyl-1*H*-pyrazolo[3,4-*d*]pyrimidine 0.47 mmol), 4-iodoanisole (0.22 g, 0.95 mmol), Cs₂CO₃ (0.46g, 1.42 mmol), K_3PO_4 (0.25 g, 1.18 mmol), 1,10-phenanthroline (0.034 g, 0.19 mmol), and Pd(OAc)₂ (0.021 g, 0.094 mmol) in DMA (3 ml) was heated to 438 K for 48 h. After completion of the reaction, the mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure. Water (15 ml) was added, and the resulting aqueous phase was extracted with CH_2Cl_2 (3 × 15 ml). The combined organic lavers were dried with MgSO₄ and concentrated under vacuum. The residue was purified by column chromatography on silica gel (EtOAc/petroleum ether). The title compound was recrystallized from ethanol at room temperature, giving colorless crystals (yield: 71%; m.p. 412-414 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference-Fourier map and were freely refined.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
- El Fal, M., Mague, J. T., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). *IUCrData*, **2**, x171042.
- El Hafi, M., Boulhaoua, M., Lahmidi, S., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). *IUCrData*, 3, x180243.
- El Hafi, M., Lahmidi, S., Boulhaoua, M., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018b). *IUCrData*, **3**, x180483.
- El Hafi, M., Naas, M., Loubidi, M., Jouha, J., Ramli, Y., Mague, J. T., Essassi, E. M. & Guillaumet, G. (2017). C. R. Chim. 20, 927–933.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. *Appl. Cryst.* **48**, 3–10.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Rostamizadeh, S., Nojavan, M., Aryan, R., Sadeghian, H. & Davoodnejad, M. (2013). Chin. Chem. Lett. 24, 629–632.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015*a*). Acta Cryst. A**71**, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sheldrick, W. S. & Bell, P. (1987a). Z. Naturforsch. Teil B, 42, 195–202.
- Sheldrick, W. S. & Bell, P. (1987b). Inorg. Chim. Acta, 137, 181-188.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Taliani, S., La Motta, C., Mugnaini, L., Simorini, F., Salerno, S., Marini, A. M., Da Settimo, F., Cosconati, S., Cosimelli, B., Greco, G., Limongelli, V., Marinelli, L., Novellino, E., Ciampi, O., Daniele, S., Trincavelli, M. L. & Martini, C. (2010). J. Med. Chem. 53, 3954– 3963.
- Tintori, C., Fallacara, A. L., Radi, M., Zamperini, C., Dreassi, E., Crespan, E., Maga, G., Schenone, S., Musumeci, F., Brullo, C., Richters, A., Gasparrini, F., Angelucci, A., Festuccia, C., Delle Monache, S., Rauh, D. & Botta, M. (2015). *J. Med. Chem.* 58, 347– 361.
- Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia. http://hirshfeldsurface.net.

Acta Cryst. (2019). E75, 638-641 [https://doi.org/10.1107/S2056989019004894]

Crystal structure and Hirshfeld surface analysis of 3-(4-methoxyphenyl)-1methyl-4-phenyl-1*H*-pyrazolo[3,4-*d*]pyrimidine

Mohamed El Hafi, Sevgi Kansiz, Sanae Lahmidi, Mohammed Boulhaoua, Youssef Ramli, Necmi Dege, El Mokhtar Essassi and Joel T. Mague

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015*b*); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

3-(4-Methoxyphenyl)-1-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidine

Crystal data

 $C_{19}H_{16}N_4O$ $M_r = 316.36$ Monoclinic, $P2_1/n$ a = 6.5227 (3) Å b = 7.8979 (4) Å c = 30.7774 (15) Å $\beta = 95.389$ (2)° V = 1578.51 (13) Å³ Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro-focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹
ω scans
Absorption correction: multi-scan (SADABS; Krause et al., 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.091$ S = 1.063069 reflections 282 parameters F(000) = 664 $D_x = 1.331 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8514 reflections $\theta = 2.9-72.2^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.30 \times 0.24 \times 0.04 \text{ mm}$

 $T_{min} = 0.85, T_{max} = 0.98$ 11542 measured reflections 2613 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 72.2^{\circ}, \theta_{min} = 5.8^{\circ}$ $h = -7 \rightarrow 8$ $k = -9 \rightarrow 8$ $l = -37 \rightarrow 33$

0 restraints Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0337P)^2 + 0.5793P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Extinction correction: *SHELXL2018* (Sheldrick, 2015*b*), Fc^{*}=kFc[1+0.001xFc² λ^{3} /sin(2 θ)]^{-1/4} Extinction coefficient: 0.0035 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equ	uivalent isotropic displacement parameters (À	l^2
--	---	-------

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.20599 (16)	0.66433 (13)	0.47647 (3)	0.0355 (3)	
N1	0.21981 (18)	-0.14300 (15)	0.29349 (4)	0.0310 (3)	
N2	0.53402 (18)	-0.27278 (15)	0.32443 (4)	0.0314 (3)	
N3	0.70112 (17)	-0.11435 (15)	0.38386 (4)	0.0302 (3)	
N4	0.66731 (18)	0.02986 (15)	0.40680 (4)	0.0306 (3)	
C1	0.2383 (2)	-0.01161 (17)	0.32134 (4)	0.0257 (3)	
C2	0.3656 (2)	-0.26430 (19)	0.29691 (5)	0.0338 (3)	
H2	0.343 (3)	-0.360 (2)	0.2760 (6)	0.038 (4)*	
C3	0.5468 (2)	-0.14182 (18)	0.35243 (4)	0.0271 (3)	
C4	0.4895 (2)	0.09486 (18)	0.38968 (4)	0.0267 (3)	
C5	0.4044 (2)	-0.00839 (17)	0.35407 (4)	0.0249 (3)	
C6	0.0795 (2)	0.12152 (17)	0.31411 (4)	0.0257 (3)	
C7	0.1276 (2)	0.29264 (18)	0.31985 (5)	0.0305 (3)	
H7	0.270 (3)	0.330(2)	0.3290 (5)	0.034 (4)*	
C8	-0.0249 (3)	0.4138 (2)	0.31144 (5)	0.0366 (4)	
H8	0.017 (3)	0.533 (2)	0.3158 (6)	0.042 (5)*	
C9	-0.2243 (2)	0.3662 (2)	0.29735 (5)	0.0379 (4)	
H9	-0.331 (3)	0.454 (2)	0.2911 (6)	0.044 (5)*	
C10	-0.2719 (2)	0.1971 (2)	0.29048 (5)	0.0347 (3)	
H10	-0.408 (3)	0.162 (2)	0.2792 (6)	0.051 (5)*	
C11	-0.1211 (2)	0.07493 (19)	0.29875 (5)	0.0287 (3)	
H11	-0.153 (2)	-0.048(2)	0.2930 (5)	0.033 (4)*	
C12	0.8835 (2)	-0.2161 (2)	0.39446 (6)	0.0370 (4)	
H12A	1.000 (3)	-0.162 (3)	0.3834 (7)	0.062 (6)*	
H12B	0.912 (3)	-0.232 (2)	0.4259 (7)	0.057 (6)*	
H12C	0.855 (3)	-0.330 (3)	0.3805 (6)	0.054 (5)*	
C13	0.4119 (2)	0.24828 (17)	0.41004 (4)	0.0267 (3)	
C14	0.5384 (2)	0.38855 (18)	0.41690 (5)	0.0298 (3)	
H14	0.678 (3)	0.386 (2)	0.4064 (5)	0.037 (4)*	
C15	0.4749 (2)	0.53140 (18)	0.43856 (5)	0.0311 (3)	
H15	0.565 (2)	0.6368 (18)	0.4445 (5)	0.021 (3)*	
C16	0.2816(2)	0.53215 (18)	0.45402 (4)	0.0291 (3)	

C17	0.1517 (2)	0.39289 (19)	0.44698 (5)	0.0313 (3)
H17	0.017 (3)	0.394 (2)	0.4587 (6)	0.041 (5)*
C18	0.2157 (2)	0.25287 (19)	0.42500 (5)	0.0300 (3)
H18	0.124 (2)	0.157 (2)	0.4201 (5)	0.033 (4)*
C19	0.3310 (3)	0.8127 (2)	0.48265 (6)	0.0407 (4)
H19A	0.252 (3)	0.891 (3)	0.5003 (6)	0.057 (6)*
H19B	0.471 (3)	0.782 (2)	0.4976 (7)	0.054 (5)*
H19C	0.356 (3)	0.862 (2)	0.4538 (6)	0.046 (5)*

)
)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0375 (6)	0.0338 (6)	0.0346 (6)	0.0032 (4)	0.0009 (4)	-0.0060 (4)
N1	0.0310 (6)	0.0318 (7)	0.0298 (6)	0.0027 (5)	0.0009 (5)	-0.0055 (5)
N2	0.0314 (6)	0.0314 (6)	0.0314 (7)	0.0052 (5)	0.0035 (5)	-0.0016 (5)
N3	0.0262 (6)	0.0331 (7)	0.0304 (6)	0.0050 (5)	-0.0010 (5)	0.0001 (5)
N4	0.0277 (6)	0.0338 (7)	0.0297 (6)	0.0020 (5)	0.0001 (5)	-0.0002 (5)
C1	0.0248 (6)	0.0284 (7)	0.0240 (7)	-0.0009 (5)	0.0034 (5)	0.0004 (5)
C2	0.0348 (8)	0.0334 (8)	0.0330 (8)	0.0031 (6)	0.0027 (6)	-0.0068 (6)
C3	0.0261 (7)	0.0297 (7)	0.0258 (7)	0.0013 (5)	0.0039 (5)	0.0019 (6)
C4	0.0251 (6)	0.0295 (7)	0.0254 (7)	-0.0005 (5)	0.0012 (5)	0.0013 (5)
C5	0.0247 (6)	0.0265 (7)	0.0238 (7)	0.0006 (5)	0.0031 (5)	0.0008 (5)
C6	0.0272 (7)	0.0298 (7)	0.0201 (6)	0.0023 (5)	0.0022 (5)	0.0008 (5)
C7	0.0340 (8)	0.0304 (7)	0.0265 (7)	0.0003 (6)	-0.0006 (6)	0.0004 (6)
C8	0.0489 (9)	0.0295 (8)	0.0312 (8)	0.0066 (7)	0.0029 (7)	0.0009 (6)
C9	0.0402 (8)	0.0421 (9)	0.0320 (8)	0.0161 (7)	0.0060 (6)	0.0047 (7)
C10	0.0274 (7)	0.0465 (9)	0.0302 (8)	0.0059 (6)	0.0024 (6)	0.0043 (7)
C11	0.0277 (7)	0.0333 (8)	0.0251 (7)	0.0008 (6)	0.0025 (5)	0.0006 (6)
C12	0.0273 (8)	0.0407 (9)	0.0421 (10)	0.0082 (6)	-0.0004 (7)	0.0055 (7)
C13	0.0274 (7)	0.0304 (7)	0.0216 (7)	0.0007 (5)	-0.0017 (5)	-0.0004 (5)
C14	0.0268 (7)	0.0338 (8)	0.0285 (7)	-0.0015 (6)	0.0009 (6)	-0.0003 (6)
C15	0.0322 (7)	0.0304 (8)	0.0301 (8)	-0.0036 (6)	0.0001 (6)	-0.0010 (6)
C16	0.0330 (7)	0.0312 (7)	0.0219 (7)	0.0049 (6)	-0.0030 (5)	-0.0006 (5)
C17	0.0252 (7)	0.0395 (8)	0.0286 (7)	0.0013 (6)	0.0001 (6)	-0.0010 (6)
C18	0.0270 (7)	0.0330 (8)	0.0294 (7)	-0.0034 (6)	-0.0010 (6)	-0.0015 (6)
C19	0.0536 (10)	0.0306 (8)	0.0374 (9)	-0.0015 (7)	0.0012 (8)	-0.0042 (7)

Geometric parameters (Å, °)

01—C16	1.3690 (17)	C9—C10	1.383 (2)
O1—C19	1.430 (2)	С9—Н9	0.988 (18)
N1-C1	1.3441 (18)	C10-C11	1.385 (2)
N1—C2	1.3471 (18)	C10—H10	0.96 (2)
N2—C2	1.3243 (19)	C11—H11	1.003 (16)
N2—C3	1.3438 (18)	C12—H12A	0.96 (2)
N3—C3	1.3464 (18)	C12—H12B	0.98 (2)
N3—N4	1.3687 (17)	C12—H12C	1.01 (2)
N3—C12	1.4476 (18)	C13—C14	1.3854 (19)

N4—C4	1.3310 (17)	C13—C18	1.401 (2)
C1—C5	1.4087 (19)	C14—C15	1.393 (2)
C1—C6	1.4778 (18)	C14—H14	0.997 (17)
С2—Н2	0.993 (17)	C15—C16	1.389 (2)
C3—C5	1.4089 (18)	С15—Н15	1.025 (15)
C4—C5	1.4351 (19)	C16—C17	1.393 (2)
C4—C13	1.4753 (19)	C17—C18	1.381 (2)
C6-C7	1 395 (2)	C17—H17	0.983(17)
C6-C11	1 3982 (19)	C18—H18	0.903(17)
C7-C8	1.3902(19) 1.387(2)	C10 H10	1.00(2)
C7 H7	1.367(2)		1.00(2)
$C^{2} = C^{2}$	0.987(17) 1.284(2)	C10_H10C	1.02(2)
$C_0 = U_0$	1.364(2)	С19—п19С	0.995 (19)
Съ-на	0.990 (18)		
C16—O1—C19	117.64 (12)	С9—С10—Н10	121.0 (11)
C1—N1—C2	118.61 (12)	C11—C10—H10	119.0 (11)
C2—N2—C3	111.67 (12)	C10—C11—C6	120.35 (14)
C3—N3—N4	111.03 (11)	C10—C11—H11	120.7 (9)
C_3 — N_3 — C_{12}	127.98 (13)	C6-C11-H11	118.9 (9)
N4—N3—C12	120.99(12)	N3—C12—H12A	109.5(12)
C4—N4—N3	107.06(11)	N3—C12—H12B	109.3(12) 111.7(12)
N1-C1-C5	107.00(11) 110.14(12)	$H_{12} = C_{12} = H_{12} B$	108.8(17)
N1_C1_C6	115.14(12) 115.69(12)	$N_3 C_{12} H_{12}C$	106.5(17)
$C_{5} = C_{1} = C_{6}$	115.09(12) 125.16(12)	$H_{12A} = C_{12} = H_{12C}$	100.5(11)
C_{3}	123.10(12) 129.52(14)	H12A - C12 - H12C	111.0(10)
$N_2 = C_2 = N_1$	128.55(14)	H12B— $C12$ — $H12C$	108.8 (10)
N2-C2-H2	116.0 (10)		118.58 (13)
NI—C2—H2	115.4 (10)	C14—C13—C4	119.90 (12)
N2-C3-N3	125.60 (12)	C18—C13—C4	121.42 (12)
N2—C3—C5	126.66 (13)	C13—C14—C15	121.41 (13)
N3—C3—C5	107.73 (12)	C13—C14—H14	119.1 (10)
N4—C4—C5	110.07 (12)	C15—C14—H14	119.5 (10)
N4—C4—C13	118.00 (12)	C16—C15—C14	119.18 (13)
C5—C4—C13	131.88 (12)	C16—C15—H15	117.3 (8)
C1—C5—C3	115.24 (12)	C14—C15—H15	123.6 (8)
C1—C5—C4	140.59 (13)	O1—C16—C15	123.91 (13)
C3—C5—C4	104.08 (12)	O1—C16—C17	115.98 (13)
C7—C6—C11	119.32 (13)	C15—C16—C17	120.11 (13)
C7—C6—C1	121.63 (12)	C18—C17—C16	120.07 (13)
C11—C6—C1	118.95 (13)	C18—C17—H17	120.7 (10)
C8—C7—C6	119.76 (14)	C16—C17—H17	119.2 (10)
С8—С7—Н7	119.1 (10)	C17—C18—C13	120.62 (13)
С6—С7—Н7	121.1 (9)	C17—C18—H18	119.4 (9)
C9—C8—C7	120.50 (15)	C13—C18—H18	120.0 (9)
C9—C8—H8	122.8 (10)	01—C19—H19A	105.4 (11)
C7—C8—H8	116.7 (10)	01—C19—H19B	110.0 (11)
C10-C9-C8	120.07 (14)	H19A—C19—H19B	113.1 (16)
С10—С9—Н9	120.4 (10)	01-C19-H19C	109.8 (11)
C8-C9-H9	119 5 (10)	H19A - C19 - H19C	112 3 (15)
			112.2 (12)

C9—C10—C11	119.94 (14)	H19B—C19—H19C	106.3 (15)
C3—N3—N4—C4	-0.08 (15)	C5—C1—C6—C7	36.6 (2)
C12—N3—N4—C4	-179.99 (13)	N1-C1-C6-C11	34.01 (18)
C2—N1—C1—C5	-2.4 (2)	C5-C1-C6-C11	-147.05 (14)
C2—N1—C1—C6	176.60 (13)	C11—C6—C7—C8	1.8 (2)
C3—N2—C2—N1	2.3 (2)	C1—C6—C7—C8	178.07 (13)
C1—N1—C2—N2	-1.2 (2)	C6—C7—C8—C9	-0.1 (2)
C2—N2—C3—N3	-179.20 (14)	C7—C8—C9—C10	-1.6 (2)
C2—N2—C3—C5	0.1 (2)	C8—C9—C10—C11	1.6 (2)
N4—N3—C3—N2	-179.83 (13)	C9—C10—C11—C6	0.1 (2)
C12—N3—C3—N2	0.1 (2)	C7—C6—C11—C10	-1.8 (2)
N4—N3—C3—C5	0.79 (16)	C1-C6-C11-C10	-178.18 (13)
C12—N3—C3—C5	-179.31 (14)	N4-C4-C13-C14	52.12 (18)
N3—N4—C4—C5	-0.66 (15)	C5-C4-C13-C14	-130.58 (16)
N3—N4—C4—C13	177.20 (11)	N4-C4-C13-C18	-124.27 (15)
N1—C1—C5—C3	4.26 (19)	C5-C4-C13-C18	53.0 (2)
C6—C1—C5—C3	-174.66 (12)	C18—C13—C14—C15	0.7 (2)
N1—C1—C5—C4	-179.91 (16)	C4—C13—C14—C15	-175.81 (13)
C6-C1-C5-C4	1.2 (3)	C13—C14—C15—C16	0.7 (2)
N2—C3—C5—C1	-3.2 (2)	C19—O1—C16—C15	2.7 (2)
N3—C3—C5—C1	176.16 (12)	C19—O1—C16—C17	-177.26 (13)
N2—C3—C5—C4	179.52 (13)	C14—C15—C16—O1	178.62 (13)
N3—C3—C5—C4	-1.11 (15)	C14—C15—C16—C17	-1.4 (2)
N4—C4—C5—C1	-175.01 (16)	O1—C16—C17—C18	-179.36 (13)
C13—C4—C5—C1	7.5 (3)	C15—C16—C17—C18	0.7 (2)
N4—C4—C5—C3	1.10 (15)	C16—C17—C18—C13	0.8 (2)
C13—C4—C5—C3	-176.36 (14)	C14—C13—C18—C17	-1.4 (2)
N1-C1-C6-C7	-142.30 (14)	C4—C13—C18—C17	175.00 (13)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the C3/C4/C5/N4/N3 and C13–C18 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C9—H9…N2 ⁱ	0.988 (18)	2.579 (17)	3.3995 (19)	140.3 (14)
C12—H12 <i>B</i> ···O1 ⁱⁱ	0.98 (2)	2.49 (2)	3.2694 (19)	136.4 (15)
C17—H17···O1 ⁱⁱⁱ	0.983 (17)	2.618 (9)	3.4973 (17)	149.3 (14)
C19—H19 <i>B</i> ··· <i>Cg</i> 4 ^{iv}	1.02 (2)	2.74 (2)	3.5928 (19)	141.9 (14)
C19—H19 C ··· $Cg1^{\vee}$	0.995 (19)	2.947 (19)	3.9072 (19)	162.0 (15)

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) *x*+1, *y*-1, *z*; (iii) -*x*, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*, *y*+1, *z*.