CRYSTALLOGRAPHIC COMMUNICATIONS

Received 8 April 2019
Accepted 11 April 2019

Edited by A. V. Yatsenko, Moscow State University, Russia

Keywords: bromination; cycloaddition reaction; bis(pyridin-2-yl) diselenide; 2-pyridylselenenyl bromide; cyclopentene; 2,3,3a,9a-tetrahydro-1H-cyclopenta[4,5][1,3]selenazolo[3,2-a]pyri-]pyridinium-9 bromide; crystal structure.

CCDC references: 1909603; 1909602

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Bromination of bis(pyridin-2-yl) diselenide in methylene chloride: the reaction mechanism and crystal structures of $\mathbf{1 H}$-pyridine-2-selenenyl dibromide and its cycloadduct with cyclopentene (3aSR,9aRS)-2,3,3a,9a-tetrahydro-1H-cyclo-penta[4,5][1,3]selenazolo[3,2-a]pyridinium bromide

Zhanna V. Matsulevich, ${ }^{\text {a }}$ Julia M. Lukiyanova, ${ }^{\text {a }}$ Vladimir I. Naumov, ${ }^{\text {a }}$ Galina N. Borisova, ${ }^{\text {a }}$ Vladimir K. Osmanov, ${ }^{\text {a }}$ Alexander V. Borisov, ${ }^{\text {a Maria M. Grishina }}{ }^{\text {b }}$ and Victor N. Khrustalev ${ }^{\text {b }}$ *

[^0]$1 H$-Pyridine-2-selenenyl dibromide, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NSeBr}_{2}, \mathbf{1}$, is a product of the bromination of bis(pyridin-2-yl) diselenide in methylene chloride recrystallization from methanol. Compound $\mathbf{1}$ is essentially zwitterionic: the negative charge resides on the SeBr_{2} moiety and the positive charge is delocalized over the pyridinium fragment. The C-Se distance of 1.927 (3) \AA is typical of a single bond. The virtually linear $\mathrm{Br}-\mathrm{Se}-\mathrm{Br}$ moiety of $178.428(15)^{\circ}$ has symmetrical geometry, with $\mathrm{Se}-\mathrm{Br}$ bonds of 2.5761 (4) and 2.5920 (4) \AA, and is twisted by 63.79 (8) ${ }^{\circ}$ relative to the pyridinium plane. The Se atom forms an intermolecular Se $\cdots \mathrm{Br}$ contact of 3.4326 (4) \AA, adopting a distorted square-planar coordination. In the crystal, molecules of $\mathbf{1}$ are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds, as well as by non-covalent $\mathrm{Se} \cdots \mathrm{Br}$ interactions, into a three-dimensional framework. (3aSR,(9aRS)-2,3,3a,9a-Tetrahydro-1H-cyclopenta[4,5][1,3]selenazolo[3,2-a]pyridinium-9 bromide, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NSe}^{+} \cdot \mathrm{Br}^{-}$, 2, is a product of the cycloaddition reaction of $\mathbf{1}$ with cyclopentene. Compound $\mathbf{2}$ is a salt containing a selenazolopyridinium cation and a bromide anion. Both fivemembered rings of the cation adopt envelope conformations. The dihedral angle between the basal planes of these rings is $62.45(11)^{\circ}$. The Se atom of the cation forms two additional non-covalent interactions with the bromide anions at distances of 3.2715 (4) and 3.5683 (3) \AA, attaining a distorted square-planar coordination. In the crystal, the cations and anions of $\mathbf{2}$ form centrosymmetric dimers by non-covalent $\mathrm{Se} \cdots$ Br interactions. The dimers are linked by weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds into double layers parallel to (001).

1. Chemical context

Selenium-containing molecules have attracted significant attention from chemical and medicinal scientists because of their wide range of biological activities, such as antitumor effects, cardiovascular protection, antibacterial or antiviral effects (Banerjee \& Koketsu, 2017; Zhang et al., 2017; ÁlvarezPérez et al., 2018; Miao et al., 2018). However, the chemistry of organoselenium compounds has not been sufficiently developed in comparison with that of organosulfur compounds because of the instability of most Se-containing compounds
(Ninomiya et al., 2011). Thus, the synthesis, isolation and structural characterization of selenium-containing substances is essential for the further development of potential medicines.

Earlier, the product of bromination of bis(pyridin-2-yl) diselenide in methylene chloride was described by Japanese researchers (Toshimitsu et al., 1984). This compound had a melting point of $388-390 \mathrm{~K}$ and was assigned as 2-pyridylselenenyl bromide based on the elemental analysis and IR spectroscopic data.

However, as a result of our multiple experiments on the bromination of bis(pyridin-2-yl) diselenide under similar conditions, a product with a melting point of $373-375 \mathrm{~K}$ was obtained. We isolated a compound with the same melting point as that previously obtained by the Japanese authors only after recrystallization from methanol. In our opinion, it is the lower melting point product that is the 2-pyridylselenenyl bromide 1*. The product having a higher melting point was isolated by us and then structurally characterized by X-ray analysis to be $1 H$-pyridine-2-selenenyl dibromide $\mathbf{1}$ (Fig. 1).

Previously we have developed an approach to the synthesis of [1,3]thia(selen,tellur)azolo[3,2-a]pyridin-4-ium derivatives via heterocyclization of unsaturated compounds and 2-pyridinesulfenyl, selenenyl and tellurenyl chlorides with ring closure through the nitrogen atom of the pyridyl fragment (Borisov et al., 2010, 2012a,b,c). In this case, our studies have paid particular attention to clarifying the structural characteristics of the reagents used (Borisov et al., 2010; Khrustalev et al., 2014, 2016). Determination of the factors providing the stability of organochalcogenyl halides is known to be an urgent challenge in general (Khrustalev et al., 2014, 2016). The structural features of 2-pyridine-selenenyl and -tellurenyl chlorides have been described by us in detail (Borisov et al., 2010; Khrustalev et al., 2014, 2016). Moreover, we have proposed a probable mechanism of the reaction including the interaction of selenenyl bromide $\mathbf{1}^{*}$ with methanol producing hydrogen bromide and methyl selenite (Fig. 2) (Garratt \& Kabo, 1980; Reich \& Jasperse, 1988). Furthermore, the

Figure 1
1*
1
Synthesis of $1 H$-pyridine-2-selenenyl dibromide $\mathbf{1}$ by the bromination of bis(pyridin-2-yl) diselenide in methylene chloride.

1*
Figure 2
The interaction of selenenyl bromide 1* with methanol.

Figure 3
The addition reaction of hydrogen bromide to selenenyl bromide $\mathbf{1}^{*}$.

Figure 4
The reaction of 1 H -pyridine-2-selenenyl dibromide $\mathbf{1}$ with cyclopentene.
subsequent addition of hydrogen bromide to selenenyl bromide 1* gives 1 H -pyridine-2-selenenyl dibromide 1 (Fig. 3).

We have also succeeded in involving $1 H$-pyridine-2-selenenyl dibromide 1 in the cycloaddition reaction with cyclopentene. The product of this reaction was identified as 2,3,3a,9a-tetrahydro- $1 H$-cyclopenta $[4,5][1,3]$ selenazolo[3,2-a]-pyridinium-9 bromide (2) by X-ray diffraction (Fig. 4).

2. Structural commentary

Compound 1, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NSeBr}_{2}$, is essentially zwitterionic: a negative charge resides on the SeBr_{2} moiety and a positive charge is delocalized over the pyridinium fragment (Fig. 5). The C2-Se1 distance of 1.927 (3) \AA is typical for a single bond [in comparison, the lengths of the $\mathrm{C}=\mathrm{Se}$ bonds in related compounds are 1.817 (7) \AA (Husebye et al., 1997), 1.8236 (11) \AA (Mammadova et al., 2011) and 1.838 (2) \AA (Mammadova et al., 2012)]. The N1-C2 and N1-C6 bond lengths are almost equal to each other because of the aromaticity of the cyclic system. The virtually linear $\mathrm{Br} 1-$ $\mathrm{Se} 1-\mathrm{Br} 2$ moiety of $178.428(15)^{\circ}$ has a symmetrical geometry with $\mathrm{Se}-\mathrm{Br}$ bonds of 2.5761 (4) and 2.5920 (4) \AA and is twisted by $63.79(8)^{\circ}$ relative to the pyridinium plane. The slight elongation of the $\mathrm{Se} 1-\mathrm{Br} 2$ bond in comparison with the $\mathrm{Se} 1-\mathrm{Br} 1$ bond is explained by the involvement of the Br 2 atom in the intermolecular secondary $\operatorname{Se} 1 \cdots \operatorname{Br} 2\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$

Figure 5
Molecular structure of 1. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 6
Molecular structure of 2. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The dashed line indicates the intermolecular non-covalent $\mathrm{Se} \cdots \mathrm{Br}$ interaction.
interaction [3.4326 (4) Å]. Thus, the selenium atom adopts a distorted square-planar coordination.

Compound 2, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NSeBr}$, is a salt containing a selenazolopyridinium cation and a bromide anion (Fig. 6). The fivemembered heterocycle of the cation adopts a flattened envelope conformation with the C3 carbon atom deviating by 0.274 (3) \AA from the plane through the other ring atoms. The cyclopentane fragment has the usual envelope conformation with the C 2 carbon atom deviating from the plane through the other ring atoms by 0.648 (4) \AA. The dihedral angle between the basal planes of the two five-membered rings of the cation is $62.45(11)^{\circ}$. The selenium atom of the cation forms two additional non-covalent interactions with the bromide anions at distances of 3.2715 (4) $\AA[\mathrm{Se} 4 \cdots \operatorname{Br} 1(x, 1+y$, $z)]$ and $3.5683(3) \AA[\operatorname{Se} 4 \cdots \operatorname{Br} 1(1-x, 1-y,-z)]$, affording a distorted square-planar coordination.

Cation 2 has two asymmetric $\mathrm{C} 3 A$ and C9 carbon atoms. The crystal of the compound is racemic with the following relative configurations of the centers - rac-3aSR,9aRS.

Figure 7
Crystal structure of $\mathbf{1}$ viewed along the \boldsymbol{a} axis. Dashed lines indicate the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds as well as the non-covalent $\mathrm{Se} \cdots \mathrm{Br}$ interactions.

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$) for 1.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{i}}$	$0.86(4)$	$2.50(4)$	$3.305(3)$	$156(3)$
${\text { C } 5-\mathrm{H} 5 \cdots \mathrm{Br}^{\mathrm{ii}}}^{2}$	0.95	2.92	$3.790(3)$	153

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y,-z+1$.
Table 2
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$ for 2.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1^{\mathrm{i}}$	0.95	2.91	$3.728(2)$	145
$\mathrm{C}^{\mathrm{C}} A-\mathrm{H} 9 A \cdots \mathrm{Br}^{\mathrm{ii}}$	1.00	2.82	$3.614(2)$	137

Symmetry codes: (i) $x+1, y, z$; (ii) $x+1, y+1, z$.

3. Supramolecular features

In the crystal of $\mathbf{1}$, molecules are linked by intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Table 1) as well as by the non-covalent $\mathrm{Se} \cdots \mathrm{Br}$ interactions (see above) into a three-dimensional framework (Fig. 7).

In the crystal of 2, the cations and anions are linked by $\mathrm{Se} \cdots \mathrm{Br}$ interactions, forming centrosymmetric dimers (Fig. 8). The dimers are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Table 2) into double layers parallel to (001) (Fig. 9).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40; Groom et al., 2016) for zwitterionic molecules containing the T-shaped SeBr_{2} fragment yielded 22 such compounds. In 16 of them, the hypervalent SeBr_{2} fragments have asymmetric geometries, with the difference in the two $\mathrm{Se}-\mathrm{Br}$ bond lengths more than or close to $0.1 \AA$, which is explained by intermolecular non-covalent interactions in the crystals. Moreover, 12 out of these 16 crystal structures revealed the presence of intermolecular non-covalent $\mathrm{Se} \cdots \mathrm{Br}$ interactions with distances of 3.3374 (5)-3.556 (1) \AA.

Figure 8
Dimeric structure of $\mathbf{2}$. Dashed lines indicate the intermolecular noncovalent $\mathrm{Se} \cdots \mathrm{Br}$ interactions. [Symmetry code: (A) ???]

research communications

Table 3
Experimental details.

	1	2
Crystal data		
Chemical formula	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NSe}$	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NSe}^{+} \cdot \mathrm{Br}^{-}$
$M_{\text {r }}$	317.86	305.07
Crystal system, space group	Monoclinic, $P 2_{1} / c$	Triclinic, $P \overline{1}$
Temperature (K)	120	120
a, b, c (A$)$	8.0971 (6), 12.6116 (10), 8.7325 (7)	6.3333 (5), 9.0515 (7), 9.5807 (7)
$\alpha, \beta_{2} \gamma\left({ }^{\circ}{ }^{\text {a }}\right.$	90, 114.975 (1), 90	111.350 (1), 93.657 (2), 93.543 (1)
$V\left(\AA^{3}\right)$	808.36 (11)	508.35 (7)
Z	4	2
Radiation type	Mo K α	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	14.44	7.57
Crystal size (mm)	$0.20 \times 0.20 \times 0.15$	$0.30 \times 0.20 \times 0.20$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2003)	Multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}, T_{\text {max }}$	0.063, 0.104	0.115, 0.154
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	12425, 2959, 2426	7982, 3711, 3156
$R_{\text {int }}$	0.051	0.029
$(\sin \theta / \lambda)_{\text {max }}\left(\mathrm{A}^{-1}\right)$	0.759	0.760
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.032, 0.074, 1.03	0.030, 0.080, 1.06
No . of reflections	2959	3711
No. of parameters	85	118
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.37, -1.06	0.64, -1.05

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2002) and SHELXTL (Sheldrick, 2008).

Remarkably, the intermolecular non-covalent $\mathrm{Se} \cdots \mathrm{Br}$ interaction of 3.2715 (4) \AA observed in the crystal of $\mathbf{2}$ is the strongest one found in the compounds of this type - between the diorganyl selenide unit and the bromide anion.

5. Synthesis and crystallization

2-Pyridineselenenyl bromide (1*). A solution of bromine $(0.32 \mathrm{~g}, 2 \mathrm{mmol})$ in ethylene chloride $(10 \mathrm{ml})$ was added to a solution of bis(pyridin-2-yl)diselenide ($0.628 \mathrm{~g}, 2 \mathrm{mmol}$) in methylene chloride $(10 \mathrm{ml})$ at room temperature. After 30 min , the solvent was removed under vacuum. The residue was washed with diethyl ether. Yield 0.93 g (98%), brightyellow powder, m.p. 373-375 K. Analysis calculated for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{BrNSe}$ (\%): C, 25.35; H, 1.70; N, 5.91. Found (\%): C, 25.31; H, 1.68; N, 5.89.
$\mathbf{1 H}$-Pyridine-2-selenenyl dibromide (1). Compound $\mathbf{1}^{*}$ was recrystallized from methanol. Yield 0.59 g (92%), orange crystals, m.p. 388-390 K. Analysis calculated for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NSe}$ (\%): C, 18.89; H, 1.59; N, 4.41. Found (\%): C, 18.81; H, 1.55; N, 4.37 .

2,3,3a,9a-Tetrahydro- $1 H$-cyclopenta[4,5][1,3]-

 $\boldsymbol{\sigma e l e n a z o l o [3 , 2 - a] p y r i d i n i u m - 9 ~ b r o m i d e ~ (2) . ~ A ~ s o l u t i o n ~ o f ~}$ cyclopentene $(0.034 \mathrm{~g}, 0.5 \mathrm{mmol})$ in ethyl acetate (5 ml) was added to a solution of $\mathbf{1}(0.159 \mathrm{~g}, 0.5 \mathrm{mmol})$ in ethyl acetate $(10 \mathrm{ml})$ at room temperature. The reaction mixture was kept at room temperature for 24 h , then the solvent was removed under vacuum. The crude white solid was recrystallized frommethylene chloride. Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from methylene chloride. Yield $0.133 \mathrm{~g}(87 \%)$, white powder, m.p. 463465 K. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrNSe}$ (\%): C, 39.29 ; H, 3.91; N, 4.52. Found (\%): C, 39.38; H, 3.97; N, 4.59. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}, 302 \mathrm{~K}\right): \delta=8.98(d, 1 \mathrm{H}, \mathrm{H} 8, J=6.3 \mathrm{~Hz})$, $8.20(m, 2 H, H 5, H 6), 7.74(d d d, 1 \mathrm{H}, \mathrm{H} 7, J=8.9 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}$,

Figure 9
Crystal structure of $\mathbf{2}$ showing the double layers parallel to (001). Dashed lines indicate the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds as well as the non-covalent $\mathrm{Se} \cdots \mathrm{Br}$ interactions.
$J=3.2 \mathrm{~Hz}), 5.78(t d, 1 \mathrm{H}, \mathrm{H} 9 \mathrm{a}, J=8.4 \mathrm{~Hz}, J=3.9 \mathrm{~Hz}), 4.66(m$, $1 \mathrm{H}, \mathrm{H} 3 \mathrm{a}), 2.34,2.09,1.71\left(m, 6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atom of the NHgroup in $\mathbf{1}$ was localized in the difference-Fourier map and refined isotropically with fixed displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})\right]$. The other hydrogen atoms in $\mathbf{1}$ and $\mathbf{2}$ were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$ and refined using a riding model with fixed isotropic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right.$ for the CH_{3}-groups and $1.2 U_{\text {eq }}(\mathrm{C})$ for the other groups].

Acknowledgements

The publication has been prepared with the support of the RUDN University Program '5-100'.

References

Álvarez-Pérez, M., Ali, W., Marć, M. A., Handzlik, J. \& DomínguezÁlvarez, E. (2018). Molecules, 23, 628-628.
Banerjee, B. \& Koketsu, M. (2017). Coord. Chem. Rev. 339, 104127.

Borisov, A. V., Matsulevich, Zh. V., Fukin, G. K. \& Baranov, E. V. (2010). Russ. Chem. Bull. 59, 581-583.

Borisov, A. V., Matsulevich, Zh. V., Osmanov, V. K. \& Borisova, G. N. (2012a). Chem. Heterocycl. Compd, 48, 492-496.

Borisov, A. V., Matsulevich, Zh. V., Osmanov, V. K., Borisova, G. N., Mammadova, G. Z., Maharramov, A. M. \& Khrustalev, V. N. (2012b). Chem. Heterocycl. Compd, 48, 1098-1104.
Borisov, A. V., Matsulevich, Zh. V., Osmanov, V. K., Borisova, G. N., Naumov, V. I., Mammadova, G. Z., Maharramov, A. M., Khrustalev, V. N. \& Kachala, V. V. (2012c). Russ. Chem. Bull. 61, 91-94.

Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2.Bruker AXS Inc., Madison, Wisconsin, USA.
Garratt, D. G. \& Kabo, A. (1980). Can. J. Chem. 58, 1030-1041.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Husebye, S., Lindeman, S. V. \& Rudd, M. D. (1997). Acta Cryst. C53, 809-811.
Khrustalev, V. N., Matsulevich, Z. V., Aysin, R. R., Lukiyanova, J. M., Fukin, G. K., Zubavichus, Y. V., Askerov, R. K., Maharramov, A. M. \& Borisov, A. V. (2016). Struct. Chem. 27, 1733-1741.
Khrustalev, V. N., Matsulevich, Z. V., Lukiyanova, J. M., Aysin, R. R., Peregudov, A. S., Leites, L. A. \& Borisov, A. V. (2014). Eur. J. Inorg. Chem. pp. 3582-3586.
Mammadova, G. Z., Matsulevich, Z. V., Osmanov, V. K., Borisov, A. V. \& Khrustalev, V. N. (2011). Acta Cryst. E67, o3050.

Mammadova, G. Z., Matsulevich, Z. V., Osmanov, V. K., Borisov, A. V. \& Khrustalev, V. N. (2012). Acta Cryst. E68, o1381.

Miao, Q., Xu, J., Lin, A., Wu, X., Wu, L. \& Xie, W. (2018). Curr. Med. Chem. 25, 2009-2033.
Ninomiya, M., Garud, D. R. \& Koketsu, M. (2011). Coord. Chem. Rev. 255, 2968-2990.
Reich, H. J. \& Jasperse, C. P. (1988). J. Org. Chem. 53, 2389-2390.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Toshimitsu, A., Owada, H., Terao, K., Uemura, S. \& Okano, M. (1984). J. Org. Chem. 49, 3796-3800.

Zhang, S., Wang, Z., Hu, Z., Li, C., Tang, C., Carlson, K. E., Luo, J., Dong, C., Katzenellenbogen, J. A., Huang, J. \& Zhou, H. B. (2017). ChemMedChem, 12, 235-249.

supporting information

Acta Cryst. (2019). E75, 675-679 [https://doi.org/10.1107/S2056989019004997]
Bromination of bis(pyridin-2-yl) diselenide in methylene chloride: the reaction mechanism and crystal structures of 1 H -pyridine-2-selenenyl dibromide and its cycloadduct with cyclopentene (3aSR,9aRS)-2,3,3a,9a-tetrahydro-1 H-cyclo-penta[4,5][1,3]selenazolo[3,2-a] pyridinium bromide

Zhanna V. Matsulevich, Julia M. Lukiyanova, Vladimir I. Naumov, Galina N. Borisova, Vladimir K. Osmanov, Alexander V. Borisov, Maria M. Grishina and Victor N. Khrustalev

Computing details

For both structures, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Dibromo(pyridin-1-ium-2-yl)selanide (1)

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{NSe}$

$M_{r}=317.86$
Monoclinic, $P 2_{1} / c$
$a=8.0971$ (6) \AA
$b=12.6116$ (10) \AA
$c=8.7325$ (7) \AA
$\beta=114.975(1)^{\circ}$
$V=808.36(11) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.063, T_{\text {max }}=0.104$
12425 measured reflections

$$
F(000)=584
$$

$D_{\mathrm{x}}=2.612 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4271 reflections
$\theta=2.8-32.6^{\circ}$
$\mu=14.44 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Prism, orange
$0.20 \times 0.20 \times 0.15 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.074$
$S=1.03$
2959 reflections
85 parameters
0 restraints

Primary atom site location: difference Fourier map
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed

$$
\begin{aligned}
& \mathrm{H} \text { atoms treated by a mixture of independent } \\
& \text { and constrained refinement } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0302 P)^{2}+0.5977 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.37 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.06 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Br1	$0.26838(4)$	$0.03212(2)$	$0.84166(3)$	$0.01817(8)$
Br 2	$-0.14496(4)$	$0.29163(3)$	$0.38147(4)$	$0.01989(8)$
Se 1	$0.06027(4)$	$0.16227(2)$	$0.61494(3)$	$0.01433(7)$
N1	$0.1263(4)$	$0.0928(2)$	$0.3377(3)$	$0.0161(5)$
H1	$0.012(6)$	$0.079(3)$	$0.298(5)$	0.019^{*}
C2	$0.2053(4)$	$0.1389(2)$	$0.4909(4)$	$0.0143(5)$
C3	$0.3877(4)$	$0.1667(3)$	$0.5524(4)$	$0.0205(6)$
H3	0.4467	0.1997	0.6598	0.025^{*}
C4	$0.4837(4)$	$0.1459(3)$	$0.4561(4)$	$0.0214(6)$
H4	0.6089	0.1643	0.4981	0.026^{*}
C5	$0.3971(5)$	$0.0985(3)$	$0.2989(4)$	$0.0218(6)$
H5	0.4616	0.0839	0.2323	0.026^{*}
C6	$0.2157(4)$	$0.0729(3)$	$0.2415(4)$	$0.0200(6)$
H6	0.1533	0.0412	0.1335	0.024^{*}

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.01837(14)$	$0.02401(16)$	$0.01174(12)$	$0.00296(10)$	$0.00598(10)$	$0.00250(10)$
Br 2	$0.01919(14)$	$0.02324(16)$	$0.01808(14)$	$0.00366(11)$	$0.00869(11)$	$0.00614(11)$
Se 1	$0.01580(13)$	$0.01724(14)$	$0.01117(12)$	$-0.00047(10)$	$0.00690(10)$	$-0.00082(9)$
N 1	$0.0186(11)$	$0.0173(12)$	$0.0115(10)$	$-0.0010(9)$	$0.0056(9)$	$-0.0011(9)$
C 2	$0.0159(12)$	$0.0165(13)$	$0.0112(11)$	$0.0006(10)$	$0.0065(10)$	$0.0012(10)$
C 3	$0.0202(14)$	$0.0254(16)$	$0.0157(13)$	$-0.0041(11)$	$0.0075(11)$	$-0.0051(11)$
C 4	$0.0194(14)$	$0.0283(17)$	$0.0186(14)$	$0.0005(12)$	$0.0102(12)$	$0.0028(12)$
C 5	$0.0270(15)$	$0.0257(16)$	$0.0187(14)$	$0.0070(12)$	$0.0155(12)$	$0.0037(12)$
C 6	$0.0276(14)$	$0.0204(15)$	$0.0123(12)$	$0.0038(12)$	$0.0087(11)$	$-0.0004(10)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Br} 1-\mathrm{Se} 1$	$2.5761(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.390(4)$
$\mathrm{Br} 2 — \mathrm{Se} 1$	$2.5920(4)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{Se} 1-\mathrm{C} 2$	$1.927(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.386(5)$

N1-C6	1.344 (4)	C4-H4	0.9500
N1-C2	1.347 (4)	C5-C6	1.375 (5)
N1-H1	0.86 (4)	C5-H5	0.9500
C2-C3	1.387 (4)	C6-H6	0.9500
C2-Se1-Br1	88.76 (9)	C4-C3-H3	120.2
C2-Se1-Br2	89.69 (8)	C5-C4-C3	120.1 (3)
$\mathrm{Br} 1-\mathrm{Se} 1-\mathrm{Br} 2$	178.428 (15)	C5-C4-H4	119.9
C6-N1-C2	123.1 (3)	C3-C4-H4	119.9
C6-N1-H1	119 (3)	C6-C5-C4	118.6 (3)
C2-N1-H1	118 (3)	C6-C5-H5	120.7
N1-C2-C3	118.4 (3)	C4-C5-H5	120.7
N1-C2-Se1	118.5 (2)	N1-C6-C5	120.2 (3)
C3-C2-Se1	123.1 (2)	N1-C6-H6	119.9
C2-C3-C4	119.6 (3)	C5-C6-H6	119.9
C2-C3-H3	120.2		
C6-N1-C2-C3	-0.3 (4)	C2-C3-C4-C5	0.5 (5)
C6-N1-C2-Se1	-179.9 (2)	C3-C4-C5-C6	0.1 (5)
N1-C2-C3-C4	-0.4 (5)	C2-N1-C6-C5	0.9 (5)
Se1-C2-C3-C4	179.2 (2)	C4-C5-C6-N1	-0.8 (5)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Br}^{\mathrm{i}}$	$0.86(4)$	$2.50(4)$	$3.305(3)$	$156(3)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Br}^{\mathrm{ii}}$	0.95	2.92	$3.790(3)$	153

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $-x+1,-y,-z+1$.
7-Selena- $1 \lambda^{5}$-azatricyclo[6.4.0.0 ${ }^{2,6}$]dodeca-1(12),8,10-trien-1-ylium bromide (2)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NSe}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=305.07$
Triclinic, $P 1$
$a=6.3333$ (5) \AA
$b=9.0515$ (7) \AA
$c=9.5807(7) \AA$
$\alpha=111.350(1)^{\circ}$
$\beta=93.657(2)^{\circ}$
$\gamma=93.543(1)^{\circ}$
$V=508.35$ (7) \AA^{3}

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$Z=2$
$F(000)=296$
$D_{\mathrm{x}}=1.993 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4390 reflections
$\theta=2.3-32.7^{\circ}$
$\mu=7.57 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Prism, colourless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$
$T_{\text {min }}=0.115, T_{\text {max }}=0.154$
7982 measured reflections
3711 independent reflections
3156 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=32.7^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-9 \rightarrow 9$
$k=-13 \rightarrow 13$
Refinement
Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.080$
$S=1.06$
3711 reflections
118 parameters
0 restraints
Primary atom site location: difference Fourier map
$k=-13 \rightarrow 13$
$l=-14 \rightarrow 14$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Br1	$0.57452(3)$	$0.30220(3)$	$0.11384(2)$	$0.01988(7)$
C1	$1.3458(4)$	$1.1581(3)$	$0.4167(3)$	$0.0220(4)$
H1A	1.3149	1.1019	0.4855	0.026^{*}
H1B	1.5016	1.1718	0.4139	0.026^{*}
C2	$1.2526(4)$	$1.3189(3)$	$0.4669(3)$	$0.0227(4)$
H2A	1.3228	1.3911	0.4237	0.027^{*}
H2B	1.2658	1.3710	0.5780	0.027^{*}
C3	$1.0180(4)$	$1.2722(3)$	$0.4033(3)$	$0.0243(5)$
H3A	0.9389	1.2208	0.4619	0.029^{*}
H3B	0.9463	1.3656	0.4012	0.029^{*}
C3A	$1.0408(3)$	$1.1551(3)$	$0.2450(2)$	$0.0166(4)$
H3C	1.0710	1.2169	0.1796	0.020^{*}
Se4	$0.79630(3)$	$0.99892(2)$	$0.14860(2)$	$0.01599(6)$
C4A	$0.9599(3)$	$0.8444(3)$	$0.1826(2)$	$0.0162(4)$
C5	$0.8875(4)$	$0.6872(3)$	$0.1569(3)$	$0.0193(4)$
H5	0.7437	0.6487	0.1212	0.023^{*}
C6	$1.0290(4)$	$0.5881(3)$	$0.1845(3)$	$0.0213(4)$
H6	0.9816	0.4813	0.1696	0.026^{*}
C7	$1.2422(4)$	$0.6449(3)$	$0.2342(3)$	$0.0212(4)$
H7	1.3406	0.5773	0.2520	0.025^{*}
C8	$1.3054(3)$	$0.7997(3)$	$0.2566(3)$	$0.0191(4)$
H8	1.4499	0.8392	0.2880	0.023^{*}
N9	$1.1641(3)$	$0.8974(2)$	$0.2342(2)$	$0.0158(3)$
C9A	$1.2350(3)$	$1.0656(3)$	$0.2576(2)$	$0.0163(4)$
H9A	1.3328	1.0679	0.1803	0.020^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Br1	$0.01950(11)$	$0.01593(11)$	$0.02337(11)$	$-0.00059(8)$	$-0.00022(8)$	$0.00698(8)$
C1	$0.0221(10)$	$0.0198(10)$	$0.0187(10)$	$-0.0016(8)$	$-0.0044(8)$	$0.0022(8)$
C2	$0.0232(10)$	$0.0180(10)$	$0.0197(10)$	$-0.0035(8)$	$-0.0023(8)$	$-0.0001(8)$
C3	$0.0215(10)$	$0.0216(11)$	$0.0208(10)$	$0.0006(8)$	$0.0003(8)$	$-0.0023(8)$
C3A	$0.0171(9)$	$0.0145(9)$	$0.0154(8)$	$0.0003(7)$	$-0.0011(7)$	$0.0026(7)$
Se4	$0.01420(10)$	$0.01455(10)$	$0.01694(10)$	$0.00013(7)$	$-0.00074(7)$	$0.00368(8)$
C4A	$0.0154(8)$	$0.0153(9)$	$0.0145(8)$	$0.0005(7)$	$0.0009(7)$	$0.0018(7)$
C5	$0.0193(9)$	$0.0157(9)$	$0.0195(9)$	$-0.0025(7)$	$0.0007(7)$	$0.0034(8)$
C6	$0.0258(10)$	$0.0166(10)$	$0.0209(10)$	$0.0007(8)$	$0.0013(8)$	$0.0066(8)$
C7	$0.0238(10)$	$0.0191(10)$	$0.0222(10)$	$0.0060(8)$	$0.0029(8)$	$0.0083(8)$
C8	$0.0181(9)$	$0.0204(10)$	$0.0183(9)$	$0.0034(8)$	$0.0003(7)$	$0.0066(8)$
N9	$0.0156(7)$	$0.0147(8)$	$0.0153(7)$	$0.0004(6)$	$0.0007(6)$	$0.0039(6)$
C9A	$0.0156(8)$	$0.0147(9)$	$0.0158(8)$	$-0.0009(7)$	$-0.0005(7)$	$0.0031(7)$

Geometric parameters ($A,{ }^{\circ}$)

C1-C2	1.527 (3)	Se4-C4A	1.898 (2)
C1-C9A	1.542 (3)	C4A-N9	1.347 (3)
C1-H1A	0.9900	C4A-C5	1.396 (3)
C1-H1B	0.9900	C5-C6	1.385 (3)
$\mathrm{C} 2-\mathrm{C} 3$	1.542 (3)	C5-H5	0.9500
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	C6-C7	1.403 (3)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900	C6-H6	0.9500
C3-C3A	1.523 (3)	C7-C8	1.367 (3)
C3-H3A	0.9900	C7-H7	0.9500
C3-H3B	0.9900	C8-N9	1.356 (3)
C3A-C9A	1.536 (3)	C8-H8	0.9500
C3A-Se4	1.961 (2)	N9-C9A	1.492 (3)
C3A-H3C	1.0000	C9A-H9A	1.0000
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}$	104.40 (19)	N9-C4A-C5	119.8 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.9	N9-C4A-Se4	114.19 (16)
$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.9	C5-C4A-Se4	125.99 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.9	C6-C5-C4A	118.9 (2)
$\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.9	C6-C5-H5	120.6
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.9	C4A-C5-H5	120.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	102.42 (19)	C5-C6-C7	120.2 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.3	C5-C6-H6	119.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	111.3	C7-C6-H6	119.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.3	C8-C7-C6	118.7 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	111.3	C8-C7-H7	120.7
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.2	C6-C7-H7	120.7
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 2$	101.23 (18)	N9-C8-C7	120.7 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	111.5	N9-C8-H8	119.6
C2-C3-H3A	111.5	C7-C8-H8	119.6

supporting information

C3A-C3-H3B	111.5	C4A-N9-C8		121.68 (19)
C2-C3-H3B	111.5	C4A-N9-C9A		117.87 (18)
H3A-C3-H3B	109.3	C8-N9-C9A		120.34 (18)
C3-C3A-C9A	106.34 (17)	N9-C9A-C3A		109.62 (17)
C3-C3A-Se4	115.96 (15)	N9-C9A-C1		112.33 (18)
C9A-C3A-Se4	108.73 (14)	C3A-C9A-C1		105.39 (17)
$\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{C}$	108.5	N9-C9A-H9A		109.8
C9A-C3A-H3C	108.5	C3A-C9A-H9A		109.8
Se4-C3A-H3C	108.5	C1-C9A-H9A		109.8
C4A-Se4-C3A	87.21 (9)			
C9A-C1-C2-C3	38.3 (2)	Se4-C4A-N9-C9A		-0.1 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}$	-44.9 (2)	C7-C8-N9-C4A		-3.3 (3)
C2-C3-C3A-C9A	34.7 (2)	C7-C8-N9-C9A		-179.5 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{Se} 4$	155.69 (16)	$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 9-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$		11.0 (2)
C3A-Se4-C4A-N9	-7.96 (16)	C8-N9-C9A-C3A		-172.69 (19)
C3A-Se4-C4A-C5	172.9 (2)	C4A-N9-C9A-C1		127.8 (2)
N9-C4A-C5-C6	-0.5 (3)	C8-N9-C9A-C1		-55.9 (3)
Se4-C4A-C5-C6	178.57 (17)	C3-C3A-C9A-N9		109.6 (2)
C4A-C5-C6-C7	-1.3 (3)	Se4-C3A-C9A-N9		-15.9 (2)
C5-C6-C7-C8	0.9 (3)	$\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 1$		-11.5 (2)
C6-C7-C8-N9	1.4 (3)	Se4-C3A-C9A-C1		-137.02 (15)
C5-C4A-N9-C8	2.8 (3)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}-\mathrm{N} 9$		-136.01 (19)
Se4-C4A-N9-C8	-176.36 (16)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$		-16.7 (2)
C5-C4A-N9-C9A	179.04 (19)			
Hydrogen-bond geometry (A, ${ }^{\circ}$)				
$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D^{\cdots} A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Br} 1^{\mathrm{i}}$	0.95	2.91	3.728 (2)	145
$\mathrm{C} 9 \mathrm{~A}-\mathrm{H} 9 A \cdots \mathrm{Br} 1^{\mathrm{ii}}$	1.00	2.82	3.614 (2)	137

Symmetry codes: (i) $x+1, y, z$; (ii) $x+1, y+1, z$.

[^0]: ${ }^{\text {a R }}$.E. Alekseev Nizhny Novgorod State Technical University, Minin St, 24, Nizhny Novgorod, 603950, Russian Federation, and ${ }^{\mathbf{b}}$ Inorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation. *Correspondence e-mail: vnkhrustalev@gmail.com

