

Received 30 December 2019 Accepted 10 February 2020

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: Crystal structure; Azo dyes; Cu^{II} complex; (N,O)-ligands.; crystal structure.

CCDC reference: 1983017

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure, characterization and Hirshfeld analysis of bis{(*E*)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate

Souheyla Chetioui,^{a,b}* Hassiba Bougueria,^{a,c} Ouarda Brihi,^d Mehdi Boutebdja,^{a,e} Nadia Bouroumane,^f Hocine Merazig^a and Rachid Touzani^g

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université des Frères Mentouri Constantine, Algeria, ^bFaculté de Technologie, Université Mohamed Boudiaf M'sila, Algeria, ^cUniversité abd el Hafid Boussouf, Mila, 43000 Mila, Algeria, ^dLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, ^eEcole Nationale Polytechnique de Constantine, Constantine, Algeria, ^fLaboratoire de Chimie Appliquée et Environnement (LCAE), Département de Chimie, Faculté des Sciences, Université Mohamed Premier, BP 524, 60000, Oujda, Morocco, and ^gLaboratoire de Chimie, Faculté des Sciences, Département de Chimie Appliquée et Environnement, Université Mohammed Premier, Oujda, Morocco. *Correspondence e-mail: souheilachetioui@yahoo.fr

In the title compound, $[Cu(C_{16}H_8Br_3N_2O)_2]\cdot C_2H_6OS$, the Cu^{II} atom is tetracoordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two *N*,*O*-bidentate (*E*)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are *trans* to each other, with an O-Cu-O bond angle of 177.90 (16)° and a N-Cu-N bond angle of 177.8 (2)°. The average distances between the Cu^{II} atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C-H···O hydrogen bonds and by π - π interactions involving adjacent naphthalene ring systems [centroid-centroid distance = 3.679 (4) Å]. The disordered DMSO molecules interact weakly with the complex molecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent molecule is disordered over two positions with occupancies of 0.70 and 0.30.

1. Chemical context

Azo dyes are an important class of organic compounds that are attractive to researchers because of their various applications (Zollinger, 1961; Nishihara, 2004; Sahoo et al., 2015). They constitute the largest group of azo compounds and are the most widely used colorants in the industry. Applications of azo dyes include their use as coloring agents because of their affinity for wool and silk (Patel et al., 2011), in photoelectronics (Sekar, 1999), optical storage technology (Wang et al., 2000), biological reactions (Weglarz-Tomczak et al., 2012), printing systems (Abe et al., 1999; Dharmalingam et al., 2011), in analytical areas (Abdalla et al., 2013; Amin et al., 2003) and in the food industry (Almeida et al., 2010). Azo derivatives and their metal complexes are important homologue pigments for synthetic leather and vinyl polymers. Furthermore, azo compounds are known to be involved in a number of biological reactions, such as inhibition of DNA, RNA, and protein synthesis, nitrogen fixation and carcinogenesis (Badea et al., 2004). In addition, high-density optical data storage has

been the subject of extensive research over the past decade. In general, cvanine dves, phthalocvanine dves, and metal-azo dyes are used in the recording layer of DVD-R (digital versatile disc-recordable) discs. It was reported that the new technology, which employs 405 nm blue-violet diode lasers, will require a new optical-recording medium matching the 405 nm wavelength laser (Steed et al., 2007). In comparison with the dyes themselves, metal-azo dyes are light-stable, allow an easier control of the wavelength by selection of the appropriate substituent groups, and have good thermal stability (Geng et al., 2004; Bin et al., 2003; Fu-Xin et al., 2003; Hamada et al., 1997; Suzuki et al., 1999; Nejati et al., 2009; Li et al., 2010). Being interested in the synthesis and preparation of metal complexes bearing such ligands, we have synthesized and structurally characterized Cu^{II} complexes with N,Obidentate phenylazo-naphtholate ligands (Chetioui et al., 2015a,b). In our previous work, we were interested by the colour-generation mechanism of azo pigments, usually characterized by the chromophore of the azo group (-N=N-) (Bougueria et al., 2013a,b,c, 2014; Chetioui et al., 2013a,b). Herein, we report the synthesis and crystal structure of a Cu^{II} complex incorporating the ligand (E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-ol, for which the structure is known (Chetioui et al., 2013a).

2. Structural commentary

The structure of the title compound is shown in Fig. 1. The asymmetric unit consists of a Cu^{II} complex molecule and a DMSO solvent molecule. In the complex, the Cu^{II} atom is coordinated by two oxygen and two nitrogen atoms *trans* to each other. The Cu1–N2 and Cu1–N4 bond lengths [1.976 (4) and 1.971 (5) Å, respectively] are almost identical. The N–Cu–N bond angle is 177.8 (2)°. The two Cu–O distances are 1.882 (4) and 1.892 (4) Å. All bond lengths are similar to those observed in similar crystal structures (Chetioui *et al.*, 2015*a*,*b*). The N–Cu–O bond angles range from 88.75 (18) to 93.06 (17)° and the O–Cu–O angle is 177.90 (16)°. Therefore, the copper atom can be considered to be in a slightly distorted square-planar geometry. The dihedral angle formed between the plane of the C1–C10 naphthalene ring system and the tribromobenzene ring is 51.4 (2)°.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3\cdots O3$ $C23-H23\cdots O3^{i}$	0.95	2.32	3.257 (12)	169
	0.95	2.60	3.453 (12)	150

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

3. Supramolecular features

In the crystal, the complex molecules and the DMSO molecules are linked by C3-H3···O3 and C23-H23···O3 hydrogen bonds (Table 1), forming parallel complex-solvate chains along the *b*-axis direction (see Fig. 2). π - π stacking interactions involving adjacent naphthalene ring systems [centroid-centroid distance = 3.679 (4) Å] are observed between complex molecules.

4. Analysis of the Hirshfeld surfaces

The program Crystal Explorer 3.1 (Wolff et al., 2012) was used to generate the Hirshfeld surface (Spackman & Jayatilaka, 2009) mapped over d_{norm} (Fig. 3). The bright-red spots correspond to the $H \cdots O / O \cdots H$ close contacts ($C - H \cdots O$ hydrogen bonds), while the faint-red spots, near the $H \cdots O$ contacts, are attributed to $Br \cdots H$, $Br \cdots Br$ and $C \cdots H$ contacts. The white areas correspond to regions where the

Figure 1

The molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.

research communications

distances separating neighboring atoms are close or equal to the sum of the van der Waals radius of the atoms. The corresponding fingerprint plots (McKinnon *et al.*, 2007) are shown in Fig. 4. The relative contributions from the different interatomic contacts to the Hirshfeld surfaces are as follows: $O \cdots H/H \cdots O$ contacts 5.0%, $H \cdots Br/Br \cdots H$ 23.7%, $Br \cdots Br$ 4.7%, $Br \cdots C/C \cdots Br$ 11.6%, $C \cdots C$ 3.3%, $C \cdots H/H \cdots C$ 17.5%, $H \cdots H$ 25.8%. The presence of $\pi - \pi$ stacking interactions are indicated in the Hirshfeld surface mapped over shape-index (Fig. 5).

5. Synthesis and crystallization

The complex, bis-1-(2,4,6-tribromophenylazo)-2-naphtholatecopper(II), was obtained by mixing 1 mmol of 1-(2,4,6tribromophenylazo)-2-naphthol dissolved in 20 ml of THF with 0.5 mmol of $Cu(OAc)_2 \cdot H_2O$ dissolved in 20 ml of MeOH. The mixture was refluxed at 333 K for 8 h. Upon cooling, a dark-orange solid was observed, which was filtered off and washed with water, and then dried under vacuum. Crystallization in DMSO yielded 83% of a crystalline material. To confirm the formula of the solvate complex, an elementary analysis was carried out: calculated for C32H16Br6CuN4O2.-C₂H₆OS, C 36.80%, N 5.05%, H 2.00%, found C 36,27%, N 4,81%, H 1,92%. The ¹H NMR spectrum (paramagnetic complex) shows a multiplet around 7 and 8 ppm attributed to the aromatic protons. The IR spectrum of the complex shows the vibration bands: $\nu(N=N)$; 1360 cm⁻¹, $\nu(C-N)$: 1149 cm ⁻¹, ν (C–Br): 645 cm⁻¹, ν (C–O): 1207 cm⁻¹ (aromatic), ν (C=C): 1498 cm⁻¹ (aromatic), ν (C–H): 2945 cm⁻¹ (aromatic), ν (Cu-N): 417 cm⁻¹, ν (Cu-O): 558 cm⁻¹. The UV–Vis spectrum measured in CH_2Cl_2 (10⁻⁵ M), shows three absorption bands: an intense band at 268 nm ($\varepsilon = 29.94 \ 10^8$ M^{-1} cm⁻¹) attributed to intra-ligand charge-transfer transition, a band at 382 nm ($\varepsilon = 79.21 \ 10^7 \ \text{M}^{-1} \ \text{cm}^{-1}$) associated with the azo form of the ligand and a band at 462 nm ($\varepsilon = 63.84$ $10^7 \text{ M}^{-1} \text{ cm}^{-1}$) attributed to metal-ligand charge transfer.

Figure 3 View of the Hirshfeld surface mapped over d_{norm} .

Figure 4

Two-dimensional fingerprint plots of the compound showing (a) all interactions and those delineated into (b) $H \cdots O/O \cdots H$, (c) $Br \cdots H/H \cdots Br$, (d) $Br \cdots Br$, (e) $C \cdots Br/Br \cdots C$, (f) $C \cdots C$, (g) $H \cdots C/C \cdots H$ and (h) $H \cdots H$ interactions.

Figure 5

Hirshfeld surface mapped over shape-index, highlighting the region involved in π - π stacking interactions.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding atoms: C-H =0.93 Å with $U_{iso}(H) = 1.2 U_{eq}(C)$. An absorption correction was not applied in view of the very small size of the crystal [0.1 × 0.09 × 0.08 mm]. The DMSO solvent molecule shows disorder over two positions with final occupancies of 0.70 and 0.30. The disordered atoms were modelled as anisotropic using EADP restraints. H atoms of the disordered DMSO were omitted.

Acknowledgements

The authors are indebted to URCHEMS (Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale of the University of Constantine Algeria) for the X-ray facilities.

References

- Abdalla, N. A., El-Haty, M. T., Adam, F. A. E. & Hassan, F. W. (2013). *Rev. Roum. Chim.* 58, 899–913.
- Abe, T., Mano, S., Yamaya, Y. & Tomotake, A. (1999). J. Imaging Sci. Tech. 43, 339–344.
- Almeida, M. R., Stephani, R., Dos Santos, H. F. & Oliveira, L. F. C. D. (2010). J. Phys. Chem. A, 114, 526–534.

Table 2	
Experimental details.	

. .

Crystal data	
Chemical formula	$[Cu(C_{16}H_8Br_3N_2O)_2]\cdot C_2H_6OS$
Mr	1109.61
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	150
a, b, c (Å)	8.9922 (14), 16.461 (3), 24.835 (4)
β (°)	92.491 (6)
$V(Å^3)$	3672.6 (11)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	7.22
Crystal size (mm)	$0.1 \times 0.09 \times 0.08$
Data collection	
Diffractometer	Bruker APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2012)
T_{\min}, T_{\max}	0.002, 1
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6872, 6872, 3962
R _{int}	0.107
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.610
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.099, 0.92
No. of reflections	6872
No. of parameters	446
No. of restraints	150
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.68, -0.50

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012).

- Amin, A. S., Mohammed, T. Y. & Mousa, A. A. (2003). Spectrochim. Acta A, 59, 2577–2584.
- Badea, M., Olar, R., Cristurean, E., Marinescu, D., Emandi, A., Budrugeac, P. & Segal, E. (2004). J. Therm. Anal. Calorim. 77, 815– 824.
- Bin, W., Yi-Qun, W., Dong-Hong, G. & Fu-Xi, G. (2003). Chin. Phys. Lett. 20, 1596–1599.
- Bougueria, H., Benaouida, M. A., Bouacida, S. & Bouchoul, A. el kader (2013b). Acta Cryst. E69, o1175–o1176.
- Bougueria, H., Benosmane, A., Benaouida, M. A., Bouchoul, A. E. K. & Bouaoud, S. E. (2013*a*). *Acta Cryst.* E69, o1052.
- Bougueria, H., Chetioui, S., Boudraa, I., Bouchoul, A. el kader & Bouaoud, S. E. (2013c). Acta Cryst. E69, 01335–01336.
- Bougueria, H., Mili, A., Benosmane, A., Bouchoul, A. el kader & Bouaoud, S. (2014). Acta Cryst. E70, o225.
- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013*a*). *Acta Cryst.* E**69**, o1250.
- Chetioui, S., Boudraa, I., Bouacida, S., Bouchoul, A. & Bouaoud, S. E. (2013b). Acta Cryst. E69, 01322–01323.
- Chetioui, S., Hamdouni, N., Bochet, C. G., Djukic, J.-P. & Bailly, C. (2015a). Acta Cryst. E71, m211-m212.
- Chetioui, S., Hamdouni, N., Rouag, D.-A., Bouaoud, S. E. & Merazig, H. (2015b). Acta Cryst. E71, m207–m208.
- Dharmalingam, V., Ramasamy, A. K. & Balasuramanian, V. (2011). J. Chem. 8, S211–S224.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fu-Xin, H., Yi-Qun, W., Dong-Hong, G. & Fu-Xi, G. (2003). Chin. Phys. Lett. 20, 2259–2261.
- Geng, Y., Gu, D. & Gan, F. (2004). Opt. Mater. 27, 193-197.
- Hamada, E., Fujii, T., Tomizawa, Y. & Iimura, S. (1997). *Jpn. J. Appl. Phys.* **36**, 593–594.

- Steed, J. W., Turner, D. R., & Wallace, K. J. (2007). Core Concepts in Supramolecular Chemistry and Nanochemistry. Chichester: John Wiley & Sons.
- Li, X., Wu, Y., Gu, D. & Gan, F. (2010). Dyes Pigments, 86, 182-189.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.
- Nejati, K., Rezvani, Z. & Seyedahmadian, M. (2009). *Dyes Pigments*, **83**, 304–311.
- Nishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407-428.
- Patel, D. R. & Patel, K. C. (2011). Fibers Polym.. 12, 741-752.
- Sahoo, J., Kumar Mekap, S. & Sudhir Kumar, P. (2015). J. Taibah Univ. Sci. 9, 187–195.

- Sekar, N. (1999). Colourage. 46, 63-65.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Suzuki, Y., Okamoto, Y., Kurose, Y. & Maeda, S. (1999). Jpn J. Appl. Phys. 38, 1669–1674.
- Wang, S., Shen, S. & Xu, H. (2000). Dyes Pigments, 44, 195-198.
- Węglarz-Tomczak, E. & Górecki, L. (2012). CHEMIK Science-Technique-Market. 66, 1298-1307.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). *Crystal Explorer 3.1*, University of Western Australia, Perth.
- Zollinger, H. (1961). Isr. J. Chem. 1, 45-45.

Acta Cryst. (2020). E76, 382-386 [https://doi.org/10.1107/S2056989020001863]

Crystal structure, characterization and Hirshfeld analysis of bis{(*E*)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate

Souheyla Chetioui, Hassiba Bougueria, Ouarda Brihi, Mehdi Boutebdja, Nadia Bouroumane, Hocine Merazig and Rachid Touzani

Computing details

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Bis{(E)-1-[(2,4,6-tribromophenyl)diazenyl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate

Crystal data

 $[Cu(C_{16}H_8Br_3N_2O)_2] \cdot C_2H_6OS$ $M_r = 1109.61$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.9922 (14) Å b = 16.461 (3) Å c = 24.835 (4) Å $\beta = 92.491$ (6)° V = 3672.6 (11) Å³ Z = 4

Data collection

Bruker APEXII diffractometer Radiation source: sealed x-ray tube Graphite monochromator φ or ω oscillation scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{\min} = 0.002, T_{\max} = 1$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.099$ S = 0.92 F(000) = 2132 $D_x = 1.996 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.7107 \text{ Å}$ Cell parameters from 3926 reflections $\theta = 2.6-20.4^{\circ}$ $\mu = 7.22 \text{ mm}^{-1}$ T = 150 KNeedles, red $0.1 \times 0.09 \times 0.08 \text{ mm}$

6872 measured reflections 6872 independent reflections 3962 reflections with $I > 2\sigma(I)$ $R_{int} = 0.107$ $\theta_{max} = 25.7^{\circ}, \ \theta_{min} = 1.5^{\circ}$ $h = -10 \rightarrow 10$ $k = -19 \rightarrow 19$ $l = -29 \rightarrow 22$

6872 reflections446 parameters150 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0347P)^2]$
map	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} = 0.001$
H-atom parameters constrained	$\Delta \rho_{\rm max} = 0.68 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm A}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.68982 (8)	0.64876 (4)	0.67162 (3)	0.0634 (3)	
Br3	0.75391 (7)	0.35743 (4)	0.79468 (3)	0.0584 (3)	
Br2	1.09066 (7)	0.63332 (4)	0.84994 (3)	0.0622 (3)	
Br4	0.21948 (8)	0.19770 (4)	0.78635 (3)	0.0682 (3)	
Br5	-0.21658 (7)	0.22247 (4)	0.61830 (3)	0.0668 (3)	
Br6	0.11254 (7)	0.49832 (4)	0.68081 (3)	0.0556 (3)	
Cu1	0.43783 (7)	0.42742 (4)	0.73579 (3)	0.0398 (2)	
S1A	0.0722 (6)	0.2091 (3)	0.4460 (2)	0.143 (2)	0.700
S1B	0.0869 (10)	0.2867 (7)	0.4489 (3)	0.106 (4)	0.300
01	0.4041 (4)	0.3614 (2)	0.67460 (16)	0.0503 (16)	
O2	0.4641 (4)	0.4941 (2)	0.79752 (15)	0.0476 (16)	
N1	0.6600 (5)	0.4629 (3)	0.65494 (18)	0.0363 (16)	
N2	0.6228 (4)	0.4666 (3)	0.70433 (18)	0.0361 (16)	
N3	0.2087 (5)	0.3883 (3)	0.81332 (19)	0.0376 (16)	
N4	0.2530 (5)	0.3849 (3)	0.76505 (18)	0.0392 (16)	
C1	0.4550 (6)	0.3729 (3)	0.6277 (2)	0.0405 (19)	
C2	0.3861 (7)	0.3291 (3)	0.5833 (2)	0.0488 (19)	
O3	0.2245 (10)	0.2383 (6)	0.4445 (4)	0.196 (5)	
C3	0.4328 (7)	0.3361 (4)	0.5333 (3)	0.058 (2)	
C4	0.5546 (7)	0.3879 (4)	0.5212 (2)	0.0519 (19)	
C5	0.6008 (9)	0.3970 (5)	0.4671 (3)	0.073 (3)	
C6	0.7130 (9)	0.4461 (5)	0.4561 (3)	0.080 (3)	
C7	0.7873 (8)	0.4909 (5)	0.4968 (3)	0.073 (3)	
C8	0.7460 (7)	0.4844 (4)	0.5492 (3)	0.054 (2)	
C9	0.6276 (6)	0.4321 (3)	0.5625 (2)	0.0429 (17)	
C10	0.5789 (6)	0.4237 (3)	0.6167 (2)	0.0367 (17)	
C11	0.7300 (5)	0.5077 (3)	0.7382 (2)	0.0338 (17)	
C12	0.7737 (6)	0.5880 (3)	0.7296 (2)	0.0389 (17)	
C13	0.8781 (6)	0.6257 (3)	0.7630(2)	0.0402 (19)	
C14	0.9417 (5)	0.5829 (3)	0.8053 (2)	0.040 (2)	
C15	0.9040 (6)	0.5040 (3)	0.8157 (2)	0.040 (2)	
C16	0.7988 (6)	0.4679 (3)	0.7821 (2)	0.0362 (19)	
C17	0.4038 (6)	0.4840 (3)	0.8433 (2)	0.0396 (17)	
C18	0.4594 (6)	0.5313 (4)	0.8881 (2)	0.052 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C19	0.4018 (7)	0.5260 (4)	0.9369 (2)	0.058 (2)	
C20	0.2835 (7)	0.4719 (4)	0.9478 (2)	0.0522 (19)	
C21	0.2258 (8)	0.4674 (5)	0.9997 (3)	0.068 (3)	
C22	0.1132 (8)	0.4155 (5)	1.0092 (3)	0.076 (3)	
C23	0.0535 (8)	0.3669 (4)	0.9673 (3)	0.070 (3)	
C24	0.1069 (6)	0.3707 (4)	0.9164 (2)	0.0532 (19)	
C25	0.2235 (6)	0.4237 (3)	0.9057 (2)	0.0410 (17)	
C26	0.2843 (6)	0.4301 (3)	0.8526 (2)	0.0387 (17)	
C27	0.1469 (5)	0.3441 (3)	0.7299 (2)	0.0322 (17)	
C28	0.1148 (6)	0.2620 (3)	0.7347 (2)	0.0407 (19)	
C29	0.0094 (6)	0.2240 (3)	0.7011 (2)	0.0448 (19)	
C30	-0.0631 (6)	0.2696 (3)	0.6626 (2)	0.042 (2)	
C31	-0.0334 (6)	0.3514 (3)	0.6555 (2)	0.042 (2)	
C32	0.0720 (6)	0.3857 (3)	0.6896 (2)	0.0367 (19)	
C33	-0.0284 (15)	0.2589 (10)	0.3984 (5)	0.200 (6)	
C34	-0.0043 (14)	0.2544 (10)	0.4988 (5)	0.200 (6)	
H2	0.30478	0.29405	0.58977	0.0590*	
H3	0.38413	0.30595	0.50504	0.0690*	
Н5	0.55076	0.36773	0.43872	0.0870*	
H6	0.74307	0.45080	0.42002	0.0960*	
H7	0.86667	0.52600	0.48811	0.0870*	
H8	0.79692	0.51502	0.57667	0.0640*	
H13	0.90576	0.68054	0.75686	0.0480*	
H15	0.94936	0.47532	0.84525	0.0480*	
H18	0.53963	0.56771	0.88306	0.0620*	
H19	0.44135	0.55961	0.96518	0.0700*	
H21	0.26601	0.50069	1.02799	0.0820*	
H22	0.07469	0.41203	1.04410	0.0910*	
H23	-0.02548	0.33062	0.97419	0.0840*	
H24	0.06465	0.33737	0.88855	0.0640*	
H29	-0.01156	0.16772	0.70477	0.0540*	
H31	-0.08421	0.38228	0.62809	0.0500*	
H33A	-0.12104	0.22926	0.38991	0.3000*	0.700
H33B	0.02909	0.26326	0.36591	0.3000*	0.700
H33C	-0.05193	0.31341	0.41141	0.3000*	0.700
H33D	0.00672	0.20810	0.38277	0.3000*	0.300
H33E	-0.03207	0.30141	0.37076	0.3000*	0.300
H33F	-0.12823	0.25070	0.41182	0.3000*	0.300
H34A	-0.11277	0.24820	0.49574	0.3000*	0.700
H34B	0.02109	0.31232	0.49901	0.3000*	0.700
H34C	0.03409	0.22918	0.53228	0.3000*	0.700
H34D	-0.10002	0.23211	0.48539	0.3000*	0.300
H34E	0.05313	0.21196	0.51788	0.3000*	0.300
H34F	-0.02185	0.29956	0.52342	0.3000*	0.300

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.0881 (5)	0.0411 (4)	0.0592 (4)	0.0021 (3)	-0.0169 (4)	0.0083 (3)
Br3	0.0628 (4)	0.0400 (4)	0.0715 (5)	-0.0095 (3)	-0.0060(3)	0.0143 (3)
Br2	0.0538 (4)	0.0642 (5)	0.0671 (5)	-0.0118 (3)	-0.0128 (3)	-0.0127 (3)
Br4	0.0725 (5)	0.0558 (4)	0.0742 (5)	0.0048 (4)	-0.0220 (4)	0.0134 (4)
Br5	0.0587 (4)	0.0599 (4)	0.0792 (5)	-0.0140 (3)	-0.0254 (3)	0.0007 (4)
Br6	0.0620 (4)	0.0381 (4)	0.0674 (5)	-0.0064 (3)	0.0115 (3)	0.0044 (3)
Cu1	0.0335 (3)	0.0444 (4)	0.0418 (4)	-0.0075 (3)	0.0062 (3)	-0.0044 (3)
S1A	0.129 (4)	0.094 (3)	0.200 (5)	-0.014 (3)	-0.055 (3)	0.004 (3)
S1B	0.088 (6)	0.135 (8)	0.094 (6)	-0.035 (6)	0.009 (5)	-0.027 (5)
01	0.048 (2)	0.055 (3)	0.049 (3)	-0.015 (2)	0.015 (2)	-0.013 (2)
O2	0.041 (2)	0.054 (3)	0.048 (3)	-0.0173 (19)	0.0059 (19)	-0.008(2)
N1	0.035 (2)	0.041 (3)	0.033 (3)	0.002 (2)	0.002 (2)	0.004 (2)
N2	0.033 (2)	0.038 (3)	0.037 (3)	-0.004 (2)	-0.001 (2)	0.000 (2)
N3	0.034 (2)	0.039 (3)	0.040 (3)	0.003 (2)	0.005 (2)	0.003 (2)
N4	0.034 (2)	0.043 (3)	0.041 (3)	-0.009 (2)	0.006 (2)	-0.004 (2)
C1	0.036 (3)	0.038 (3)	0.047 (4)	0.008 (2)	-0.005 (3)	0.000 (3)
C2	0.050 (3)	0.040 (3)	0.055 (4)	0.001 (3)	-0.012 (3)	-0.009 (3)
O3	0.129 (7)	0.242 (10)	0.210 (9)	0.053 (7)	-0.078 (6)	-0.082 (8)
C3	0.068 (4)	0.055 (4)	0.049 (4)	0.011 (3)	-0.013 (3)	-0.014 (3)
C4	0.054 (3)	0.053 (4)	0.048 (3)	0.022 (3)	-0.006 (3)	-0.005 (3)
C5	0.087 (5)	0.086 (5)	0.045 (4)	0.023 (4)	-0.005 (4)	0.000 (4)
C6	0.093 (5)	0.105 (6)	0.043 (4)	0.027 (4)	0.021 (4)	0.015 (4)
C7	0.066 (4)	0.094 (6)	0.059 (4)	0.014 (4)	0.018 (3)	0.027 (4)
C8	0.054 (4)	0.059 (4)	0.048 (4)	0.010 (3)	0.007 (3)	0.015 (3)
C9	0.044 (3)	0.043 (3)	0.042 (3)	0.014 (3)	0.005 (2)	0.000 (3)
C10	0.036 (3)	0.037 (3)	0.037 (3)	0.004 (2)	0.001 (2)	-0.002 (3)
C11	0.037 (3)	0.029 (3)	0.036 (3)	0.000(2)	0.008 (3)	-0.001 (3)
C12	0.035 (3)	0.039 (3)	0.043 (3)	0.002 (3)	0.005 (3)	-0.001 (3)
C13	0.040 (3)	0.034 (3)	0.047 (4)	-0.002 (3)	0.005 (3)	0.001 (3)
C14	0.030 (3)	0.043 (4)	0.047 (4)	-0.004 (3)	0.002 (3)	-0.011 (3)
C15	0.032 (3)	0.043 (4)	0.045 (4)	-0.001 (3)	0.001 (3)	0.005 (3)
C16	0.035 (3)	0.030 (3)	0.044 (4)	0.000 (2)	0.007 (3)	0.004 (3)
C17	0.034 (3)	0.045 (3)	0.040 (3)	0.002 (2)	0.004 (3)	-0.002 (3)
C18	0.044 (3)	0.061 (4)	0.050 (4)	-0.019 (3)	-0.005 (3)	-0.006 (3)
C19	0.053 (4)	0.080 (5)	0.040 (3)	0.000 (3)	-0.007 (3)	-0.014 (3)
C20	0.044 (3)	0.075 (4)	0.037 (3)	0.010 (3)	-0.004 (3)	0.003 (3)
C21	0.061 (4)	0.106 (6)	0.038 (4)	0.010 (4)	-0.001 (3)	0.000 (4)
C22	0.066 (4)	0.118 (6)	0.045 (4)	0.016 (4)	0.012 (3)	0.012 (4)
C23	0.060 (4)	0.088 (5)	0.063 (4)	-0.001 (4)	0.018 (3)	0.021 (4)
C24	0.051 (3)	0.065 (4)	0.044 (3)	-0.002 (3)	0.006 (3)	0.011 (3)
C25	0.039 (3)	0.050 (3)	0.034 (3)	0.009 (2)	0.002 (2)	0.009 (2)
C26	0.034 (3)	0.042 (3)	0.040 (3)	0.002 (2)	0.000 (2)	0.001 (3)
C27	0.025 (3)	0.035 (3)	0.037 (3)	-0.001 (2)	0.005 (2)	-0.004 (3)
C28	0.040 (3)	0.043 (4)	0.039 (3)	0.000 (3)	0.002 (3)	0.001 (3)
C29	0.041 (3)	0.034 (3)	0.059 (4)	-0.005(3)	-0.003(3)	0.005 (3)

C30	0.031 (3)	0.043 (4)	0.050 (4)	-0.005 (3)	-0.003 (3)	-0.001 (3)
C31	0.036 (3)	0.041 (4)	0.049 (4)	0.005 (3)	0.002 (3)	0.006 (3)
C32	0.035 (3)	0.033 (3)	0.043 (4)	-0.006 (2)	0.012 (3)	-0.001 (3)
C33	0.138 (8)	0.360 (16)	0.101 (6)	-0.016 (9)	-0.006 (6)	0.040 (8)
C34	0.138 (8)	0.360 (16)	0.101 (6)	-0.016 (9)	-0.006 (6)	0.040 (8)

Geometric parameters (Å, °)

Br1—C12	1.884 (5)	C18—C19	1.341 (7)
Br3—C16	1.892 (5)	C19—C20	1.422 (9)
Br2-C14	1.893 (5)	C20—C21	1.412 (9)
Br4—C28	1.883 (5)	C20—C25	1.402 (8)
Br5—C30	1.893 (5)	C21—C22	1.353 (11)
Br6-C32	1.904 (5)	C22—C23	1.401 (10)
Cu1—O1	1.882 (4)	C23—C24	1.373 (9)
Cu1—O2	1.892 (4)	C24—C25	1.398 (8)
Cu1—N2	1.976 (4)	C25—C26	1.453 (7)
Cu1—N4	1.971 (5)	C27—C28	1.388 (7)
S1A-C34	1.681 (14)	C27—C32	1.366 (7)
S1A03	1.453 (11)	C28—C29	1.385 (7)
S1A-C33	1.672 (15)	C29—C30	1.360 (7)
S1B-C33	1.657 (16)	C30—C31	1.386 (7)
S1B-C34	1.606 (15)	C31—C32	1.366 (7)
S1B03	1.480 (13)	C2—H2	0.9500
01—C1	1.284 (6)	С3—Н3	0.9500
O2—C17	1.292 (6)	С5—Н5	0.9500
N1—N2	1.287 (6)	С6—Н6	0.9500
N1-C10	1.338 (7)	С7—Н7	0.9500
N2-C11	1.423 (6)	C8—H8	0.9500
N3—N4	1.281 (6)	C13—H13	0.9500
N3—C26	1.353 (7)	C15—H15	0.9500
N4—C27	1.432 (7)	C18—H18	0.9500
C1—C2	1.435 (7)	C19—H19	0.9500
C1-C10	1.429 (7)	C21—H21	0.9500
C2—C3	1.333 (9)	C22—H22	0.9500
C3—C4	1.430 (9)	C23—H23	0.9500
C4—C9	1.398 (8)	C24—H24	0.9500
C4—C5	1.431 (9)	C29—H29	0.9500
C5—C6	1.330 (11)	C31—H31	0.9500
C6—C7	1.398 (11)	С33—Н33А	0.9800
C7—C8	1.373 (10)	С33—Н33В	0.9800
C8—C9	1.419 (8)	С33—Н33С	0.9800
C9—C10	1.440 (7)	C33—H33D	0.9800
C11—C12	1.398 (7)	С33—Н33Е	0.9800
C11—C16	1.394 (7)	C33—H33F	0.9800
C12—C13	1.374 (7)	C34—H34A	0.9800
C13—C14	1.369 (7)	C34—H34B	0.9800
C14—C15	1.370 (7)	C34—H34C	0.9800

C15—C16	1.370 (7)	C34—H34D	0.9800
C17—C26	1.420 (7)	C34—H34E	0.9800
C17—C18	1.430 (7)	C34—H34F	0.9800
O1—Cu1—O2	177.90 (16)	N3—C26—C25	114.9 (5)
O1—Cu1—N2	88.75 (18)	N4—C27—C32	120.4 (5)
O1—Cu1—N4	89.07 (18)	C28—C27—C32	117.0 (5)
O2—Cu1—N2	93.06 (17)	N4—C27—C28	122.7 (4)
O2—Cu1—N4	89.13 (18)	C27—C28—C29	121.8 (5)
N2—Cu1—N4	177.8 (2)	Br4—C28—C27	120.4 (4)
C33—S1A—C34	96.1 (7)	Br4—C28—C29	117.7 (4)
O3—S1A—C33	107.5 (7)	C28—C29—C30	118.0 (5)
O3—S1A—C34	106.9 (7)	Br5—C30—C29	119.8 (4)
O3—S1B—C34	109.6 (9)	Br5—C30—C31	117.6 (4)
O3—S1B—C33	107.1 (9)	C29—C30—C31	122.5 (5)
C33—S1B—C34	99.7 (8)	C30—C31—C32	117.1 (5)
Cu1-01-C1	126.6 (3)	C27—C32—C31	123.6 (5)
Cu1—O2—C17	126.6 (3)	Br6—C32—C27	118.8 (4)
N2—N1—C10	122.9 (5)	Br6—C32—C31	117.6 (4)
Cu1—N2—C11	118.8 (3)	C1—C2—H2	119.00
Cu1—N2—N1	128.3 (3)	C3—C2—H2	119.00
N1—N2—C11	112.9 (4)	С2—С3—Н3	119.00
N4—N3—C26	122.0 (5)	C4—C3—H3	119.00
Cu1—N4—N3	129.1 (4)	С6—С5—Н5	120.00
Cu1—N4—C27	119.5 (3)	C4—C5—H5	120.00
N3—N4—C27	111.4 (4)	C5—C6—H6	120.00
01-C1-C10	124.9 (5)	C7—C6—H6	119.00
01 - C1 - C2	117.6 (5)	C8—C7—H7	120.00
C_{2} — C_{1} — C_{10}	117.5 (5)	C6—C7—H7	120.00
C1 - C2 - C3	122.0 (5)	C7 - C8 - H8	120.00
$C_{2}-C_{3}-C_{4}$	121.5 (6)	C9—C8—H8	120.00
C5-C4-C9	119.2 (6)	C12—C13—H13	121.00
C3-C4-C9	119.7 (5)	C14—C13—H13	121.00
C3-C4-C5	121.1 (6)	C16—C15—H15	121.00
C4—C5—C6	120.7(7)	C14—C15—H15	121.00
C5-C6-C7	120.7(7) 121.0(7)	C17—C18—H18	119.00
C6-C7-C8	120.3(7)	C19—C18—H18	119.00
C7—C8—C9	120.3 (6)	C18—C19—H19	119.00
C4-C9-C10	118.9 (5)	C20—C19—H19	119.00
C4-C9-C8	118.6 (5)	C^{22} C^{21} H^{21}	120.00
C8-C9-C10	122 5 (5)	C20—C21—H21	120.00
C1 - C10 - C9	122.3(5) 120.4(5)	C21—C22—H22	120.00
N1 - C10 - C1	123.5(5)	C23—C22—H22	120.00
N1-C10-C9	1160(5)	C^{22} C^{23} H^{23}	119.00
$N_2 - C_{11} - C_{16}$	120 4 (4)	C24 - C23 - H23	119.00
C_{12} C_{11} C_{16}	116 5 (4)	C25 - C25 - H25	120.00
N2-C11-C12	123 2 (5)	C_{23} C_{24} H_{24}	120.00
C11 - C12 - C13	123.2(3) 1216(5)	C_{23} C_{24} C_{124} C_{28} C_{20} H_{20}	120.00
$C_{11} - C_{12} - C_{13}$	121.0 (3)	020-027-1127	121.00

Br1—C12—C11	120.9 (4)	С30—С29—Н29	121.00
Br1—C12—C13	117.5 (4)	C32—C31—H31	121.00
C12—C13—C14	118.9 (5)	C30—C31—H31	121.00
Br2—C14—C13	119.0 (4)	S1A—C33—H33A	110.00
Br2—C14—C15	118.7 (4)	S1A—C33—H33B	109.00
C13—C14—C15	122.3 (5)	S1A—C33—H33C	109.00
C14—C15—C16	117.8 (5)	S1B—C33—H33D	109.00
C11—C16—C15	123.0 (5)	S1B—C33—H33E	110.00
Br3—C16—C11	119.4 (4)	S1B—C33—H33F	109.00
Br3—C16—C15	117.6 (4)	H33A—C33—H33B	109.00
02-017-018	118.0 (5)	H33A—C33—H33C	109.00
02-C17-C26	125.0 (5)	H33B—C33—H33C	110.00
C18 - C17 - C26	117.1 (5)	H33D—C33—H33E	109.00
C17 - C18 - C19	122.1(5)	H33D—C33—H33F	109.00
C18 - C19 - C20	122.1(5) 122.3(5)	H33F $C33$ $H33F$	109.00
C19 - C20 - C25	122.5(5) 1186(5)	S1A-C34-H34A	109.00
C19 - C20 - C21	120.9 (6)	S1A_C34_H34B	109.00
C_{21} C_{20} C_{21} C_{25}	120.9(6)	S1A_C34_H34C	109.00
C_{20} C_{20} C_{20} C_{23} C_{20} C_{21} C_{22}	120.4(0) 120.0(7)	S1B_C34_H34D	109.00
$C_{20} = C_{21} = C_{22}$	120.0(7) 119.8(7)	S1B_C34_H34E	109.00
$C_{21} = C_{22} = C_{23}$	121.3 (6)	S1B_C34_H34E	109.00
$C_{22} = C_{23} = C_{24}$	121.3(0) 119.9(5)	H34A_C34_H34B	109.00
$C_{23} = C_{24} = C_{25}$	119.9(5)	$H_{34A} = C_{34} = H_{34C}$	110.00
$C_{20} = C_{23} = C_{20}$	119.2(5) 118.6(5)	H34R C34 H34C	110.00
$C_{20} = C_{23} = C_{24}$	110.0(5) 122.2(5)	$H_{24D} = C_{24} = H_{24E}$	110.00
$C_{24} = C_{23} = C_{20}$	122.2(3) 120.7(4)	$H_{24D} = C_{24} = H_{24E}$	100.00
$N_{2} = C_{2} = C_{2}$	120.7(4) 124.1(5)	$H_{24E} = C_{24} = H_{24E}$	109.00
N3-C20-C17	124.1 (3)	П34Е—С34—П34Г	110.00
$N_2 C_{11} O_1 C_1$	-241(4)	N2 C11 C12 Br1	0.7(7)
$N_2 - Cu_1 - O_1 - C_1$	24.1(4)	$N_2 = C_{11} = C_{12} = D_{11}$	-1797(5)
$N_{-}C_{1} = 01 = 01$	-150.5(4)	$C_{16} = C_{11} = C_{12} = C_{13}$	179.7(3) 179.9(4)
$N_2 = Cu_1 = O_2 = C_{17}$	139.3(4)	$C_{10} - C_{11} - C_{12} - C_{13}$	-0.5(7)
N4 = Cu1 = 02 = C17 O1 = Cu1 = N2 = N1	20.0 (4)	$N_2 = C_{11} = C_{12} = C_{13}$	24(6)
O1 = Cu1 = N2 = C11	-164 A (4)	$N_2 = C_{11} = C_{10} = B_{13}$	2.4(0)
$O_1 = Cu_1 = N_2 = CI_1$	-160.4(5)	$N_2 = C_{11} = C_{10} = C_{13}$	-176.9(4)
$O_2 = Cu_1 = N_2 = Cu_1$	16.7(4)	$C_{12} = C_{11} = C_{16} = C_{15}$	170.9(4)
O_2 — Cu_1 — N_2 — C_{11} O_1 Cu_1 N_4 N_3	16.7(4)	$B_{r1} = C12 = C13 = C14$	-179.6(4)
O1 Cu1 N4 C27	-165(4)	$C_{11} = C_{12} = C_{13} = C_{14}$	1/9.0(4)
$O_1 = Cu_1 = N_4 = C_2 / Cu_1 = N_4 = N_3 = N_$	-17.1(5)	$C12 - C13 - C14 - Br^2$	177.8(4)
$O_2 = C_{11} = N_4 = N_5$	17.1(3) 162 4 (4)	C_{12} C_{13} C_{14} C_{15}	-0.5(8)
$C_2 = C_1 = N_1 = C_2 / C_2 = C_1 = C_2 / C_2 = C_2 - C_2 / C_2 = C_2 / C_2 $	-163.7(4)	$R_{12} = C_{13} = C_{14} = C_{15}$	-178.3(4)
Cu1 = 01 = C1 = C2	103.7(4) 18.8(7)	$C_{12} = C_{14} = C_{15} = C_{16}$	1/8.3(4)
Cu1 = 01 = 01 = 010	16.0(7)	C_{13} $-C_{14}$ $-C_{15}$ $-C_{16}$ B_{r^2}	0.0(8)
$C_{11} = 02 = C_{17} = C_{10}$	-120(7)	$C_{14} = C_{15} = C_{10} = D_{15}$	177.2(4)
$C_{11} = 02 = 017 = 020$	12.7(1)	$02 \ C17 \ C18 \ C10$	0.5(0) 1787(5)
$C10 \qquad N1 \qquad N2 \qquad C11$	0.0(0) 176.8(5)	$C_{2} = C_{17} = C_{10} = C_{19}$	-0.4(9)
$\begin{array}{c} 10 \\ 10 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $	-90(8)	$C_{20} = C_{17} = C_{10} = C_{19}$	-0.4 (8) -6 8 (9)
N2 - N1 - C10 - C1	-0.9(0)	02 - 017 - 020 - 035	$-0.0(\delta)$
IN2-IN1-U10-U9	1/4.0(3)	02 - 01 - 020 - 023	-1/9.3 (J)

Cu1—N2—C11—C12	-118.7 (5)	C18—C17—C26—N3	172.2 (5)
Cu1—N2—C11—C16	62.1 (6)	C18—C17—C26—C25	-0.5 (7)
N1—N2—C11—C12	58.8 (6)	C17—C18—C19—C20	1.3 (10)
N1—N2—C11—C16	-120.4 (5)	C18—C19—C20—C21	179.6 (6)
C26—N3—N4—Cu1	5.4 (8)	C18—C19—C20—C25	-1.2 (9)
C26—N3—N4—C27	-174.2 (5)	C19—C20—C21—C22	180.0 (7)
N4—N3—C26—C17	10.4 (8)	C25—C20—C21—C22	0.9 (11)
N4—N3—C26—C25	-176.5 (5)	C19—C20—C25—C24	-179.8 (6)
Cu1—N4—C27—C28	113.6 (5)	C19—C20—C25—C26	0.4 (8)
Cu1—N4—C27—C32	-66.5 (6)	C21—C20—C25—C24	-0.7 (9)
N3—N4—C27—C28	-66.8 (6)	C21—C20—C25—C26	179.5 (6)
N3—N4—C27—C32	113.2 (5)	C20—C21—C22—C23	-0.5 (11)
O1—C1—C2—C3	-178.9 (5)	C21—C22—C23—C24	0.0 (11)
C10—C1—C2—C3	-1.3 (8)	C22—C23—C24—C25	0.2 (10)
O1-C1-C10-N1	2.7 (8)	C23—C24—C25—C20	0.1 (9)
O1—C1—C10—C9	179.7 (5)	C23—C24—C25—C26	180.0 (6)
C2-C1-C10-N1	-174.8 (5)	C20-C25-C26-N3	-172.9 (5)
C2-C1-C10-C9	2.2 (7)	C20-C25-C26-C17	0.5 (8)
C1—C2—C3—C4	0.0 (9)	C24—C25—C26—N3	7.3 (8)
C2—C3—C4—C5	-178.0 (6)	C24—C25—C26—C17	-179.4 (5)
C2—C3—C4—C9	0.4 (10)	N4—C27—C28—Br4	-3.5 (7)
C3—C4—C5—C6	179.2 (7)	N4—C27—C28—C29	178.5 (5)
C9—C4—C5—C6	0.8 (11)	C32—C27—C28—Br4	176.5 (4)
C3—C4—C9—C8	-178.6 (6)	C32—C27—C28—C29	-1.4 (8)
C3—C4—C9—C10	0.6 (8)	N4-C27-C32-Br6	0.5 (7)
C5—C4—C9—C8	-0.3 (9)	N4—C27—C32—C31	-178.2 (5)
C5-C4-C9-C10	179.0 (6)	C28—C27—C32—Br6	-179.6 (4)
C4—C5—C6—C7	-0.9 (12)	C28—C27—C32—C31	1.7 (8)
C5—C6—C7—C8	0.5 (12)	Br4-C28-C29-C30	-177.9 (4)
C6—C7—C8—C9	0.0 (11)	C27—C28—C29—C30	0.1 (8)
C7—C8—C9—C4	-0.1 (9)	C28—C29—C30—Br5	-176.3 (4)
C7—C8—C9—C10	-179.3 (6)	C28—C29—C30—C31	1.1 (8)
C4—C9—C10—N1	175.3 (5)	Br5—C30—C31—C32	176.6 (4)
C4—C9—C10—C1	-1.9 (8)	C29—C30—C31—C32	-0.8 (8)
C8—C9—C10—N1	-5.5 (8)	C30—C31—C32—Br6	-179.4 (4)
C8—C9—C10—C1	177.3 (5)	C30—C31—C32—C27	-0.7 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С3—Н3…О3	0.95	2.32	3.257 (12)	169
C23—H23…O3 ⁱ	0.95	2.60	3.453 (12)	150

Symmetry code: (i) x-1/2, -y+1/2, z+1/2.