

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 27 August 2021 Accepted 7 September 2021

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: palladium; rhenium; carbonyl; NHC; triphenylphospine; crystal structure.

CCDC references: 2108168; 2108167

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of the new palladium complexes tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate and octa-*µ*-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (unknown solvate)

Sergey Shapovalov,* Olga Tikhonova and Ivan Skabitsky

Kurnakov Institute of General and Inorganic Chemistry, 119991, Leninskii pr. 31, Moscow, Russian Federation. *Correspondence e-mail: schss@yandex.ru

The investigation of the coordination chemistry of heterometallic transitionmetal complexes of palladium (Pd) and rhenium (Re) led to the isolation and crystallographic characterization of tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate, $[Pd(C_5H_8N_2)_4][Re_4(CO)_{16}] \cdot 2C_4H_{10}O$ or $[Pd(IMe)_4][Re_4(CO)_{16}] \cdot 2C_4H_{10}O$, (1), and octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium, [Pd₄Re₂(C₁₈H₁₅P)₄(CO)₁₀] or Pd₄Re₂(PPh₃)₄(µ-CO)₈(CO)₂, (2), from the reaction of Pd(PPh₃)₄ with 1,3-dimethylimidazolium-2-carboxylate and $Re_2(CO)_{10}$ in a toluene-acetonitrile mixture. In complex 1 the Re-Re bond lengths [2.9767 (3)-3.0133 (2) Å] are close to double the covalent Re radii (1.51 Å). The palladium-rhenium carbonyl cluster 2 has not been structurally characterized previously; the Pd-Re bond lengths [2.7582 (2)-2.7796 (2) Å] are about 0.1 Å shorter than the sum of the covalent Pd and Re radii (1.39 + 1.51 =2.90 Å). One carbene ligand and a diethyl ether molecule are disordered over two positions with occupancy ratios of 0.5:0.5 and 0.625 (15):0.375 (15) in 1. An unidentified solvent is present in compound 2. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s). The SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The cavity with a volume of ca 311 Å³ contains approximately 98 electrons.

1. Chemical context

Bimetallic catalysts comprising palladium (Pd) and rhenium (Re) have important applications in alkane reforming, industrial chemical production, hydrodechlorination and biomass conversion (Thompson & Lamb, 2016; Bonarowska et al., 1999; Malinowski et al., 1998; Juszczyk & Karpiński, 2001). Heterometallic Pd-Re clusters are suitable precursors for such a catalytic system. We found that the reaction of $Pd(PPh_3)_4$ with 1.3-dimethylimidazolium-2-carboxylate and $Re_2(CO)_{10}$ in a toluene-acetonitrile mixture produces a mixture of two compounds: $[Pd(IMe)_4][Re_4(CO)_{16}] \cdot 2C_4H_{10}O$ (1) and $Pd_4Re_2(PPh_3)_4(\mu-CO)_8(CO)_2$ (2) where IMe is 1,3-dimethylimidazolium-2-ylidene. Two other products, triphenylphosphine oxide and the known complex $Re_2(CO)_8(PPh_3)_2$ (Adams et al., 2013) were isolated from the reaction mixture.

research communications

2. Structural commentary

The displacement ellipsoid plot of **1** is depicted in Fig. 1. The molecular unit of **1** comprises a palladium(II) cation with four coordinated *N*-heterocyclic carbenes (NHC) lying on a twofold rotoinversion axis, and one $[\text{Re}_4(\text{CO})_{16}]$ anion. The geometry around the Pd atom is square-planar with one carbene unit being disordered. The C-Pd-C angles range from 86.9 (4) to 97.7 (4)°. The cluster anion lying on the inversion center has a perfectly flat rhombus geometry with the shortest Re-Re bond [2.9767 (3) Å] corresponding to the short diagonal. The other four Re-Re bond lengths [3.001 (2)-3.0132 (2) Å] are also close to double the covalent Re radii (1.51 Å; Cordero *et al.*, 2008). The Re-Re-Re angles are 59.330 (6)-60.542 (6)°.

The displacement ellipsoid plot of **2** is depicted in Fig. 2. The geometry of the Re₂Pd₄ core is found to be slightly distorted from that of a D_{4h} -symmetric tetragonal-bipyramidal prism. In complex **2**, the Pd-Re bond lengths [2.7582 (2)-2.7796 (2) Å] are close to the sum of the covalent

C(14 C(16) 0(7) 0(1 C(1) C(15) C(11) d(1 0(3) 0(4)ⁱ C(4)ⁱ Ac(21) C(3) C(4) 0(4) C(8) 0(8) C(13) C(7 C(18) C(20) 0(7) 0(6)

Figure 1

Displacement ellipsoid plot of $Pd(IMe)_4Re_4(CO)_{16}\cdot 2C_4H_{10}O$ (1), drawn at the 30% probability level. All hydrogen atoms and solvent molecules are omitted for clarity.

Figure 2

Displacement ellipsoid plot of $Pd_4Re_2(PPh_3)_4(\mu$ -CO)₈(CO)₂ (**2**), drawn at the 30% probability level. All hydrogen atoms are omitted for clarity.

Pd and Re radii (1.39 + 1.51 = 2.90 Å). In comparison, the Pd–Re bond lengths in the PdRe₄(CO)₁₆(μ -SbPh₂)₂(μ -H)₂ cluster (Adams *et al.*, 2015) are in the range 2.9348 (18)–2.9823 (19) Å. The Pd₄ fragment has an almost square geometry [the Pd–Pd–Pd angles are 89.865 (6)–90.135 (6)° and the Pd–Pd bond lengths are 2.9678 (2)–2.99 (2) Å].

3. Supramolecular features

In the ionic crystal of **1**, each cation is surrounded by six anions and *vice versa* (Fig. 3). No classical hydrogen-bonding interactions are observed between cations and anions, but

A view of the packing of compound 1.

research communications

Table 1				
Hydrogen-bond	geometry	(Å,	°) for 1 .	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C11-H11A\cdots O4^{i}$	0.98	2.49	3.436 (6)	161
$C13-H13\cdots O9^{ii}$	0.95	2.44	3.36 (3)	165
$C13-H13\cdots O9A^{ii}$	0.95	2.32	3.25 (5)	163
$C15-H15A\cdots O6^{iii}$	0.98	2.44	3.326 (5)	150
C16−H16B···O9	0.98	2.57	3.49 (3)	158
$C18-H18\cdots O7^{iv}$	0.95	2.43	3.230 (9)	141
$C19-H19\cdots O7^{iii}$	0.95	2.56	3.483 (16)	163
$C20-H20C\cdots O5^{v}$	0.98	2.35	3.203 (12)	145
$C21 - H21A \cdots O2^{vi}$	0.98	2.54	3.413 (11)	149
C21−H21C···O5	0.98	2.59	3.494 (12)	153
$C24-H24B\cdots O8^{vii}$	0.99	2.58	3.473 (12)	150

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iii) $x, -y + 2, z + \frac{1}{2}$; (iv) -x, -y + 2, -z; (v) $-x, y, -z + \frac{1}{2}$; (vi) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (vii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

many carbonyl-O···H₃C and carbonyl-O···HC intermolecular contacts (Table 1) are present. The diethyl ether molecule resides in voids between four adjacent cations and anions featuring an O···HC contact (2.32 Å) with one of the carbenes at the palladium atom. No π - π stacking is observed in structure **2**, but several weak C-H··· π and C-H···OC contacts (Fig. 4 and Table 2) are present. The axial CO groups of the Re(CO)₅ fragments point towards voids filled with an unidentified solvent (Fig. 5).

4. Database survey

A search for related structures of palladium cations in the Cambridge Structural Database (CSD Version 5.42, update of November 2020; Groom *et al.*, 2016) resulted in 27 hits. Of the structures found, the closest structures considering the connectivity of the atoms are tetrakis(*N*-methylimidazolin-2-ylidene)palladium(II) diiodide (JOKCIV; Fehlhammer *et al.*, 1992) and bis[methylenebis(3-methylimidazol-2-ylidene)]-palladium(II) diiodide dimethylsulfoxide solvate (REFQID; Heckenroth *et al.*, 2006). The cation in **1** is the first structurally characterized palladium complex ion containing four NHC ligands with substituents at the 1,3 positions of the imidazole ring. There are a number of compounds containing the

A view of the packing of compound **2**.

Table 2	
Hydrogen-bond geometry (Å, °) for	2.

Cg1 and Cg3 are the centroids of the C6–C11 and C18–C23 rings, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C9−H9···O5 ⁱ	0.95	2.49	3.188 (3)	130
$C39-H39\cdots O2^{ii}$	0.95	2.60	3.491 (4)	157
$C20-H20\cdots Cg1^{iii}$	0.95	2.84	3.635 (3)	142
$C34 - H34 \cdots Cg3^{iv}$	0.95	2.90	3.683 (3)	140

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 2; (iii) -x + 1, -y + 2, -z + 1; (iv) x, y - 1, z.

tetranuclear $[\text{Re}_4(\text{CO})_{16}]^{2-}$ anion, which is also found in the compound reported here. A search of the CSD found two closely related cluster compounds, **viz**. bis(tetraethylammonium) hexadecacarbonyl-tetrarhenium (EAMCRE; Ciani *et al.*, 1978) and bis(tetra-*n*-butylammonium)hexadecacarbonyl-tetrarhenium (BATCRE10; Churchill & Bau, 1968). The palladium–rhenium carbonyl cluster in **2** has not been structurally characterized previously.

5. Synthesis and crystallization

Under a nitrogen atmosphere, $Pd(PPh_3)_4$ (241 mg, 0.185 mmol) was added to a toluene–acetonitrile mixture (8 and 6 mL, respectively) and 1,3-dimethylimidazolium-2-carboxylate (104 mg, 0.704 mmol). The reaction mixture was refluxed for 1.5 h, then $Re_2(CO)_{10}$ (242 mg, 0.141 mmol) was added, the solution turned dark red and the solvents were removed *in vacuo*. The solid was washed with benzene (3 × 5 ml) and recrystallized from an acetonitrile–diethylether mixture. X-ray quality crystals of $Pd(IMe)_4Re_4(CO)_{16}$ ·-2C₄H₁₀O (37 mg, 13%) were grown from a dichloromethane–diethylether mixture at 277 K. ¹HNMR (300.13 MHz, DMSO- d_6 , ppm): 3.41 (*s*, 24H, 8Me), 7.37 (*s*, 8H, 8CH). ¹³C{H} NMR

Figure 5 The axial CO groups of the $\text{Re}(\text{CO})_5$ fragments in 2 point towards voids filled with an unidentified solvent.

Table 3Experimental details.

	1	2
Crystal data		
Chemical formula	$[Pd(C_5H_8N_2)_4][Re_4(CO)_{16}]\cdot 2C_4H_{10}O$	$[Pd_4Re_2(C_{18}H_{15}P)_4(CO)_{10}]$
M _r	1832.13	2127.18
Crystal system, space group	Monoclinic, C2/c	Triclinic, $P\overline{1}$
Temperature (K)	100	100
a, b, c (Å)	21.1079 (9), 14.0026 (6), 19.4346 (8)	12.9278 (4), 13.5132 (5), 14.1184 (5)
α, β, γ (°)	90, 109.342 (1), 90	105.983 (1), 108.510 (1), 106.129 (1)
$V(\dot{A}^3)$	5420.0 (4)	2060.09 (12)
Z	4	1
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	9.30	3.91
Crystal size (mm)	$0.17 \times 0.11 \times 0.03$	$0.23 \times 0.18 \times 0.18$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, \hat{T}_{\max}	0.285, 0.746	0.515, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	128368, 9046, 7392	151194, 11588, 10906
R _{int}	0.087	0.042
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.736	0.696
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.065, 1.06	0.018, 0.042, 1.10
No. of reflections	9046	11588
No. of parameters	427	461
No. of restraints	45	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.43, -1.83	0.95, -0.70

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

(75.4 MHz, DMSO- d_6 , ppm): 36.9 (Me, IMe), 123.5 (CH, IMe), 168.0 (C, IMe), 197.7 (CO), 198.7 (CO), 201.1 (CO), 218.6 (CO) IR (ATR, v, cm⁻¹): 3152 (*w*, *br*), 1998 (*vw*), 1974 (*vw*), 1955 (*m*), 1927 (*vw*), 1912 (*vw*), 1881 (*vs*, *br*), 1858 (*vw*), 1575 (*vw*), 1465 (*w*), 1400 (*vw*), 1332 (*vw*), 1229 (*m*), 1131 (*vw*), 1083 (*vw*), 1013 (*vw*), 845 (*vw*), 736 (*s*), 701 (*vw*), 681 (*m*), 600 (*w*), 577 (*s*), 560 (*vw*), 508 (*vw*), 496 (*vw*), 464 (*w*), 436 (*vw*), 411 (*w*).

A few crystals of $Pd_4Re_2(PPh_3)_4(m-CO)_8(CO)_2$ suitable for X-ray diffraction analysis were obtained from a yellow benzene solution, after several days, by slow ether diffusion into a concentrated solution of benzene at 277 K. IR (ATR, v, cm⁻¹): 3850 (vw), 3054 (vw, br), 2955 (vw, br), 1986 (s), 1821 (vs, br), 1585 (vw), 1571 (vw), 1515 (vw), 1477 (w), 1434 (m), 1307 (vw), 1263 (vw), 1236 (vw, br), 1182 (vw), 1159 (vw), 1119 (vw), 1092 (m), 1071 (vw), 1026 (vw), 997 (w), 907 (vw), 846 (vw), 741 (m), 690 (vs), 618 (vw), 565 (w), 541 (vw), 496 (m), 412 (vw).

Triphenylphosphine oxide (14 mg, 28%) and $\text{Re}_2(\text{CO})_8(\text{PPh}_3)_2$ (29 mg, 14%) were also isolated from this crystallization.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined using a riding model, with C-H =0.95 Å (*sp*²), 0.98 Å (methyl) and 0.99 Å (methylene), with common isotropic temperature factors for all hydrogen atoms of the aromatic rings and methyl groups. SADI restraints on bond lengths and DELU restraints on anisotropic thermal parameters were used to model the disordered carbene ligand and diethyl ether molecule over two positions. For the refinement of **2**, four reflections (100, 010, 200, 021) were omitted because they showed a significantly lower intensity than calculated, most probably caused by obstruction from the beam stop. The residual electron density in **2** was difficult to model and therefore, the SQUEEZE routine (Spek, 2015) in *PLATON* (Spek, 2020) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The cavity with a volume of *ca* 311 Å³ contains approximately 98 electrons.

Acknowledgements

This work was carried out on equipment of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry (Russian Academy of Sciences).

Funding information

Funding for this research was provided by: Russian Foundation for Basic Research (grant No. 19-33-90199 to RFBR).

References

- Adams, R. D., Pearl, W. C., Wong, Y. O., Hall, M. B. & Walensky, J. R. (2015). *Inorg. Chem.* 54, 3536–3544.
- Adams, R. D., Wong, Y. O. & Zhang, Q. (2013). Organometallics, 32, 7540–7546.
- Bonarowska, M., Malinowski, A. & Karpiński, Z. (1999). Appl. Catal. Gen. 188, 145–154.
- Bruker. (2015). APEX2 and SAINT, v8, 37A. Bruker AXS Inc, Madison, Wisconsin, USA.
- Churchill, M. R. & Bau, R. (1968). Inorg. Chem. 7, 2606-2614.
- Ciani, G., D'Alfonso, G., Freni, M., Romiti, P. & Sironi, A. (1978). J. Organomet. Chem. 157, 199–208.
- Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). *Dalton Trans.* pp. 2832–2838.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Fehlhammer, W. P., Bliss, T., Fuchs, J. & Holzmann, G. (1992). Z. Naturforsch. Teil B, 47, 79–89.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Heckenroth, M., Neels, A., Stoeckli-Evans, H. & Albrecht, M. (2006). Inorg. Chim. Acta, 359, 1929–1938.
- Juszczyk, W. & Karpiński, Z. (2001). Appl. Catal. Gen. 206, 67-78.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Malinowski, A., Juszczyk, W., Bonarowska, M., Pielaszek, J. & Karpinski, Z. (1998). J. Catal. 177, 153–163.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Thompson, S. T. & Lamb, H. H. (2016). ACS Catal. 6, 7438-7447.

Acta Cryst. (2021). E77, 1014-1018 [https://doi.org/10.1107/S2056989021009270]

Crystal structure of the new palladium complexes tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate and octa-*µ*-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (unknown solvate)

Sergey Shapovalov, Olga Tikhonova and Ivan Skabitsky

Computing details

For both structures, data collection: *APEX2* (Bruker, 2015); cell refinement: *SAINT* (Bruker, 2015); data reduction: *SAINT* (Bruker, 2015); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Tetrakis(1,3-dimethylimidazolium-2-ylidene)palladium(II) hexadecacarbonyltetrarhenium diethyl ether disolvate (1)

Crystal data

$[Pd(C_5H_8N_2)_4][Re_4(CO)_{16}]\cdot 2C_4H_{10}O$
$M_r = 1832.13$
Monoclinic, $C2/c$
a = 21.1079 (9) Å
b = 14.0026 (6) Å
c = 19.4346 (8) Å
$\beta = 109.342 \ (1)^{\circ}$
V = 5420.0 (4) Å ³
Z = 4

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.285$, $T_{\max} = 0.746$ 128368 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.065$ S = 1.06 F(000) = 3448 $D_x = 2.245 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9678 reflections $\theta = 2.9-31.5^{\circ}$ $\mu = 9.30 \text{ mm}^{-1}$ T = 100 KPlate, brownish yellow $0.17 \times 0.11 \times 0.03 \text{ mm}$

9046 independent reflections 7392 reflections with $I > 2\sigma(I)$ $R_{int} = 0.087$ $\theta_{max} = 31.5^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -31 \rightarrow 31$ $k = -20 \rightarrow 20$ $l = -28 \rightarrow 28$

9046 reflections 427 parameters 45 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0239P)^2 + 18.7547P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$

Special details

 $\begin{array}{l} \Delta \rho_{\rm max} = 1.43 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -1.83 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ SHELXL-2014/7} \\ \ ({\rm Sheldrick, \ 2015b}), \\ {\rm Fc}^* = {\rm kFc} [1{+}0.001 {\rm xFc}^2 {\rm \AA}^3 / {\rm sin} (2\theta)]^{-1/4} \\ {\rm Extinction \ coefficient: \ 0.000167 \ (12)} \end{array}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Re1	0.24123 (2)	0.64550 (2)	0.00757 (2)	0.01933 (4)	
Re2	0.12119 (2)	0.77460 (2)	-0.02794 (2)	0.01862 (4)	
01	0.26345 (18)	0.6591 (2)	0.17414 (18)	0.0402 (8)	
02	0.33004 (14)	0.4665 (2)	0.04457 (16)	0.0282 (6)	
O3	0.21798 (18)	0.6155 (2)	-0.15832 (16)	0.0395 (8)	
O4	0.12446 (17)	0.5083 (3)	-0.0062(3)	0.0723 (15)	
05	0.14525 (17)	0.7926 (3)	0.13868 (17)	0.0467 (9)	
O6	0.02877 (15)	0.9489 (2)	-0.05934 (19)	0.0360 (7)	
O7	0.09872 (16)	0.7518 (2)	-0.19407 (16)	0.0298 (6)	
08	0.00308 (15)	0.6418 (2)	-0.03953 (18)	0.0344 (7)	
C1	0.2553 (2)	0.6594 (3)	0.1126 (2)	0.0259 (8)	
C2	0.30013 (19)	0.5380 (3)	0.0300 (2)	0.0222 (7)	
C3	0.2273 (2)	0.6311 (3)	-0.0977 (2)	0.0265 (8)	
C4	0.1656 (2)	0.5633 (3)	-0.0026 (3)	0.0436 (13)	
C5	0.1390 (2)	0.7867 (3)	0.0783 (2)	0.0284 (8)	
C6	0.06388 (19)	0.8834 (3)	-0.0472 (2)	0.0265 (8)	
C7	0.10950 (19)	0.7595 (3)	-0.1328 (2)	0.0203 (7)	
C8	0.0477 (2)	0.6912 (3)	-0.0359 (2)	0.0240 (7)	
Pd1	0.0000	0.73266 (3)	0.2500	0.01708 (8)	
N1	0.01104 (15)	0.5294 (2)	0.20006 (16)	0.0208 (6)	
N2	0.08671 (16)	0.7599 (2)	0.40944 (16)	0.0207 (6)	
N3	0.14126 (16)	0.6837 (3)	0.35200 (18)	0.0264 (7)	
C9	0.0000	0.5885 (3)	0.2500	0.0163 (9)	
C10	0.0072 (2)	0.4355 (3)	0.2188 (2)	0.0291 (8)	
H10	0.0135	0.3810	0.1927	0.035*	
C11	0.0244 (2)	0.5602 (3)	0.1342 (2)	0.0280 (8)	
H11A	-0.0169	0.5553	0.0921	0.042*	
H11B	0.0591	0.5194	0.1264	0.042*	
H11C	0.0399	0.6266	0.1400	0.042*	
C12	0.08194 (18)	0.7269 (3)	0.34247 (19)	0.0197 (7)	
C13	0.1480 (2)	0.7374 (3)	0.4598 (2)	0.0272 (8)	
H13	0.1630	0.7529	0.5102	0.033*	
C14	0.1825 (2)	0.6895 (3)	0.4242 (2)	0.0306 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H14	0.2265	0.6643	0.4445	0.037*	
C15	0.0357 (2)	0.8150 (3)	0.4261 (2)	0.0263 (8)	
H15A	0.0515	0.8807	0.4381	0.040*	
H15B	0.0265	0.7864	0.4678	0.040*	
H15C	-0.0055	0.8154	0.3837	0.040*	
C16	0.1617 (2)	0.6371 (4)	0.2951 (3)	0.0372 (11)	
H16A	0.1578	0.5677	0.2988	0.056*	
H16B	0.2084	0.6538	0.3015	0.056*	
H16C	0.1327	0.6587	0.2471	0.056*	
N4	-0.0689 (5)	0.9322 (6)	0.2333 (5)	0.0253 (17)	0.5
N5	0.0364 (4)	0.9444 (6)	0.2548 (5)	0.0250 (16)	0.5
C17	-0.0127 (4)	0.8789 (5)	0.2461 (10)	0.0184 (18)	0.5
C18	-0.0558 (5)	1.0282 (6)	0.2331 (5)	0.038 (2)	0.5
H18	-0.0875	1.0788	0.2239	0.045*	0.5
C19	0.0112 (8)	1.0359 (6)	0.2485 (19)	0.037 (4)	0.5
H19	0.0361	1.0935	0.2541	0.044*	0.5
C20	-0.1373 (5)	0.8957 (8)	0.2173 (6)	0.034 (2)	0.5
H20A	-0.1550	0.8755	0.1662	0.051*	0.5
H20B	-0.1659	0.9462	0.2261	0.051*	0.5
H20C	-0.1367	0.8411	0.2491	0.051*	0.5
C21	0.1067 (6)	0.9243 (7)	0.2723 (6)	0.030(2)	0.5
H21A	0.1261	0.9091	0.3243	0.045*	0.5
H21B	0.1295	0.9803	0.2612	0.045*	0.5
H21C	0.1126	0.8698	0.2433	0.045*	0.5
09	0.3252 (14)	0.7269 (9)	0.3616 (17)	0.034 (3)	0.625 (15)
C23	0.3548 (9)	0.5629 (10)	0.3719 (8)	0.038 (3)	0.625 (15)
H23A	0.3132	0.5457	0.3330	0.057*	0.625 (15)
H23B	0.3473	0.5604	0.4191	0.057*	0.625 (15)
H23C	0.3903	0.5177	0.3721	0.057*	0.625 (15)
C22	0.3752 (7)	0.6610 (9)	0.3592 (8)	0.027 (3)	0.625 (15)
H22A	0.4184	0.6774	0.3970	0.033*	0.625 (15)
H22B	0.3815	0.6642	0.3110	0.033*	0.625 (15)
C24	0.3390 (5)	0.8233 (8)	0.3464 (6)	0.032 (2)	0.625 (15)
H24A	0.3523	0.8250	0.3021	0.038*	0.625 (15)
H24B	0.3766	0.8490	0.3877	0.038*	0.625 (15)
C25	0.2780 (5)	0.8827 (7)	0.3352 (5)	0.045 (2)	0.625 (15)
H25A	0.2418	0.8594	0.2924	0.068*	0.625 (15)
H25B	0.2881	0.9493	0.3274	0.068*	0.625 (15)
H25C	0.2639	0.8784	0.3783	0.068*	0.625 (15)
09A	0.333 (3)	0.7156 (16)	0.371 (3)	0.033 (6)	0.375 (15)
C22A	0.3655 (13)	0.6404 (13)	0.3477 (13)	0.029 (5)	0.375 (15)
H22C	0.4123	0.6592	0.3540	0.035*	0.375 (15)
H22D	0.3422	0.6280	0.2952	0.035*	0.375 (15)
C24A	0.3289 (11)	0.8017 (10)	0.3296 (9)	0.027 (4)	0.375 (15)
H24C	0.2916	0.7966	0.2827	0.032*	0.375 (15)
H24D	0.3712	0.8108	0.3188	0.032*	0.375 (15)
C23A	0.3655 (13)	0.5520 (12)	0.3901 (11)	0.020 (3)	0.375 (15)
H23D	0.3939	0.5037	0.3783	0.030*	0.375 (15)

(15)
(15)
(15)
(15)
(15)
(15)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Re1	0.01832 (7)	0.01206 (7)	0.02740 (8)	0.00109 (5)	0.00727 (5)	-0.00045 (5)
Re2	0.01763 (7)	0.01595 (7)	0.02291 (7)	0.00130 (5)	0.00757 (5)	-0.00270 (5)
01	0.053 (2)	0.039 (2)	0.0373 (17)	0.0041 (16)	0.0264 (16)	0.0060 (14)
O2	0.0337 (15)	0.0177 (14)	0.0362 (15)	0.0062 (12)	0.0156 (12)	0.0079 (12)
O3	0.052 (2)	0.0295 (17)	0.0295 (16)	0.0116 (15)	0.0032 (14)	-0.0019 (13)
O4	0.0295 (17)	0.0229 (19)	0.163 (5)	-0.0023 (14)	0.029 (2)	-0.004(2)
05	0.0373 (18)	0.075 (3)	0.0284 (16)	0.0133 (18)	0.0116 (14)	-0.0083 (17)
O6	0.0276 (14)	0.0205 (15)	0.059 (2)	0.0059 (12)	0.0128 (14)	-0.0041 (14)
O7	0.0361 (16)	0.0266 (16)	0.0279 (15)	0.0001 (12)	0.0122 (12)	0.0020 (12)
08	0.0324 (15)	0.0296 (17)	0.0465 (18)	-0.0084 (13)	0.0202 (14)	-0.0073 (14)
C1	0.0295 (19)	0.0196 (19)	0.035 (2)	0.0015 (15)	0.0191 (17)	0.0027 (16)
C2	0.0258 (17)	0.0211 (19)	0.0217 (16)	-0.0004 (14)	0.0107 (14)	0.0010 (14)
C3	0.0299 (19)	0.0134 (18)	0.032 (2)	0.0042 (15)	0.0052 (16)	-0.0015 (15)
C4	0.026 (2)	0.016 (2)	0.088 (4)	0.0035 (17)	0.018 (2)	0.001 (2)
C5	0.0239 (18)	0.030 (2)	0.032 (2)	0.0046 (16)	0.0101 (16)	-0.0061 (17)
C6	0.0214 (17)	0.023 (2)	0.036 (2)	-0.0010 (15)	0.0117 (16)	-0.0049 (17)
C7	0.0233 (17)	0.0119 (16)	0.0270 (18)	0.0007 (13)	0.0099 (14)	0.0018 (13)
C8	0.0289 (18)	0.0175 (18)	0.0281 (19)	0.0023 (15)	0.0127 (15)	-0.0021 (15)
Pd1	0.02756 (18)	0.00932 (17)	0.01613 (16)	0.000	0.00962 (14)	0.000
N1	0.0257 (15)	0.0122 (14)	0.0230 (14)	-0.0005 (12)	0.0062 (12)	-0.0024 (12)
N2	0.0265 (15)	0.0175 (16)	0.0190 (14)	-0.0068 (12)	0.0085 (12)	-0.0013 (11)
N3	0.0223 (15)	0.0286 (19)	0.0294 (17)	-0.0082 (13)	0.0101 (13)	-0.0123 (14)
C9	0.015 (2)	0.012 (2)	0.020 (2)	0.000	0.0026 (17)	0.000
C10	0.042 (2)	0.0100 (17)	0.033 (2)	0.0016 (16)	0.0093 (18)	-0.0034 (15)
C11	0.036 (2)	0.022 (2)	0.0274 (19)	0.0000 (17)	0.0123 (17)	-0.0041 (16)
C12	0.0253 (17)	0.0152 (17)	0.0201 (16)	-0.0068 (14)	0.0096 (14)	-0.0023 (13)
C13	0.031 (2)	0.026 (2)	0.0219 (17)	-0.0112 (16)	0.0042 (15)	-0.0039 (15)
C14	0.0220 (18)	0.031 (2)	0.034 (2)	-0.0065 (16)	0.0023 (16)	-0.0061 (18)
C15	0.033 (2)	0.026 (2)	0.0236 (18)	-0.0035 (17)	0.0148 (16)	-0.0063 (16)
C16	0.025 (2)	0.047 (3)	0.041 (2)	-0.0039 (19)	0.0137 (18)	-0.019 (2)
N4	0.035 (4)	0.023 (4)	0.021 (4)	0.014 (4)	0.012 (5)	0.004 (3)
N5	0.041 (4)	0.020 (4)	0.019 (4)	-0.005 (3)	0.017 (4)	-0.004 (3)
C17	0.030 (6)	0.015 (3)	0.013 (4)	0.004 (3)	0.011 (7)	0.000 (3)
C18	0.074 (6)	0.019 (4)	0.026 (5)	0.018 (4)	0.024 (5)	0.010 (3)
C19	0.068 (9)	0.016 (3)	0.029 (4)	-0.001 (5)	0.020 (12)	-0.001 (5)
C20	0.039 (5)	0.041 (7)	0.027 (5)	0.018 (4)	0.017 (5)	0.009 (5)
C21	0.043 (5)	0.020 (5)	0.032 (5)	-0.017 (5)	0.018 (6)	-0.003 (4)
09	0.038 (5)	0.033 (5)	0.037 (9)	-0.011 (5)	0.021 (6)	-0.010 (5)

C23	0.043 (8)	0.046 (5)	0.022 (7)	0.000 (5)	0.008 (6)	0.001 (4)
C22	0.021 (4)	0.036 (5)	0.026 (5)	-0.005 (4)	0.010 (4)	-0.005 (4)
C24	0.035 (4)	0.036 (5)	0.023 (5)	-0.008(4)	0.006 (4)	-0.006 (4)
C25	0.050 (6)	0.043 (5)	0.038 (5)	0.002 (4)	0.008 (4)	-0.006 (4)
O9A	0.055 (15)	0.022 (5)	0.028 (9)	0.000 (6)	0.022 (10)	0.002 (5)
C22A	0.037 (11)	0.028 (8)	0.019 (8)	0.001 (7)	0.005 (7)	0.003 (7)
C24A	0.044 (9)	0.016 (6)	0.015 (7)	-0.005 (6)	0.002 (6)	-0.006 (4)
C23A	0.023 (7)	0.023 (6)	0.009 (8)	-0.007(5)	-0.001 (6)	-0.005 (5)
C25A	0.044 (8)	0.024 (6)	0.046 (8)	0.005 (5)	0.016 (7)	-0.006 (5)

Geometric parameters (Å, °)

Re1—Re1 ⁱ	2.9767 (3)	C16—H16B	0.9800
Re1—Re2 ⁱ	3.0133 (2)	C16—H16C	0.9800
Re1—Re2	3.0011 (2)	N4—C17	1.353 (9)
Re1—C1	1.973 (4)	N4—C18	1.373 (11)
Re1—C2	1.909 (4)	N4—C20	1.464 (11)
Re1—C3	1.978 (4)	N5—C17	1.352 (9)
Re1—C4	1.925 (5)	N5-C19	1.378 (11)
Re2—Re1 ⁱ	3.0134 (2)	N5—C21	1.436 (11)
Re2—C5	1.980 (4)	C18—H18	0.9500
Re2—C6	1.904 (4)	C18—C19	1.349 (15)
Re2—C7	1.982 (4)	C19—H19	0.9500
Re2—C8	1.908 (4)	C20—H20A	0.9800
O1—C1	1.150 (5)	С20—Н20В	0.9800
O2—C2	1.167 (5)	С20—Н20С	0.9800
O3—C3	1.150 (5)	C21—H21A	0.9800
O4—C4	1.145 (6)	C21—H21B	0.9800
O5—C5	1.139 (5)	C21—H21C	0.9800
O6—C6	1.153 (5)	O9—C22	1.415 (12)
O7—C7	1.140 (5)	O9—C24	1.431 (12)
O8—C8	1.151 (5)	С23—Н23А	0.9800
Pd1—C9	2.019 (5)	С23—Н23В	0.9800
Pd1—C12 ⁱⁱ	2.042 (4)	С23—Н23С	0.9800
Pd1—C12	2.042 (4)	C23—C22	1.486 (12)
Pd1—C17	2.064 (6)	C22—H22A	0.9900
N1—C9	1.353 (4)	С22—Н22В	0.9900
N1—C10	1.375 (5)	C24—H24A	0.9900
N1-C11	1.464 (5)	C24—H24B	0.9900
N2—C12	1.353 (4)	C24—C25	1.488 (12)
N2—C13	1.375 (5)	С25—Н25А	0.9800
N2—C15	1.446 (5)	С25—Н25В	0.9800
N3—C12	1.347 (5)	С25—Н25С	0.9800
N3—C14	1.387 (5)	O9A—C22A	1.413 (16)
N3—C16	1.467 (5)	O9A—C24A	1.439 (16)
C9—N1 ⁱⁱ	1.353 (4)	C22A—H22C	0.9900
C10—C10 ⁱⁱ	1.343 (8)	C22A—H22D	0.9900
C10—H10	0.9500	C22A—C23A	1.487 (15)

C11—H11A	0.9800	C24A—H24C	0.9900
C11—H11B	0.9800	C24A—H24D	0.9900
C11—H11C	0.9800	C24A—C25A	1.479 (14)
С13—Н13	0.9500	C23A—H23D	0.9800
C13—C14	1.338 (6)	С23А—Н23Е	0.9800
C14—H14	0.9500	C23A—H23F	0.9800
C15—H15A	0.9800	C25A—H25D	0.9800
C15—H15B	0.9800	C25A—H25E	0.9800
C15—H15C	0.9800	C25A—H25F	0.9800
C16—H16A	0.9800		0.0000
Rel ⁱ —Rel—Re ²	60 542 (6)	H15B-C15-H15C	109 5
Rel ⁱ —Rel—Re ^{2ⁱ}	60.127(5)	N3-C16-H16A	109.5
$Re2 Re1 Re2^{i}$	120 669 (6)	N3—C16—H16B	109.5
C1—Re1—Re1 ⁱ	91 41 (12)	N3	109.5
C1—Re1—Re2 ⁱ	91 11 (12)	H_{16A} $-C_{16}$ $-H_{16B}$	109.5
C1 Re1 Re2	90.28(12)		109.5
$C_1 = Re_1 = Rc_2$	170.23(12)	HI6B C16 HI6C	109.5
$C_1 = Rc_1 = C_3$ $C_2 = Re_1 = Re_1^{i}$	179.77(10) 134.85(11)	C17 N/ $C18$	109.5
$C_2 = Rc_1 = Rc_1$	164 50 (11)	C17 N4 C20	112.1(9) 126.2(8)
$C_2 = Re_1 = Re_2$	104.39(11)	C17 - N4 - C20	120.2(8)
$C_2 = Re_1 = Re_2$	74.73 (11) 88.72 (16)	$C_{10} = N_{10} = C_{20}$	121.7(9)
C_2 Ref C_1	00.75(10)	C17 = N5 = C21	111.2(0) 125.8(2)
C_2 —Re1—C3	91.03 (13)	C10 N5 C21	123.8 (8)
C_2 —ReI—C4	90.39 (17)	C19—N5—C21	122.9 (9)
C_3 —Ref—Ref	88./9 (11)	N4	130.5 (6)
$C_3 = Re_1 = Re_2$	89.91 (11)	N5-C17-Pd1	125.7 (6)
C_3 —ReI—Re ²	88.89 (12)	N5	103.8 (8)
C4—Rel—Rel ¹	134.75 (13)	N4—C18—H18	127.0
C4—Rel—Re2 ¹	165.04 (13)	C19—C18—N4	105.9 (9)
C4—Re1—Re2	74.23 (13)	C19—C18—H18	127.0
C4—Re1—C1	90.0 (2)	N5—C19—H19	126.5
C4—Re1—C3	89.9 (2)	C18—C19—N5	107.0 (9)
Re1—Re2—Re1 ¹	59.330 (6)	C18—C19—H19	126.5
C5—Re2—Re1 ¹	89.40 (12)	N4—C20—H20A	109.5
C5—Re2—Re1	87.57 (12)	N4—C20—H20B	109.5
C5—Re2—C7	176.24 (15)	N4—C20—H20C	109.5
C6—Re2—Re1	163.81 (12)	H20A—C20—H20B	109.5
C6—Re2—Re1 ⁱ	104.51 (12)	H20A—C20—H20C	109.5
C6—Re2—C5	91.43 (17)	H20B—C20—H20C	109.5
C6—Re2—C7	91.67 (16)	N5—C21—H21A	109.5
C6—Re2—C8	91.55 (16)	N5—C21—H21B	109.5
C7—Re2—Re1	88.86 (10)	N5—C21—H21C	109.5
C7—Re2—Re1 ⁱ	87.76 (11)	H21A—C21—H21B	109.5
C8—Re2—Re1 ⁱ	163.93 (12)	H21A—C21—H21C	109.5
C8—Re2—Re1	104.61 (12)	H21B—C21—H21C	109.5
C8—Re2—C5	90.28 (17)	C22—O9—C24	113.7 (13)
C8—Re2—C7	91.76 (15)	H23A—C23—H23B	109.5
O1—C1—Re1	174.2 (4)	H23A—C23—H23C	109.5

O2—C2—Re1	172.3 (3)	H23B—C23—H23C	109.5
O3—C3—Re1	174.7 (4)	С22—С23—Н23А	109.5
O4—C4—Rel	174.2 (4)	С22—С23—Н23В	109.5
O5—C5—Re2	175.9 (4)	С22—С23—Н23С	109.5
O6—C6—Re2	179.4 (4)	O9—C22—C23	109.7 (11)
O7—C7—Re2	175.8 (3)	O9—C22—H22A	109.7
O8—C8—Re2	178.7 (4)	O9—C22—H22B	109.7
C9—Pd1—C12	87.72 (10)	C23—C22—H22A	109.7
C9—Pd1—C12 ⁱⁱ	87.72 (10)	C23—C22—H22B	109.7
C9—Pd1—C17	173.0 (2)	H22A—C22—H22B	108.2
$C12^{ii}$ —Pd1—C12	175 4 (2)	09—C24—H24A	109.8
$C12^{ii}$ Pd1 C17	86 9 (4)	09-C24-H24B	109.8
C12 - Pd1 - C17	97 7 (4)	09-C24-C25	109.0
C_{12} C_{14} C_{10}	110.8(3)	H_{24} C_{24} H_{24} H	109.4 (11)
$C_{0} = N_{1} = C_{10}$	110.0(3)	1124A - C24 - 1124B	100.2
C_{9} NI C_{11}	123.2(3) 124.0(2)	$C_{23} = C_{24} = H_{24} = H_{24}$	109.8
C10 N2 $C12$	124.0(3)	С23—С24—П24В	109.8
C12 - N2 - C13	111.0 (3)	C24—C25—H25A	109.5
C12—N2—C15	125.0 (3)	С24—С25—Н25В	109.5
C13—N2—C15	123.9 (3)	C24—C25—H25C	109.5
C12—N3—C14	110.9 (3)	H25A—C25—H25B	109.5
C12—N3—C16	126.1 (3)	H25A—C25—H25C	109.5
C14—N3—C16	123.1 (4)	H25B—C25—H25C	109.5
$N1^{ii}$ —C9—Pd1	127.7 (2)	C22A—O9A—C24A	113 (2)
N1—C9—Pd1	127.7 (2)	O9A—C22A—H22C	109.5
N1—C9—N1 ⁱⁱ	104.6 (4)	O9A—C22A—H22D	109.5
N1—C10—H10	126.6	O9A—C22A—C23A	110.6 (16)
C10 ⁱⁱ —C10—N1	106.9 (2)	H22C—C22A—H22D	108.1
C10 ⁱⁱ —C10—H10	126.6	C23A—C22A—H22C	109.5
N1—C11—H11A	109.5	C23A—C22A—H22D	109.5
N1—C11—H11B	109.5	O9A—C24A—H24C	109.8
N1—C11—H11C	109.5	O9A—C24A—H24D	109.8
H11A—C11—H11B	109.5	09A—C24A—C25A	109.5 (18)
H11A—C11—H11C	109.5	H24C—C24A—H24D	108.2
H11B—C11—H11C	109.5	C25A - C24A - H24C	109.8
N_2 C_1^2 P_d_1	127.2 (3)	C_{25A} C_{24A} H_{24D}	109.8
$N_3 - C_{12} - P_{d_1}$	127.2(3) 128.1(3)	$C_{22}A = C_{23}A = H_{23}D$	109.5
N3N2	104.6(3)	$C_{22}A = C_{23}A = H_{23}E$	109.5
N2 C13 H13	126.5	$C_{22A} = C_{23A} = H_{23E}$	109.5
12-013-1113	120.3	$\begin{array}{c} C22A \\ H23D \\ C23A \\ H23E \\ H2$	109.5
C14 - C13 - N2	107.0 (3)	$\begin{array}{c} 1125D \\ 1122D \\ 1122D \\ 1122E \\$	109.5
С14—С13—Н13	126.3	Н23D—С23А—Н23F	109.5
$N_{3} = C_{14} = H_{14}$	126.7	H23E - C23A - H23F	109.5
C13—C14—N3	106.6 (4)	C24A—C25A—H25D	109.5
C13—C14—H14	126.7	C24A—C25A—H25E	109.5
N2—C15—H15A	109.5	C24A—C25A—H25F	109.5
N2—C15—H15B	109.5	H25D—C25A—H25E	109.5
N2—C15—H15C	109.5	H25D—C25A—H25F	109.5
H15A—C15—H15B	109.5	H25E—C25A—H25F	109.5
H15A—C15—H15C	109.5		

N2-C13-C14-N3	0.1 (5)	C16—N3—C14—C13	179.1 (4)
C9—N1—C10—C10 ⁱⁱ	0.6 (6)	N4—C18—C19—N5	2 (3)
C10—N1—C9—Pd1	179.8 (2)	C17—N4—C18—C19	-2 (2)
C10—N1—C9—N1 ⁱⁱ	-0.2 (2)	C17—N5—C19—C18	-2 (3)
C11—N1—C9—Pd1	-1.0 (4)	C18—N4—C17—Pd1	-178.0 (11)
C11—N1—C9—N1 ⁱⁱ	179.0 (4)	C18—N4—C17—N5	0.7 (17)
C11—N1—C10—C10 ⁱⁱ	-178.6 (4)	C19—N5—C17—Pd1	179.6 (18)
C12—N2—C13—C14	0.0 (5)	C19—N5—C17—N4	1 (2)
C12—N3—C14—C13	-0.3 (5)	C20—N4—C17—Pd1	-1 (2)
C13—N2—C12—Pd1	175.6 (3)	C20—N4—C17—N5	177.6 (9)
C13—N2—C12—N3	-0.2 (4)	C20—N4—C18—C19	-179.0 (17)
C14—N3—C12—Pd1	-175.4 (3)	C21—N5—C17—Pd1	-4 (2)
C14—N3—C12—N2	0.3 (4)	C21—N5—C17—N4	177.6 (9)
C15—N2—C12—Pd1	-6.8 (5)	C21—N5—C19—C18	-179.0 (14)
C15—N2—C12—N3	177.5 (3)	C22—O9—C24—C25	168.3 (18)
C15—N2—C13—C14	-177.7 (4)	C24—O9—C22—C23	-177.2 (18)
C16—N3—C12—Pd1	5.2 (6)	C22A—O9A—C24A—C25A	-160 (3)
C16—N3—C12—N2	-179.1 (4)	C24A—O9A—C22A—C23A	-177 (3)

Symmetry codes: (i) -x+1/2, -y+3/2, -z; (ii) -x, y, -z+1/2.

Hydrogen-l	bond	geometry	(Ă,	9
- 0		0 2	`	

<i>D</i> —H··· <i>A</i>	D—H	H····A	D···A	<i>D</i> —H··· <i>A</i>
C11—H11A····O4 ⁱⁱⁱ	0.98	2.49	3.436 (6)	161
C13—H13····O9 ^{iv}	0.95	2.44	3.36 (3)	165
C13—H13····O9 <i>A</i> ^{iv}	0.95	2.32	3.25 (5)	163
C15—H15A····O6 ^v	0.98	2.44	3.326 (5)	150
C16—H16 <i>B</i> ···O9	0.98	2.57	3.49 (3)	158
C18—H18…O7 ^{vi}	0.95	2.43	3.230 (9)	141
С19—Н19…О7 ^v	0.95	2.56	3.483 (16)	163
C20—H20 <i>C</i> ···O5 ⁱⁱ	0.98	2.35	3.203 (12)	145
C21—H21A····O2 ^{vii}	0.98	2.54	3.413 (11)	149
C21—H21C···O5	0.98	2.59	3.494 (12)	153
C24—H24 <i>B</i> ···O8 ^{viii}	0.99	2.58	3.473 (12)	150

Symmetry codes: (ii) -x, y, -z+1/2; (iii) -x, -y+1, -z; (iv) -x+1/2, -y+3/2, -z+1; (v) x, -y+2, z+1/2; (vi) -x, -y+2, -z; (vii) -x+1/2, y+1/2, -z+1/2; (viii) x+1/2, -y+3/2, z+1/2.

Octa-µ-carbonyl-dicarbonyltetrakis(triphenylphosphane)palladiumdirhenium (2)

tions

 $\mu = 3.91 \text{ mm}^{-1}$ T = 100 K

Data collection

D'ala concenton	
Bruker APEXII CCD	11588 independent reflections
diffractometer	10906 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.042$
Absorption correction: multi-scan	$\theta_{\rm max} = 29.7^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$
(SADABS; Krause et al., 2015)	$h = -17 \rightarrow 17$
$T_{\min} = 0.515, \ T_{\max} = 0.746$	$k = -18 \rightarrow 18$
151194 measured reflections	$l = -19 \rightarrow 19$
Refinement	
_	

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.018$
$wR(F^2) = 0.042$
S = 1.10
11588 reflections
461 parameters
0 restraints

5 1.10
11588 reflections
461 parameters
0 restraints
Primary atom site location: dual
Hydrogen site location: inferred from
neighbouring sites

Block, red $0.23 \times 0.18 \times 0.18$ mm

H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0148P)^2 + 2.1161P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.005$ $\Delta \rho_{\rm max} = 0.95 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL-2014/7 (Sheldrick 2015b), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00119 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

			-	II */II	
	λ	<u>y</u>	2	$U_{\rm iso} / U_{\rm eq}$	
Re1	-0.03789 (2)	0.58284 (2)	0.59592 (2)	0.01288 (3)	
Pd1	0.11939 (2)	0.64837 (2)	0.50923 (2)	0.01377 (3)	
Pd2	0.13798 (2)	0.50124 (2)	0.63029 (2)	0.01360 (3)	
P1	0.27753 (4)	0.79978 (4)	0.52970 (4)	0.01537 (9)	
P2	0.27280 (5)	0.48255 (4)	0.77255 (4)	0.01634 (10)	
01	-0.11990 (18)	0.71938 (18)	0.74578 (16)	0.0433 (5)	
O2	-0.12746 (15)	0.42760 (14)	0.70708 (13)	0.0266 (3)	
03	0.18975 (14)	0.70585 (13)	0.81880 (12)	0.0236 (3)	
O4	0.03880 (14)	0.82425 (13)	0.59258 (13)	0.0240 (3)	
05	0.30356 (13)	0.45945 (14)	0.53745 (13)	0.0236 (3)	
C1	-0.0874 (2)	0.66930 (19)	0.69145 (18)	0.0246 (4)	
C2	-0.10429 (18)	0.45891 (18)	0.64488 (17)	0.0198 (4)	
C3	0.12010 (18)	0.64157 (17)	0.73175 (16)	0.0178 (4)	
C4	0.03254 (17)	0.73328 (17)	0.57964 (16)	0.0175 (4)	
C5	0.20750 (18)	0.45438 (17)	0.51815 (16)	0.0174 (4)	
C6	0.37893 (17)	0.75557 (17)	0.48099 (17)	0.0188 (4)	
C7	0.4316 (2)	0.69504 (19)	0.53169 (19)	0.0242 (4)	
H7	0.4156	0.6822	0.5894	0.029*	

C8	0.5067 (2)	0.65387 (19)	0.4984 (2)	0.0270 (5)
H8	0.5409	0.6118	0.5322	0.032*
C9	0.5315 (2)	0.6744 (2)	0.41544 (19)	0.0283 (5)
H9	0.5830	0.6464	0.3924	0.034*
C10	0.4819 (2)	0.7353 (2)	0.36630 (19)	0.0278 (5)
H10	0.5008	0.7504	0.3106	0.033*
C11	0.40389 (18)	0.77520 (18)	0.39750 (17)	0.0215 (4)
H11	0.3683	0.8154	0.3619	0.026*
C12	0.38172 (18)	0.90224 (17)	0.66794 (16)	0.0180 (4)
C13	0.34659 (19)	0.91169 (18)	0.75257 (17)	0.0216 (4)
H13	0.2686	0.8649	0.7381	0.026*
C14	0.4253 (2)	0.9896 (2)	0.85853 (18)	0.0264 (5)
H14	0.4004	0.9956	0.9156	0.032*
C15	0.5392 (2)	1.0578 (2)	0.88081 (19)	0.0299 (5)
H15	0.5922	1.1113	0.9527	0.036*
C16	0.5758 (2)	1.0476 (2)	0.7971 (2)	0.0292 (5)
H16	0.6544	1.0935	0.8122	0.035*
C17	0.49795 (19)	0.97081 (18)	0.69209 (18)	0.0230 (4)
H17	0.5237	0.9645	0.6356	0.028*
C18	0.22924 (18)	0.88071 (17)	0.45395 (16)	0.0184 (4)
C19	0.3060 (2)	0.98359 (18)	0.46489 (18)	0.0229 (4)
H19	0.3875	1.0152	0.5148	0.027*
C20	0.2634 (2)	1.0399 (2)	0.4029 (2)	0.0281 (5)
H20	0.3162	1.1093	0.4102	0.034*
C21	0.1449 (2)	0.9955 (2)	0.3312 (2)	0.0347 (6)
H21	0.1161	1.0346	0.2897	0.042*
C22	0.0676 (2)	0.8933 (3)	0.3198 (2)	0.0387 (6)
H22	-0.0139	0.8622	0.2699	0.046*
C23	0.1098 (2)	0.8368 (2)	0.3815 (2)	0.0282 (5)
H23	0.0566	0.7676	0.3742	0.034*
C24	0.42622 (18)	0.57138 (19)	0.80973 (17)	0.0208 (4)
C25	0.5207 (2)	0.5376 (2)	0.8357 (2)	0.0294 (5)
H25	0.5070	0.4651	0.8366	0.035*
C26	0.6346 (2)	0.6093 (2)	0.8602 (2)	0.0401 (6)
H26	0.6982	0.5855	0.8774	0.048*
C27	0.6561 (2)	0.7155 (3)	0.8598 (2)	0.0409 (6)
H27	0.7342	0.7642	0.8765	0.049*
C28	0.5630 (2)	0.7502 (3)	0.8347 (3)	0.0415 (7)
H28	0.5776	0.8233	0.8353	0.050*
C29	0.4486 (2)	0.6779 (2)	0.8087 (2)	0.0326 (5)
H29	0.3850	0.7015	0.7901	0.039*
C30	0.26705 (19)	0.34177 (18)	0.75156 (17)	0.0199 (4)
C31	0.3181 (2)	0.3138 (2)	0.83814 (19)	0.0296 (5)
H31	0.3604	0.3699	0.9103	0.036*
C32	0.3073 (3)	0.2043 (2)	0.8192 (2)	0.0365 (6)
H32	0.3425	0.1860	0.8784	0.044*
C33	0.2453 (2)	0.1214 (2)	0.7143 (2)	0.0335 (5)
H33	0.2382	0.0465	0.7018	0.040*

C34	0.1937 (2)	0.1477 (2)	0.6279 (2)	0.0280 (5)
H34	0.1506	0.0909	0.5561	0.034*
C35	0.20507 (19)	0.25749 (18)	0.64649 (17)	0.0213 (4)
H35	0.1702	0.2754	0.5869	0.026*
C36	0.25498 (19)	0.52324 (18)	0.89861 (16)	0.0201 (4)
C37	0.1507 (2)	0.4569 (2)	0.8988 (2)	0.0303 (5)
H37	0.0943	0.3913	0.8359	0.036*
C38	0.1295 (3)	0.4865 (3)	0.9907 (2)	0.0414 (7)
H38	0.0592	0.4403	0.9910	0.050*
C39	0.2099 (3)	0.5825 (3)	1.0819 (2)	0.0443 (7)
H39	0.1948	0.6030	1.1446	0.053*
C40	0.3120 (3)	0.6484 (2)	1.0815 (2)	0.0407 (7)
H40	0.3671	0.7148	1.1441	0.049*
C41	0.3356 (2)	0.6192 (2)	0.99088 (18)	0.0277 (5)
H41	0.4070	0.6649	0.9920	0.033*

Atomic displacement parameters (\mathring{A}^2)

	I I 11	I 722	I 733	I 712	U 713	I 123
D 1						
Rel	0.01245 (4)	0.01357 (4)	0.01647 (4)	0.00659 (3)	0.00863 (3)	0.00710 (3)
Pd1	0.01249 (7)	0.01311 (7)	0.01861 (7)	0.00468 (5)	0.00858 (5)	0.00854 (5)
Pd2	0.01236 (7)	0.01464 (7)	0.01648 (7)	0.00662 (5)	0.00670 (5)	0.00807 (5)
P1	0.0134 (2)	0.0141 (2)	0.0215 (2)	0.00506 (18)	0.00935 (18)	0.00943 (19)
P2	0.0163 (2)	0.0175 (2)	0.0174 (2)	0.00879 (19)	0.00679 (18)	0.00836 (19)
01	0.0443 (11)	0.0454 (11)	0.0439 (11)	0.0246 (9)	0.0282 (9)	0.0054 (9)
O2	0.0308 (8)	0.0263 (8)	0.0236 (7)	0.0053 (7)	0.0156 (7)	0.0124 (6)
O3	0.0248 (8)	0.0196 (7)	0.0221 (7)	0.0100 (6)	0.0058 (6)	0.0062 (6)
O4	0.0241 (8)	0.0162 (7)	0.0341 (8)	0.0097 (6)	0.0128 (7)	0.0111 (6)
O5	0.0180 (7)	0.0314 (8)	0.0300 (8)	0.0145 (6)	0.0135 (6)	0.0156 (7)
C1	0.0216 (10)	0.0260 (11)	0.0263 (10)	0.0104 (9)	0.0120 (9)	0.0075 (9)
C2	0.0168 (9)	0.0221 (10)	0.0220 (9)	0.0069 (8)	0.0104 (8)	0.0090 (8)
C3	0.0190 (9)	0.0182 (9)	0.0213 (9)	0.0089 (8)	0.0109 (8)	0.0109 (8)
C4	0.0138 (8)	0.0190 (9)	0.0199 (9)	0.0070 (7)	0.0074 (7)	0.0073 (7)
C5	0.0190 (9)	0.0161 (9)	0.0218 (9)	0.0082 (7)	0.0109 (8)	0.0101 (7)
C6	0.0142 (9)	0.0151 (9)	0.0270 (10)	0.0041 (7)	0.0108 (8)	0.0079 (8)
C7	0.0234 (10)	0.0231 (10)	0.0361 (12)	0.0112 (9)	0.0180 (9)	0.0177 (9)
C8	0.0252 (11)	0.0224 (11)	0.0411 (13)	0.0132 (9)	0.0172 (10)	0.0163 (10)
C9	0.0222 (11)	0.0284 (12)	0.0331 (12)	0.0127 (9)	0.0131 (9)	0.0063 (9)
C10	0.0257 (11)	0.0367 (13)	0.0256 (10)	0.0144 (10)	0.0157 (9)	0.0113 (9)
C11	0.0174 (9)	0.0242 (10)	0.0233 (10)	0.0077 (8)	0.0092 (8)	0.0104 (8)
C12	0.0175 (9)	0.0154 (9)	0.0226 (9)	0.0069 (7)	0.0079 (8)	0.0100 (7)
C13	0.0216 (10)	0.0218 (10)	0.0255 (10)	0.0108 (8)	0.0098 (8)	0.0132 (8)
C14	0.0305 (12)	0.0291 (11)	0.0236 (10)	0.0146 (10)	0.0112 (9)	0.0139 (9)
C15	0.0316 (12)	0.0213 (11)	0.0251 (11)	0.0071 (9)	0.0031 (9)	0.0071 (9)
C16	0.0219 (11)	0.0220 (11)	0.0326 (12)	0.0024 (9)	0.0058 (9)	0.0089 (9)
C17	0.0201 (10)	0.0196 (10)	0.0287 (10)	0.0060 (8)	0.0104 (8)	0.0110 (8)
C18	0.0200 (9)	0.0191 (9)	0.0228 (9)	0.0097 (8)	0.0122 (8)	0.0120 (8)
C19	0.0243 (10)	0.0201 (10)	0.0284 (10)	0.0082 (8)	0.0143 (9)	0.0126 (8)

C20	0.0370 (13)	0.0227 (11)	0.0358 (12)	0.0133 (10)	0.0215 (10)	0.0190 (10)
C21	0.0403 (14)	0.0394 (14)	0.0441 (14)	0.0236 (12)	0.0217 (12)	0.0318 (12)
C22	0.0243 (12)	0.0525 (17)	0.0478 (15)	0.0158 (12)	0.0116 (11)	0.0357 (14)
C23	0.0199 (10)	0.0316 (12)	0.0356 (12)	0.0069 (9)	0.0106 (9)	0.0219 (10)
C24	0.0159 (9)	0.0252 (10)	0.0209 (9)	0.0081 (8)	0.0070 (8)	0.0097 (8)
C25	0.0229 (11)	0.0282 (12)	0.0347 (12)	0.0144 (9)	0.0076 (9)	0.0103 (10)
C26	0.0217 (12)	0.0435 (15)	0.0497 (16)	0.0166 (11)	0.0105 (11)	0.0130 (13)
C27	0.0200 (11)	0.0465 (16)	0.0527 (16)	0.0072 (11)	0.0150 (11)	0.0218 (14)
C28	0.0262 (13)	0.0395 (15)	0.0630 (18)	0.0097 (11)	0.0167 (12)	0.0322 (14)
C29	0.0216 (11)	0.0350 (13)	0.0496 (15)	0.0127 (10)	0.0150 (11)	0.0278 (12)
C30	0.0208 (10)	0.0204 (10)	0.0236 (10)	0.0118 (8)	0.0100 (8)	0.0115 (8)
C31	0.0352 (13)	0.0260 (11)	0.0273 (11)	0.0163 (10)	0.0071 (10)	0.0134 (9)
C32	0.0438 (15)	0.0329 (13)	0.0403 (14)	0.0248 (12)	0.0120 (12)	0.0223 (11)
C33	0.0376 (13)	0.0249 (12)	0.0465 (14)	0.0204 (11)	0.0179 (12)	0.0183 (11)
C34	0.0304 (12)	0.0219 (11)	0.0335 (12)	0.0132 (9)	0.0152 (10)	0.0087 (9)
C35	0.0213 (10)	0.0202 (10)	0.0238 (10)	0.0097 (8)	0.0098 (8)	0.0093 (8)
C36	0.0226 (10)	0.0250 (10)	0.0195 (9)	0.0154 (8)	0.0091 (8)	0.0120 (8)
C37	0.0246 (11)	0.0393 (14)	0.0319 (12)	0.0155 (10)	0.0143 (10)	0.0157 (10)
C38	0.0430 (16)	0.0624 (19)	0.0491 (16)	0.0326 (15)	0.0350 (14)	0.0348 (15)
C39	0.076 (2)	0.0585 (19)	0.0360 (14)	0.0490 (18)	0.0393 (15)	0.0307 (14)
C40	0.068 (2)	0.0340 (14)	0.0219 (11)	0.0274 (14)	0.0168 (12)	0.0101 (10)
C41	0.0364 (13)	0.0240 (11)	0.0215 (10)	0.0124 (10)	0.0105 (9)	0.0094 (9)

Geometric parameters (Å, °)

Re1—Pd1 ⁱ	2.7748 (2)	C15—H15	0.9500
Re1—Pd1	2.7555 (2)	C15—C16	1.394 (4)
Re1—Pd2 ⁱ	2.7796 (2)	C16—H16	0.9500
Re1—Pd2	2.7582 (2)	C16—C17	1.383 (3)
Re1—C1	1.921 (2)	C17—H17	0.9500
Re1—C2	2.058 (2)	C18—C19	1.400 (3)
Re1—C3	2.062 (2)	C18—C23	1.391 (3)
Re1—C4	2.092 (2)	C19—H19	0.9500
Re1—C5 ⁱ	2.087 (2)	C19—C20	1.393 (3)
Pd1—Re1 ⁱ	2.7747 (2)	С20—Н20	0.9500
Pd1—Pd2	2.9678 (2)	C20—C21	1.379 (4)
Pd1—Pd2 ⁱ	2.9909 (2)	C21—H21	0.9500
Pd1—P1	2.3291 (5)	C21—C22	1.393 (4)
Pd1—C2 ⁱ	2.170 (2)	C22—H22	0.9500
Pd1—C4	2.088 (2)	C22—C23	1.392 (3)
Pd2—Re1 ⁱ	2.7796 (2)	С23—Н23	0.9500
Pd2—Pd1 ⁱ	2.9910 (2)	C24—C25	1.398 (3)
Pd2—P2	2.3317 (5)	C24—C29	1.393 (3)
Pd2—C3	2.158 (2)	С25—Н25	0.9500
Pd2—C5	2.094 (2)	C25—C26	1.387 (4)
P1—C6	1.825 (2)	C26—H26	0.9500
P1—C12	1.830(2)	C26—C27	1.385 (4)
P1—C18	1.825 (2)	С27—Н27	0.9500

P2—C24	1.822 (2)	C27—C28	1.389 (4)
P2—C30	1.819 (2)	C28—H28	0.9500
P2—C36	1.821 (2)	C28—C29	1.390 (3)
O1—C1	1.140 (3)	C29—H29	0.9500
O2—C2	1.158 (3)	C30—C31	1.398 (3)
O3—C3	1.162 (2)	C30—C35	1.396 (3)
O4—C4	1.167 (3)	C31—H31	0.9500
O5—C5	1.161 (2)	C31—C32	1.386(3)
C2—Pd1 ⁱ	2.170 (2)	С32—Н32	0.9500
C5—Re1 ⁱ	2.087 (2)	C32—C33	1.387 (4)
C6—C7	1.403 (3)	С33—Н33	0.9500
C6-C11	1.389 (3)	C33—C34	1.383 (4)
С7—Н7	0.9500	C34—H34	0.9500
C7—C8	1.385(3)	C34-C35	1 390 (3)
C8—H8	0.9500	C35—H35	0.9500
C8-C9	1.385(3)	C_{36} C_{37}	1 398 (3)
С9—Н9	0.9500	$C_{36} - C_{41}$	1.396 (3)
C_{9}	1 376 (3)	C37_H37	0.9500
C10_H10	0.9500	$C_{37} - C_{38}$	1 386 (4)
C_{10} C_{11}	1,308 (3)	C_{38} H_{38}	1.580 (4)
C11 H11	1.338 (3)	$C_{38} = C_{30}$	1.370(5)
C_{11}	1.204(2)	$C_{38} = C_{39}$	1.379(3)
C_{12} C_{13} C_{17}	1.394(3)	$C_{39} = H_{39}$	0.9300
C_{12} U_{12}	1.400 (3)	$C_{39} = C_{40}$	1.374(3)
C13—R13	0.9300	C40—H40	0.9300
C13—C14	1.397 (3)	C40-C41	1.386 (3)
C14—H14	0.9500	C41—H41	0.9500
014-015	1.381 (3)		
Pd1—Re1—Pd1 ⁱ	99.105 (5)	С6—С7—Н7	119.7
Pd1—Re1—Pd2 ⁱ	65.413 (5)	C8—C7—C6	120.6 (2)
Pd1 ⁱ —Re1—Pd2 ⁱ	64.596 (5)	С8—С7—Н7	119.7
Pd1—Re1—Pd2	65.131 (5)	С7—С8—Н8	120.2
Pd2—Re1—Pd1 ⁱ	65.445 (5)	C7—C8—C9	119.6 (2)
Pd2—Re1—Pd2 ⁱ	99.238 (5)	С9—С8—Н8	120.2
C1—Re1—Pd1	131.04 (7)	С8—С9—Н9	119.9
C1—Re1—Pd1 ⁱ	129.69 (7)	C10—C9—C8	120.3 (2)
C1—Re1—Pd2	133.48 (7)	С10—С9—Н9	119.9
C1—Re1—Pd2 ⁱ	127.28 (7)	C9—C10—H10	119.7
C1—Re1—C2	83.99 (9)	C9—C10—C11	120.7 (2)
C1—Re1—C3	85.84 (9)	C11—C10—H10	119.7
C1—Re1—C4	83.85 (9)	C6—C11—C10	119.5 (2)
C1—Re1—C5 ⁱ	81.63 (9)	C6—C11—H11	120.3
C2—Re1—Pd1	141.37 (6)	C10—C11—H11	120.3
C2—Re1—Pd1 ⁱ	50.76 (6)	C13—C12—P1	119.88 (16)
C2—Re1—Pd2	78.91 (6)	C13—C12—C17	118.49 (19)
C2—Re1—Pd2 ⁱ	109.51 (6)	C17—C12—P1	121.62 (16)
C2—Re1—C3	87.43 (8)	C12—C13—H13	119.8
C2—Re1—C4	166.84 (8)	C12—C13—C14	120.4 (2)

C2—Re1—C5 ⁱ	91.78 (8)	C14—C13—H13	119.8
C3—Re1—Pd1 ⁱ	109.34 (6)	C13—C14—H14	119.8
C3—Re1—Pd1	80.75 (6)	C15—C14—C13	120.4 (2)
C3—Re1—Pd2	50.73 (6)	C15—C14—H14	119.8
$C3$ — $Re1$ — $Pd2^i$	143.08 (6)	C14—C15—H15	120.2
C3—Re1—C4	86.69 (8)	C14—C15—C16	119.6 (2)
C3—Re1—C5 ⁱ	167.46 (8)	C16—C15—H15	120.2
C4—Re1—Pd1	48.71 (5)	C15—C16—H16	119.9
C4—Re1—Pd1 ⁱ	142.40 (5)	C17—C16—C15	120.2 (2)
C4—Re1—Pd2 ⁱ	82.00 (5)	C17—C16—H16	119.9
C4—Re1—Pd2	106.14 (5)	С12—С17—Н17	119.5
$C5^{i}$ —Re1—Pd1	107.18 (6)	C16—C17—C12	120.9 (2)
$C5^{i}$ —Re1—Pd1 ⁱ	79.46 (5)	С16—С17—Н17	119.5
$C5^{i}$ —Re1—Pd2	141.24 (5)	C19—C18—P1	123.40 (16)
$C5^{i}$ —Re1—Pd2 ⁱ	48 43 (5)	C_{23} C_{18} P_{1}	117 73 (16)
$C5^{i}$ —Re1—C4	91.42 (8)	C_{23} C_{18} C_{19}	118.9 (2)
$Re1 - Pd1 - Re1^{i}$	80 894 (5)	C18 - C19 - H19	119.8
Rel ⁱ —Pd1—Pd2	57 781 (5)	C_{20} C_{19} C_{18}	120.3(2)
Rel ⁱ —Pd1—Pd2 ⁱ	57 011 (4)	C_{20} C_{19} H_{19}	119.8
Re1 - Pd1 - Pd2	57 477 (4)	C19 - C20 - H20	119.8
$Re1 - Pd1 - Pd2^{i}$	57 681 (5)	C_{21} C_{20} C_{12} C_{20} C_{19}	120.3(2)
$Pd2 Pd1 Pd2^{i}$	90 135 (6)	$C_{21} = C_{20} = H_{20}$	119.8
$P1_Pd1_Re1^{i}$	133 608 (14)	C_{20} C_{21} C_{20} C_{21} H_{21}	120.0
P1 $Pd1$ $Re1$	$143\ 861\ (14)$	C_{20} C_{21} C_{22}	120.0 119.9(2)
$P1 Pd1 Pd2^{i}$	143.600(14)	$C_{20} = C_{21} = C_{22}$	119.9 (2)
$P1_Pd1_Pd2$	145.099(14) 125.624(14)	$C_{22} = C_{21} = H_{21}$	120.0
C^{2i} Pd1 Pe1 ⁱ	125.024 (14)	$C_{21} = C_{22} = C_{122}$	120.0 110.0(2)
$C2^{i}$ Pd1 Pe1	122 58 (6)	$C_{23} = C_{22} = C_{21}$	119.9 (2)
$C2^{i}$ Pd1 Pd2 ⁱ	122.38(0)	$C_{23} = C_{22} = M_{22}$	120.0 120.6(2)
C2 - 1 d1 - 1 d2 $C2^i - Pd1 - Pd2$	100.12(6)	$C_{10} = C_{23} = C_{22}$	120.0 (2)
C2 - 1 d1 - 1 d2 $C2^i Pd1 P1$	100.12(0)	$C_{10} = C_{23} = H_{23}$	119.7
$C_2 - I dI - I I$ $C_4 - P dI - Re1$	<i>48</i> 82 (6)	$C_{22} = C_{23} = H_{23}$	119.7
$C_4 = R_1 = R_2 = R_1^{i}$	(0)	$C_{23} = C_{24} = 12$	123.93(18) 117.27(17)
$C_4 = 1 \text{ d} 1 = \text{Ref}$	125.79(0)	$C_{29} = C_{24} = 12$	117.27(17) 118.8(2)
C4 = Fd1 = Fd2	99.39 (0) 76.04 (5)	$C_{29} = C_{24} = C_{25}$	110.8 (2)
$C_4 = 1 d_1 = 1 d_2$	100.27(6)	$C_{24} = C_{25} = C_{125}$	119.0 120.3(2)
C4 = Fd1 = F1	100.27(0) 142.15(8)	$C_{20} = C_{23} = C_{24}$	120.3 (2)
C4 - rui - C2 $P_{01} - P_{02} - P_{01}i$	143.13(6) 90.762(5)	$C_{20} = C_{23} = H_{23}$	119.0
Re1 - ru2 - Re1	60.702 (5) 57.545 (5)	$C_{23} = C_{20} = H_{20}$	119.0 120.5(2)
Re1 - ru2 - ru1	57.545 (5)	$C_{27} = C_{20} = C_{23}$	120.3 (2)
Re1 - ru2 - ru1	57.025 (5)	$C_2/-C_20-H_20$	119.8
Rel—Fu2—Ful	57.592 (5) 56.004 (4)	$C_{20} = C_{27} = H_{27}$	120.2
	30.904(4)	$C_{20} = C_{27} = C_{28}$	119.7 (2)
ru1 - ru2 - ru1 $D2 Dd2 Da1i$	07.003 (0) 120 454 (14)	$C_{20} = C_{21} = \Pi_{21}$	120.2
$r_2 - r_{U2} - \kappa e r_1$	139.434 (14)	$C_2 / - C_2 \delta - H_2 \delta$	120.0
$r_2 - r_0 2 - \kappa e_1$	138./42 (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.9 (3)
$r_2 - r_0 2 - r_0 1$	128.138 (15)	C_{29} C_{20} H_{20}	120.0
$r_2 - r_0 2 - r_0 1$	141.995 (15)	$C_24 - C_29 - H_29$	119.0
C3—Pd2—Kel	47.70(5)	C28—C29—C24	120.8 (2)

C3—Pd2—Re1 ⁱ	123.96 (5)	С28—С29—Н29	119.6
$C3$ — $Pd2$ — $Pd1^i$	99.53 (5)	C31—C30—P2	122.07 (17)
C3—Pd2—Pd1	74.39 (5)	C35—C30—P2	119.19 (16)
C3—Pd2—P2	96.08 (6)	C35—C30—C31	118.7 (2)
C5—Pd2—Re1	124.34 (6)	С30—С31—Н31	119.9
C5—Pd2—Re1 ⁱ	48.21 (6)	C32—C31—C30	120.3 (2)
C5—Pd2—Pd1 ⁱ	99.26 (6)	C32—C31—H31	119.9
C5—Pd2—Pd1	74.81 (6)	C31—C32—H32	119.8
C5—Pd2—P2	96.36 (6)	$C_{31} - C_{32} - C_{33}$	120.5 (2)
C5—Pd2—C3	143 64 (8)	C33—C32—H32	119.8
C6-P1-Pd1	112 32 (7)	C32—C33—H33	120.0
C6-P1-C12	100 69 (9)	C_{34} C_{33} C_{32}	120.0 119.9(2)
C12 - P1 - Pd1	117.97(7)	C_{34} C_{33} H_{33}	120.0
C12 P1 Pd1	117.97 (7)	C33_C34_H34	120.0
C18 - P1 - C6	105.65(10)	C_{33} C_{34} C_{35}	120.1 119.8(2)
C18 - P1 - C12	105.09 (10)	$C_{35} - C_{34} - H_{34}$	119.8 (2)
$C_{10} = 11 = C_{12}$	105.90(7)	C_{30} C_{35} H_{35}	110.6
$C_{24} = 12 = 102$	111.09(7) 116.92(7)	$C_{30} = C_{33} = 1133$	119.0
C_{30} P_2 C_{24}	110.03(7) 106.51(10)	$C_{34} = C_{35} = C_{30}$	120.9 (2)
C_{20} P_{2} C_{24}	100.31(10) 101.65(10)	$C_{27} = C_{26} = D_{27}$	117.0
C_{26} P2 P42	101.03(10) 114.10(7)	$C_{37} = C_{30} = P_2$	117.43(17)
C_{30} P2 Pd2	114.10(7)	C41 - C30 - P2	123.41 (18)
$C_{30} - P_2 - C_{24}$	104.65 (10)	$C_{41} = C_{36} = C_{37}$	119.1 (2)
UI-CI-Rel	1/8.1 (2)	$C_{36} = C_{37} = H_{37}$	119.9
Rel—C2—Pd1 ⁴	81.98 (7)	$C_{38} = C_{37} = C_{36}$	120.1 (2)
O2—C2—Rel	152.98 (18)	С38—С37—Н37	119.9
$O2-C2-Pd1^1$	124.90 (17)	С37—С38—Н38	119.8
Re1—C3—Pd2	81.57 (7)	C39—C38—C37	120.4 (3)
O3—C3—Rel	152.27 (17)	С39—С38—Н38	119.8
O3—C3—Pd2	126.08 (16)	С38—С39—Н39	120.2
Pd1—C4—Re1	82.47 (7)	C40—C39—C38	119.6 (2)
O4—C4—Rel	149.43 (17)	С40—С39—Н39	120.2
O4—C4—Pd1	128.10 (16)	C39—C40—H40	119.6
$Re1^{i}$ —C5—Pd2	83.36 (7)	C39—C40—C41	120.8 (3)
$O5-C5-Rel^{i}$	149.52 (17)	C41—C40—H40	119.6
O5—C5—Pd2	127.10 (16)	C36—C41—C40	120.0 (3)
C7—C6—P1	115.78 (16)	C36—C41—H41	120.0
C11—C6—P1	124.87 (17)	C40—C41—H41	120.0
C11—C6—C7	119.32 (19)		
Pd1—P1—C6—C7	-58.98 (17)	C15—C16—C17—C12	0.0 (4)
Pd1—P1—C6—C11	119.34 (17)	C17—C12—C13—C14	1.2 (3)
Pd1—P1—C12—C13	-21.58 (19)	C18—P1—C6—C7	177.54 (16)
Pd1—P1—C12—C17	157.12 (15)	C18—P1—C6—C11	-4.1 (2)
Pd1—P1—C18—C19	171.11 (16)	C18—P1—C12—C13	106.03 (18)
Pd1—P1—C18—C23	-9.1 (2)	C18—P1—C12—C17	-75.28 (19)
Pd2—P2—C24—C25	-139.46 (18)	C18—C19—C20—C21	0.8 (4)
Pd2—P2—C24—C29	38.6 (2)	C19—C18—C23—C22	0.9 (4)
Pd2—P2—C30—C31	-162.18 (17)	C19—C20—C21—C22	-0.6 (4)

Pd2—P2—C30—C35	14.8 (2)	C20—C21—C22—C23	0.6 (4)
Pd2—P2—C36—C37	66.91 (19)	C21—C22—C23—C18	-0.8 (4)
Pd2—P2—C36—C41	-109.26 (18)	C23—C18—C19—C20	-0.9 (3)
P1C6C7C8	177.66 (18)	C24—P2—C30—C31	72.0 (2)
P1-C6-C11-C10	-178.91 (17)	C24—P2—C30—C35	-111.09 (18)
P1-C12-C13-C14	179.96 (17)	C24—P2—C36—C37	-170.48 (18)
P1-C12-C17-C16	-179.77 (18)	C24—P2—C36—C41	13.4 (2)
P1-C18-C19-C20	178.85 (17)	C24—C25—C26—C27	0.3 (4)
P1-C18-C23-C22	-178.9 (2)	C25—C24—C29—C28	-1.0 (4)
P2-C24-C25-C26	178.2 (2)	C25—C26—C27—C28	0.1 (5)
P2-C24-C29-C28	-179.2 (2)	C26—C27—C28—C29	-0.9 (5)
P2-C30-C31-C32	177.2 (2)	C27—C28—C29—C24	1.4 (5)
P2-C30-C35-C34	-176.80 (17)	C29—C24—C25—C26	0.1 (4)
P2-C36-C37-C38	-177.0 (2)	C30—P2—C24—C25	-10.7 (2)
P2-C36-C41-C40	175.83 (19)	C30—P2—C24—C29	167.39 (19)
C6—P1—C12—C13	-144.12 (17)	C30—P2—C36—C37	-59.76 (19)
C6—P1—C12—C17	34.58 (19)	C30—P2—C36—C41	124.07 (19)
C6—P1—C18—C19	-65.8 (2)	C30—C31—C32—C33	-0.3 (4)
C6—P1—C18—C23	114.00 (18)	C31—C30—C35—C34	0.2 (3)
C6—C7—C8—C9	1.1 (4)	C31—C32—C33—C34	-0.1 (4)
C7—C6—C11—C10	-0.6 (3)	C32—C33—C34—C35	0.5 (4)
C7—C8—C9—C10	0.0 (4)	C33—C34—C35—C30	-0.6 (4)
C8—C9—C10—C11	-1.4 (4)	C35—C30—C31—C32	0.2 (4)
C9—C10—C11—C6	1.7 (3)	C36—P2—C24—C25	96.5 (2)
C11—C6—C7—C8	-0.8 (3)	C36—P2—C24—C29	-85.4 (2)
C12—P1—C6—C7	67.42 (18)	C36—P2—C30—C31	-37.3 (2)
C12—P1—C6—C11	-114.25 (19)	C36—P2—C30—C35	139.62 (18)
C12—P1—C18—C19	40.5 (2)	C36—C37—C38—C39	1.1 (4)
C12—P1—C18—C23	-139.70 (18)	C37—C36—C41—C40	-0.3 (3)
C12—C13—C14—C15	-0.3 (3)	C37—C38—C39—C40	-0.6 (4)
C13—C12—C17—C16	-1.1 (3)	C38—C39—C40—C41	-0.4 (4)
C13—C14—C15—C16	-0.8 (4)	C39—C40—C41—C36	0.8 (4)
C14—C15—C16—C17	1.0 (4)	C41—C36—C37—C38	-0.7 (4)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C6–C11 and C18–C23 rings, respectively.

D—H···A	D—H	H···A	D···· A	D—H··· A	
С9—Н9…О5 ^{іі}	0.95	2.49	3.188 (3)	130	
C39—H39…O2 ⁱⁱⁱ	0.95	2.60	3.491 (4)	157	
C20—H20···· $Cg1^{iv}$	0.95	2.84	3.635 (3)	142	
C34—H34···· <i>Cg</i> 3 ^v	0.95	2.90	3.683 (3)	140	

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*+2; (iv) -*x*+1, -*y*+2, -*z*+1; (v) *x*, *y*-1, *z*.