

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 1 August 2023 Accepted 18 October 2023

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: crystal structures; tripodal molecule; hydrogen bonding; C—H··· π and π – π interactions.

CCDC references: 2301884; 2301883

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Synthesis and crystal structures of two solvates of 1-{[2,6-bis(hydroxymethyl)-4-methylphenoxy]-methyl}-3,5-bis{[(4,6-dimethylpyridin-2-yl)amino]-methyl}-2,4,6-triethylbenzene

Manuel Stapf, Ute Schmidt, Wilhelm Seichter and Monika Mazik*

Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany. *Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

In the crystal structures of the formamide monosolvate (1a) and the *n*-propanol/ H_2O solvate/hydrate (1b) of the title compound, $C_{38}H_{50}N_4O_3$ (1), the tripodal host molecule adopts a conformation in which the substituents attached to the central benzene ring are arranged in an alternating order above and below the ring plane. As a result of the different nature of the involved guest species, the crystal components in 1a create a three-dimensional supramolecular architecture, while the crystal structure of 1b consists of two-dimensional supramolecular aggregates extending parallel to the crystallographic *ab* plane.

1. Chemical context

1,3,5-Trisubstituted 2,4,6-triethylbenzene derivatives with functionalized side-arms can serve as artificial receptors for molecular recognition of carbohydrates. In addition to the development of acyclic receptor molecules, the triethylbenzene scaffold was found to be valuable for the construction of macrocyclic systems. The possibilities for functionalization of acyclic and macrocyclic molecules of this type are manifold, allowing the synthesis of a whole range of compounds for systematic binding studies. Some examples of suitable functional groups, which can act as recognition units and have been considered in our studies, are heteroaromatic units such as pyridine-, pyrimidine- (Lippe et al., 2015), pyrazole- (Koch et al., 2016), purine- (Kaiser et al., 2019) or phenanthroline-based recognition groups (Köhler et al., 2020), (cyclo)alkylamino groups (Stapf et al., 2020a; Leibiger et al., 2022) as well as subunits containing hydroxy groups. Among the molecules with the latter groups, studies of the binding properties of acyclic (Mazik & Kuschel, 2008a) and macrocyclic (Amrhein et al., 2016) compounds bearing a hydroxymethyl group at the triethylbenzene core should be mentioned. These binding studies included NMR spectroscopic titrations and microcalorimetric investigations (ITC experiments). Similarly, chip calorimetry experiments were performed with one of our receptor compounds possessing [1-(hydroxymethyl)cyclopent-1-yl]amino moieties (Lerchner et al., 2022). Further compounds bearing hydroxy groups, whose crystal structures we have recently discussed (Stapf et al., 2020b, 2022), are currently being investigated for their ability to act as receptors for carbohydrates. In this article, we describe the crystal structures of the formamide monosolvate and the n-propanol/ H₂O solvate/hydrate of compound 1 containing the 2,6-bis-(hydroxymethyl)-4-methylphenoxy moiety, which represents a new structural unit for the design of carbohydrate receptors.

1a = $\mathbf{1} \cdot \text{HCONH}_2$ **1b** = $\mathbf{1} \cdot n \cdot C_3 H_7 \text{OH} \cdot H_2 \text{O}$ (1:0.78:0.22)

2. Structural commentary

The formamide solvate (1a) and the *n*-propanol/H₂O solvate/ hydrate (1b) of the title compound, $C_{38}H_{50}N_4O_3$, crystallize in the triclinic system ($P\overline{1}$, Z = 2). The model for the leastsquares refinement includes positional disorder for one of the (4,6-dimethylpyridin-2-yl)amino moieties of the structure of

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$) for 1a.

Cg1, Cg2 and Cg3 represent the centroids of the C1–C6, C20–C24/N2 and C30–C34/N4 rings, respectively.

D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.88(1)	2.46 (2)	3.183 (2)	140 (2)
0.89(1)	2.12 (1)	3.000 (3)	170 (3)
0.90(1)	2.01 (1)	2.893 (3)	167 (3)
0.84	2.26	2.968 (3)	142
0.85(1)	2.00(1)	2.822 (2)	162 (2)
0.95	2.53	3.418 (4)	156
0.95	2.42	2.788 (3)	103
0.99	2.47	2.894 (3)	105
0.98	2.52	3.412 (3)	151
0.95	2.63	3.523 (3)	157
0.99	2.59	3.374 (3)	137
0.99	2.49	3.238 (3)	132
0.98	2.71	3.658 (3)	164
0.98	2.76	3.679 (3)	156
0.98	2.81	3.545 (3)	132
	$\begin{array}{c} D-{\rm H} \\ 0.88 \ (1) \\ 0.89 \ (1) \\ 0.90 \ (1) \\ 0.84 \\ 0.85 \ (1) \\ 0.95 \\ 0.95 \\ 0.99 \\ 0.98 \\ 0.95 \\ 0.99 \\ 0.99 \\ 0.98 \\ 0.9$	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.88 (1) & 2.46 (2) \\ 0.89 (1) & 2.12 (1) \\ 0.90 (1) & 2.01 (1) \\ 0.84 & 2.26 \\ 0.85 (1) & 2.00 (1) \\ 0.95 & 2.53 \\ 0.95 & 2.42 \\ 0.99 & 2.47 \\ 0.98 & 2.52 \\ 0.95 & 2.63 \\ 0.99 & 2.59 \\ 0.99 & 2.49 \\ 0.98 & 2.71 \\ 0.98 & 2.76 \\ 0.98 & 2.81 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y + 2, -z + 1; (iii) -x, -y + 2, -z + 2; (iv) -x + 1, -y + 1, -z + 1; (v) x + 1, y, z; (vi) -x, -y + 1, -z + 1; (vii) x - 1, y - 1, z - 1; (viii) -x, -y + 1, -z.

1b with occupancies of 0.78/0.22. The perspective views of the host–guest complexes shown in Fig. 1 and Fig. 2 reveal similar geometries of the tripodal host molecule with the three functionalized side-arms located on one side of the central benzene ring, while the ethyl substituents are oriented in the opposite direction. The inclination angles of the aromatic rings of the substituents with reference to the central benzene ring are 50.9 (1), 85.5 (1), 87.2 (1)° for **1a** and 61.3 (1), 81.3 (1), 80.7 (1)/88.4 (3)° for **1b**. Despite the large number of strong

Figure 1

Perspective view of the host–guest complex **1a** including atom labelling. Anisotropic displacement ellipsoids are drawn at the 50% probability level. Intermolecular hydrogen bonds between the host molecule and the formamide are shown as dashed lines.

Figure 2

Perspective view of the host-guest complex **1b** including atom labelling. Anisotropic displacement ellipsoids are drawn at the 50% probability level. Intermolecular hydrogen bonds are shown as dashed lines.

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$) for **1b**.

Cg1, Cg2 and Cg3 represent the centroids of the C1–C6, C8–C13 and C20–C24/N2 rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N1 - H1B \cdot \cdot \cdot O3^{i}$	0.88(1)	2.21 (1)	3.0704 (18)	165 (2)
$O2-H2\cdots O1A$	0.85(1)	1.86 (2)	2.702 (2)	171 (2)
$O2-H2\cdots O1W$	0.85(1)	1.97 (2)	2.773 (6)	158 (2)
$O3-H3\cdots O2^{ii}$	0.85(1)	1.92 (2)	2.7646 (15)	171 (2)
$O1A - H1A \cdots N2^{iii}$	0.85(1)	1.97 (2)	2.813 (2)	177 (2)
C10-H10···O2	0.95	2.44	2.7925 (17)	102
C12-H12···O3	0.95	2.49	2.8362 (17)	101
$C24-H24\cdots O3^{i}$	0.95	2.65	3.4259 (19)	139
C27-H27A···N3	0.99	2.55	3.257 (3)	128
$C34B - H34B \cdots O1W$	0.95	2.16	2.969 (9)	143
C37-H37A···O1	0.99	2.41	3.1687 (17)	133
$C14-H14B\cdots Cg1$	0.99	2.88	3.8427 (18)	166
$C25-H25B\cdots Cg2^{iv}$	0.98	2.72	3.4520 (18)	132
$C18-H18B\cdots Cg3^{ii}$	0.98	2.69	3.6317 (16)	161

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z; (iv) x - 1, y - 1, z.

donor/acceptor sites in the host molecule, only three intramolecular C-H···O hydrogen bonds [d(H···O) = 2.42-2.49 Å; Table 1] are observed in the crystal of **1a**. Consequently, the irregular but compact geometry of the molecule is likely to be caused by intermolecular interactions and packing effects. The conformation of the receptor molecule in the crystal of **1b** is stabilized by four relatively short intramolecular C-H···O and C-H···N hydrogen bonds [d(H···O) = 2.41-2.49 Å, d(H···N) = 2.55 Å; Table 2].

3. Supramolecular features

In the complex structure of **1a** (Fig. 3), the formamide molecule is connected to the host molecule by an N-H···N hydrogen bond $[d(H \cdot \cdot \cdot N) = 2.12 (1) \text{ Å}]$ and a weak C-H···N bond (Desiraju & Steiner, 1999) $[d(H \cdot \cdot \cdot N) = 2.59 \text{ Å}]$. With the exception of the amino hydrogen H3, which for sterical

Figure 3

Packing diagram of the formamide monosolvate of the title compound **1a**. Dashed lines represent hydrogen-bond interactions.

reasons seems to be excluded from non-covalent bonding, all other strong donors participate in molecular association comprising $O-H\cdots O$ [$d(H\cdots O) = 2.26$ Å], $O-H\cdots N$ [$d(H\cdots N) = 2.00$ (1) Å] and $N-H\cdots O$ type [$d(H\cdots O) =$ 2.46 (2) Å] hydrogen bonds. The pattern of intermolecular bonding is completed by $C-H\cdots O$ interactions [$d(H\cdots O) =$ 2.52–2.63 Å], $C-H\cdots \pi$ contacts (Nishio *et al.*, 2009, 2012) [$d(H\cdots Cg) = 2.71-2.81$ Å] and $\pi-\pi$ stacking (Dance, 2004; Salonen *et al.*, 2011) [$Cg\cdots Cg$ distance = 3.475 (1) Å], the latter formed by the hydroxymethyl-substituted aromatic rings of inversion-related molecules. Within this three-dimensional supramolecular network, the solvent molecules form $N-H\cdots O$ bonded dimers [$d(H\cdots O) = 2.01$ (1) Å] of the graph-set motif $R_2^2(8)$ (Etter, 1991; Bernstein *et al.*, 1995).

The colourless rod-like crystals obtained from n-propanol proved to be an inclusion compound of 1 with *n*-PrOH and H₂O possessing a host/guest stoichiometric ratio of 1:0.78:0.22. The model for least-squares refinement assumes partial occupancies for the alcohol and water molecules, i.e. the solvent species are distributed in a statistical manner in the voids of the host lattice. Despite the presence of strong donors/acceptors, the disordered moiety of the host hardly participates in molecular association. Only the minor disorder component of this residue is involved in any intermolecular interactions, by forming a weak $C-H \cdots O$ bond to the water oxygen $[d(H \cdot \cdot \cdot O) = 2.16 \text{ Å}]$ (see Fig. 4b). As shown in Fig. 4a, the oxygen atom of the alcohol molecule is linked to one of the hydroxy hydrogens of the host $[O2-H2\cdots O1A, d(H\cdots O)] =$ 1.86 (2) Å]. In an analogous way, this hydrogen acts as a donor site for hydrogen bonding to the water molecule $[O2-H2\cdots O1W, d(H\cdots O) = 1.97 (2) \text{ Å}]$. Unfortunately, the positions of the water hydrogen atoms could not be obtained from the difference electron-density map, so that the complete pattern of hydrogen bonding in the crystal of 1b could not be elucidated. Nevertheless, a striking motif of hydrogen bonds is present, involving a total of three hydroxy groups of the host and the propanol molecules [oxygen atoms O1A, O2 and O3; $d(H \cdot \cdot \cdot O/N) = 1.86 (2) - 2.21 (1) \text{ Å}$]. They form chain-like synthons in the direction of the b axis, bounded by an amine H and a ring N atom, and can be described by the graph set

Figure 5

Packing diagram of the host-guest complex 1b looking in the crystallographic *c*-axis direction. For clarity, the water molecules are not shown. Dashed lines represent hydrogen-bond interactions.

 $C_4^4(10)$ (Fig. 5). Taking into account these interactions, the crystal structure (Fig. 5) can be regarded as being composed of layered supramolecular aggregates extending parallel to the crystallographic *ab* plane. As the surfaces of the two-dimensional aggregates are defined by the non-polar molecular parts, interlayer interactions are restricted to van der Waals forces.

4. Database survey

The search in the Cambridge Structural Database (CSD, Version 5.44, update April 2023; Groom et al., 2016) for 2,4,6triethylbenzene-based tripodal molecules containing two (4,6dimethylpyridin-2-yl)aminomethyl moieties resulted in several hits, which are described below. Particularly noteworthy is 1,3,5-tris[(4,6-dimethylpyridin-2-yl)aminomethyl]-2,4,6-triethylbenzene, which has proven to be an effective receptor molecule for complex formation with methyl β -Dglucopyranoside in the solid state (LAJZOP; Köhler et al., 2020). In the ethanol solvate of this host compound (RAJZAE; Mazik et al., 2004), its (4,6-dimethylpyridin-2-yl) amino units are arranged in a 'two up/one down' pattern with respect to the benzene plane. The heterocyclic units of the 1-[N-(1,10-phenanthrolin-2-ylcarbonyl)aminomethyl]-3,5-bis-[(4,6-dimethylpyridin-2-yl)aminomethyl]-2,4,6-triethylbenzene diethyl ether solvate trihydrate (ROKJEH, ROKJEH01; Mazik & Hartmann, 2008; Mazik et al., 2009) form a binding pocket in which the three water molecules are located. This aggregate is stabilized by a total of eight hydrogen bonds. The crystal structures of the monohydrate and the methanol solvate of {1-[(3,5-bis](4,6-dimethylpyridin-2-yl)aminomethyl]-2,4,6-triethylbenzyl)amino]cyclopentyl}methanol (CAD-TAG, CADTEK; Stapf et al., 2020b) are composed of structurally similar dimers of 1:1 host-guest complexes. In the crystal structure of the diethyl ether solvate of 1-(bromomethyl)-3,5-bis[(4,6-dimethylpyridin-2-yl)aminomethyl]-2,4,6triethylbenzene (BIYTOT; Mazik & Kuschel, 2008*b*), the host molecule adopts a conformation with a complete *up-down* alternation of the side chains on the benzene ring (for discussions on conformations of 1,3,5-trisubstituted 2,4,6-trialkylbenzene-based compounds, see: Koch *et al.*, 2017; Schulze *et al.*, 2017).

5. Synthesis and crystallization

suspension of 2.6-bis(hydroxymethyl)-4-methylphenol Α (102 mg, 0.61 mmol) and potassium carbonate (142 mg, 1.03 mmol) in 30 mL of THF/CH₃CN (1:1, v/v) was stirred for 30 minutes. Subsequently, a solution of 1-(bromomethyl)-3,5bis[(4,6-dimethylpyridin-2-yl)aminomethyl]-2,4,6-triethylbenzene (265 mg, 0.51 mmol) in 30 mL of THF/CH₃CN (1:1, v/v) was added dropwise and the resulting mixture was stirred at room temperature and under the exclusion of light (the progress of the reaction was monitored by TLC). After filtration, the solvents were evaporated at reduced pressure and the yellow oil was treated with THF/water. The oil was separated from the aqueous phase and dissolved again in THF, dried over MgSO₄ and the solvent was removed. By treating the oily residue with diethyl ether/n-hexane, the product was obtained as a white solid in 88% yield (271 mg, 0.44 mmol). Crystals of the title compound suitable for single crystal X-ray diffraction were grown by slow evaporation of an ethyl acetate/formamide (1:1, v/v) solution (1a) or a *n*-propanol solution (1b) at ambient temperature.

Analysis data: m.p. = 472 K; ¹H NMR (600 MHz, CDCl₃, ppm): $\delta = 1.12$ (t, 6H, ${}^{3}J = 7.5$ Hz, CH₂CH₃), 1.23 (t, 3H, ${}^{3}J =$ 7.5 Hz, CH₂CH₃), 2.23 (*s*, 6H, ArCH₃), 2.29 (*s*, 3H, ArCH₃), 2.34 (s, 6H, ArCH₃), 2.69 (q, 4H, ${}^{3}J = 7.5$ Hz, CH₂CH₃), 2.74 $(q, 2H, {}^{3}J = 7.5 \text{ Hz}, CH_{2}CH_{3}), 4.33 (br, 4H, CH_{2}NH), 4.46 (s, s)$ 4H, CH₂OH), 5.20 (s, 2H, CH₂OAr), 6.10 (s, 2H, ArH), 6.34 (s, 2H, ArH), 7.11 (s, 2H, ArH); ¹³C NMR (151 MHz, CDCl₃, ppm): δ = 16.6 (CH₂CH₃), 16.8 (CH₂CH₃), 20.8 (ArCH₃), 21.1 (ArCH₃), 22.6 (CH₂CH₃), 23.0 (CH₂CH₃), 24.0 (ArCH₃), 40.6 (CH₂NH), 60.8 (CH₂OH), 70.3 (CH₂OAr), 103.6 (ArC), 113.9 (ArC), 129.5 (ArC), 132.0 (ArC), 133.1 (ArC), 133.7 (ArC), 134.0 (ArC), 144.5 (ArC), 144.7 (ArC), 149.0 (ArC), 152.6 (ArC), 156.5 (ArC), 158.2 (ArC); IR (ATR, cm⁻¹): 3326, 2961, 2903, 1610, 1567, 1488, 1452, 1202, 1080, 1041, 972, 818; MS (ESI): m/z calculated for C₃₈H₅₁N₄O₃: 611.3956 [*M*+H]⁺, found 611.3961; $R_f = 0.46$ [Al₂O₃, CHCl₃/Et₂O 1:6 (ν/ν)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The non-hydrogen atoms were refined anisotropically. The positions of the N-H and O-H hydrogen atoms were extracted from difference-Fourier maps. All other hydrogen atoms were positioned geometrically and refined isotropically using a riding model with C-H = 0.95-0.99 Å (alkyl), 0.95 Å (aryl); $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

 Table 3

 Experimental details.

	1a	1b
Crystal data		
Chemical formula	C ₂₀ H ₅₀ N ₄ O ₂ ·CH ₂ NO	C ₃₈ H ₅₀ N ₄ O ₃ ·0.777C ₃ H ₈ O·0.223H ₂ O
M _r	655.86	661.08
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic. $P\overline{1}$
Temperature (K)	100	100
a, b, c (Å)	8.4178 (4), 13.1915 (7), 16.4645 (9)	8.6241 (2), 11.1755 (2), 20.1270 (4)
α, β, γ (°)	91.823 (3), 93.269 (2), 104.534 (2)	102.2675 (12), 98.8911 (10), 92.9034 (10)
$V(\dot{A}^3)$	1764.88 (16)	1865.73 (7)
Z	2	2
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.08	0.08
Crystal size (mm)	$0.47 \times 0.15 \times 0.04$	$0.35 \times 0.12 \times 0.10$
Data collection		
Diffractometer	Bruker Kappa APEXII CCD area detector	Bruker Kappa APEXII CCD area detector
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	28897, 7558, 5322	32606, 8447, 6498
R _{int}	0.033	0.029
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.639	0.647
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.059, 0.176, 1.03	0.045, 0.119, 1.03
No. of reflections	7558	8447
No. of parameters	462	526
No. of restraints	7	25
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	0.54, -0.56	0.33, -0.26

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008).

Acknowledgements

Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

References

- Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dance, I. (2004). In *Encyclopedia of Supramolecular Chemistry*, edited by J. L. Atwood & J. W. Steed, pp 1076–1092. Boca Raton: CRC Press.
- Desiraju, G. R. & Steiner, T. (1999). In *The Weak Hydrogen Bond*. Oxford University Press.
- Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562.
- Koch, N., Seichter, W. & Mazik, M. (2016). Synthesis, 48, 2757-2767.
- Koch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817–3833.
- Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.
- Leibiger, B., Stapf, M. & Mazik, M. (2022). Molecules, 27, 7630.

- Lerchner, J., Sartori, M. R., Volpe, P. O., Förster, S., Mazik, M., Vercesi, A. E. & Mertens, F. (2022). J. Therm. Anal. Calorim. 147, 2253–2263.
- Lippe, J., Seichter, W. & Mazik, M. (2015). Org. Biomol. Chem. 13, 11622–11632.
- Mazik, M. & Hartmann, A. (2008). J. Org. Chem. 73, 7444-7450.
- Mazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J. 15, 9147–9159.
- Mazik, M. & Kuschel, M. (2008a). Eur. J. Org. Chem. pp. 1517-1526.
- Mazik, M. & Kuschel, M. (2008b). Chem. Eur. J. 14, 2405-2419.
- Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448–7462.
- Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). *CrystEngComm*, **11**, 1757–1788.
- Nishio, M., Umezawa, Y., Suezawa, H. & Tsuboyama, S. (2012). In The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering, edited by E. R. T. Tiekink E. R. T. and J. Zukerman-Schpector, pp. 1–39. Chichester: Wiley.
- Salonen, L. M., Ellermann, M. & Diederich, F. (2011). Angew. Chem. Int. Ed. 50, 4808–4842.
- Schulze, M. M., Schwarzer, A. & Mazik, M. (2017). *CrystEngComm*, **19**, 4003–4016.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2022). *Acta Cryst.* E78, 825–828.
- Stapf, M., Seichter, W. & Mazik, M. (2020a). Eur. J. Org. Chem. pp. 4900–4915.
- Stapf, M., Seichter, W. & Mazik, M. (2020b). Acta Cryst. E76, 1679– 1683.

Acta Cryst. (2023). E79, 1067-1071 [https://doi.org/10.1107/S2056989023009155]

Synthesis and crystal structures of two solvates of 1-{[2,6-bis(hydroxymethyl)-4-methylphenoxy]methyl}-3,5-bis{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzene

Manuel Stapf, Ute Schmidt, Wilhelm Seichter and Monika Mazik

Computing details

Curvetal data

For both structures, data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

1-{[2,6-Bis(hydroxymethyl)-4-methylphenoxy]methyl}-3,5-bis{[(4,6-\ dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzene formamide monosolvate (1a)

Crystat aata	
$C_{38}H_{50}N_4O_3 \cdot CH_3NO$ $M_r = 655.86$ Triclinic, $P\overline{1}$ $a = 8.4178 (4) \text{ Å}$ $b = 13.1915 (7) \text{ Å}$ $c = 16.4645 (9) \text{ Å}$ $a = 91.823 (3)^{\circ}$ $\beta = 93.269 (2)^{\circ}$ $\gamma = 104.534 (2)^{\circ}$ $V = 1764.88 (16) \text{ Å}^3$	Z = 2 F(000) = 708 $D_x = 1.234 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7296 reflections $\theta = 2.5-27.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 K Plate, colourless $0.47 \times 0.15 \times 0.04 \text{ mm}$
 Data collection Bruker Kappa APEXII CCD area detector diffractometer φ and ω scans 28897 measured reflections 7558 independent reflections 5322 reflections with I > 2σ(I) 	$R_{int} = 0.033$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -10 \rightarrow 8$ $k = -16 \rightarrow 16$ $l = -21 \rightarrow 20$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.176$ S = 1.03 7558 reflections 462 parameters 7 restraints	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0863P)^2 + 1.3634P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.54 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.56 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.54313 (18)	0.67784 (12)	0.35427 (9)	0.0237 (4)	
O2	0.1283 (3)	0.6456 (2)	0.48161 (13)	0.0555 (6)	
H2	0.1915	0.6472	0.5233	0.083*	
03	0.7900 (2)	0.43445 (14)	0.35900 (10)	0.0310 (4)	
H3A	0.734 (3)	0.393 (2)	0.3212 (14)	0.051 (10)*	
N1	-0.1265 (2)	0.45208 (15)	0.17303 (11)	0.0218 (4)	
H1	-0.095 (3)	0.462 (2)	0.2253 (7)	0.038 (8)*	
N2	-0.3468(2)	0.32570 (14)	0.21082 (11)	0.0193 (4)	
N3	-0.0035 (3)	0.87558 (16)	0.28947 (12)	0.0281 (5)	
H3	-0.016 (3)	0.8197 (13)	0.3185 (14)	0.028 (7)*	
N4	-0.0200(2)	1.04735 (15)	0.27966 (12)	0.0270 (4)	
C1	0.3612 (2)	0.68707 (17)	0.23234 (12)	0.0174 (4)	
C2	0.2581 (2)	0.59759 (16)	0.19184 (12)	0.0162 (4)	
C3	0.1025 (2)	0.60250 (16)	0.15845 (12)	0.0167 (4)	
C4	0.0498 (2)	0.69473 (16)	0.16714 (12)	0.0167 (4)	
C5	0.1535 (2)	0.78308 (16)	0.20897 (12)	0.0175 (4)	
C6	0.3090 (2)	0.77953 (16)	0.24189 (12)	0.0178 (4)	
C7	0.5314 (3)	0.68647 (18)	0.26685 (12)	0.0215 (5)	
H7A	0.5644	0.6270	0.2407	0.026*	
H7B	0.6100	0.7519	0.2528	0.026*	
C8	0.4645 (3)	0.57993 (18)	0.37933 (13)	0.0230 (5)	
C9	0.3042 (3)	0.5618 (2)	0.40534 (13)	0.0262 (5)	
C10	0.2286 (3)	0.4623 (2)	0.42953 (14)	0.0294 (5)	
H10	0.1182	0.4482	0.4446	0.035*	
C11	0.3097 (3)	0.38335 (19)	0.43232 (13)	0.0279 (5)	
C12	0.4719 (3)	0.40544 (19)	0.40964 (13)	0.0263 (5)	
H12	0.5302	0.3526	0.4132	0.032*	
C13	0.5498 (3)	0.50207 (19)	0.38218 (13)	0.0239 (5)	
C14	0.2172 (3)	0.6489 (2)	0.41207 (15)	0.0347 (6)	
H14A	0.2998	0.7173	0.4128	0.042*	
H14B	0.1410	0.6444	0.3632	0.042*	
C15	0.2325 (3)	0.2777 (2)	0.46305 (15)	0.0354 (6)	
H15A	0.2252	0.2237	0.4198	0.053*	
H15B	0.1218	0.2763	0.4795	0.053*	
H15C	0.2998	0.2642	0.5100	0.053*	
C16	0.7268 (3)	0.52486 (19)	0.35924 (14)	0.0273 (5)	
H16A	0.7340	0.5537	0.3044	0.033*	
H16B	0.7960	0.5789	0.3983	0.033*	
C17	0.3120 (3)	0.49654 (17)	0.18149 (13)	0.0209 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17A	0.2143	0.4362	0.1807	0.025*
H17B	0.3868	0.4908	0.2288	0.025*
C18	0.3997 (3)	0.49125 (19)	0.10337 (14)	0.0247 (5)
H18A	0.3255	0.4957	0.0563	0.037*
H18B	0.4316	0.4249	0.0993	0.037*
H18C	0.4981	0.5498	0.1044	0.037*
C19	-0.0131 (2)	0.50690 (16)	0.11589 (13)	0.0183 (4)
H19A	-0.0756	0.5283	0.0696	0.022*
H19B	0.0506	0.4596	0.0942	0.022*
C20	-0.2538(2)	0.36779 (16)	0.15051 (13)	0.0167 (4)
C21	-0.4753(3)	0.24234(17)	0 19192 (13)	0.0208(5)
C22	-0.5143(3)	0.19955(17)	0 11355 (13)	0.0200(5) 0.0219(5)
H22	-0.6065	0.1413	0.1022	0.0219 (3)
C23	-0.4173(3)	0.24257(17)	0.05101 (13)	0.020
C24	-0.2857(2)	0.27257(17) 0.32763(16)	0.07005(13)	0.0202(1) 0.0182(4)
H24	-0.2174	0.3587	0.0789	0.0102 (4)
C25	-0.5729(3)	0.19805 (19)	0.0209	0.022
H25A	-0.5021	0.17005 (17)	0.20170 (15)	0.0304 (3)
H25R	-0.6651	0.1729	0.2416	0.046*
H25C	-0.6153	0.1590	0.2410	0.046*
C26	-0.4546(3)	0.2327	-0.03442(14)	0.040°
	-0.3748	0.19074 (19)	-0.0600	0.0275(3)
H20A	-0.5/48	0.2370	-0.0099	0.041°
	-0.3038	0.1993	-0.0333	0.041*
H20C	-0.4470	0.1237 0.60077 (18)	-0.0338 0.12040 (12)	0.041°
	-0.11/1(3)	0.09977(18)	0.12940 (13)	0.0213(5)
H2/A	-0.1003	0.7494	0.1020	0.026*
H2/B	-0.1948	0.6297	0.1301	0.026*
C28	-0.10//(3)	0.73484 (19)	0.0416/(14)	0.0263 (5)
H28A	-0.0351	0.8056	0.0410	0.039*
H28B	-0.21/9	0.7350	0.0192	0.039*
H28C	-0.0639	0.6863	0.0086	0.039*
C29	0.0948 (3)	0.88172 (17)	0.21910 (13)	0.0204 (4)
H29A	0.1907	0.9434	0.2265	0.024*
H29B	0.0281	0.8904	0.1695	0.024*
C30	-0.0528 (3)	0.9600 (2)	0.32049 (14)	0.0264 (5)
C31	-0.0658 (3)	1.1312 (2)	0.31098 (17)	0.0372 (6)
C32	-0.1463 (3)	1.1274 (3)	0.38095 (19)	0.0444 (8)
H32	-0.1788	1.1873	0.4003	0.053*
C33	-0.1807 (3)	1.0367 (3)	0.42372 (17)	0.0425 (7)
C34	-0.1337 (3)	0.9510 (2)	0.39325 (15)	0.0359 (6)
H34	-0.1555	0.8873	0.4208	0.043*
C35	-0.0207 (4)	1.2289 (2)	0.2649 (2)	0.0538 (9)
H35A	-0.0903	1.2202	0.2141	0.081*
H35B	0.0950	1.2427	0.2523	0.081*
H35C	-0.0371	1.2880	0.2980	0.081*
C36	-0.2652 (4)	1.0315 (4)	0.5024 (2)	0.0715 (12)
H36A	-0.1915	1.0768	0.5444	0.107*
H36B	-0.2928	0.9591	0.5196	0.107*

H36C	-0.3660	1.0553	0.4941	0.107*	
C37	0.4222 (3)	0.87555 (17)	0.28621 (13)	0.0224 (5)	
H37A	0.4937	0.8529	0.3280	0.027*	
H37B	0.3552	0.9158	0.3144	0.027*	
C38	0.5300 (3)	0.94671 (18)	0.22818 (15)	0.0278 (5)	
H38A	0.6006	0.9083	0.2021	0.042*	
H38B	0.5986	1.0086	0.2589	0.042*	
H38C	0.4598	0.9687	0.1864	0.042*	
O1A	0.2093 (2)	0.97499 (15)	1.01977 (12)	0.0404 (5)	
N1A	0.0472 (3)	0.95521 (19)	0.90290 (15)	0.0394 (6)	
H1B	-0.028 (3)	0.972 (3)	0.9342 (17)	0.060 (10)*	
H2B	0.042 (4)	0.947 (3)	0.8488 (7)	0.057 (10)*	
C1A	0.1848 (3)	0.9560(2)	0.94526 (17)	0.0359 (6)	
H1A	0.2716	0.9408	0.9167	0.043*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0235 (8)	0.0289 (9)	0.0183 (8)	0.0069 (7)	-0.0021 (6)	-0.0020 (6)
O2	0.0670 (15)	0.0753 (16)	0.0407 (12)	0.0431 (13)	0.0230 (10)	0.0166 (11)
03	0.0297 (9)	0.0378 (10)	0.0294 (9)	0.0174 (8)	-0.0024 (7)	-0.0031 (8)
N1	0.0213 (9)	0.0211 (10)	0.0189 (9)	-0.0018 (7)	0.0015 (7)	0.0011 (8)
N2	0.0181 (9)	0.0165 (9)	0.0227 (9)	0.0030(7)	0.0032 (7)	-0.0010 (7)
N3	0.0365 (11)	0.0266 (11)	0.0261 (10)	0.0146 (9)	0.0125 (8)	0.0037 (9)
N4	0.0255 (10)	0.0247 (11)	0.0323 (11)	0.0118 (8)	-0.0054 (8)	-0.0074 (8)
C1	0.0168 (10)	0.0214 (11)	0.0134 (9)	0.0036 (8)	0.0021 (7)	0.0018 (8)
C2	0.0174 (10)	0.0178 (11)	0.0144 (10)	0.0051 (8)	0.0052 (7)	0.0030 (8)
C3	0.0164 (10)	0.0170(11)	0.0159 (10)	0.0023 (8)	0.0030 (7)	0.0010 (8)
C4	0.0143 (9)	0.0197 (11)	0.0169 (10)	0.0049 (8)	0.0037 (7)	0.0025 (8)
C5	0.0201 (10)	0.0161 (11)	0.0176 (10)	0.0062 (8)	0.0043 (8)	0.0014 (8)
C6	0.0200 (10)	0.0186 (11)	0.0143 (10)	0.0035 (8)	0.0030 (8)	0.0010 (8)
C7	0.0198 (10)	0.0281 (12)	0.0178 (10)	0.0084 (9)	0.0008 (8)	0.0009 (9)
C8	0.0210(11)	0.0299 (13)	0.0175 (11)	0.0062 (9)	-0.0011 (8)	-0.0029 (9)
C9	0.0228 (11)	0.0371 (14)	0.0183 (11)	0.0079 (10)	-0.0010 (8)	-0.0003 (10)
C10	0.0212 (11)	0.0423 (15)	0.0225 (12)	0.0049 (10)	-0.0005 (9)	-0.0015 (10)
C11	0.0318 (13)	0.0307 (13)	0.0171 (11)	0.0022 (10)	-0.0039 (9)	-0.0060(9)
C12	0.0322 (12)	0.0294 (13)	0.0176 (11)	0.0104 (10)	-0.0043 (9)	-0.0057 (9)
C13	0.0238 (11)	0.0320 (13)	0.0157 (10)	0.0075 (10)	-0.0018 (8)	-0.0015 (9)
C14	0.0307 (13)	0.0476 (17)	0.0311 (13)	0.0180 (12)	0.0085 (10)	0.0034 (12)
C15	0.0367 (14)	0.0358 (15)	0.0282 (13)	0.0004 (11)	-0.0017 (10)	-0.0022 (11)
C16	0.0269 (12)	0.0319 (14)	0.0254 (12)	0.0122 (10)	0.0010 (9)	-0.0014 (10)
C17	0.0221 (11)	0.0182 (11)	0.0234 (11)	0.0074 (9)	-0.0003 (8)	0.0004 (9)
C18	0.0228 (11)	0.0261 (12)	0.0280 (12)	0.0119 (9)	0.0007 (9)	-0.0044 (10)
C19	0.0157 (10)	0.0168 (11)	0.0215 (11)	0.0021 (8)	0.0024 (8)	0.0012 (8)
C20	0.0143 (9)	0.0138 (10)	0.0228 (11)	0.0052 (8)	0.0009 (8)	0.0022 (8)
C21	0.0188 (10)	0.0177 (11)	0.0259 (11)	0.0041 (8)	0.0045 (8)	0.0005 (9)
C22	0.0183 (10)	0.0183 (11)	0.0280 (12)	0.0030 (8)	0.0025 (8)	-0.0012 (9)
C23	0.0218 (11)	0.0183 (11)	0.0224 (11)	0.0092 (9)	-0.0001 (8)	-0.0005 (9)

C24	0.0163 (10)	0.0182 (11)	0.0209 (11)	0.0049 (8)	0.0024 (8)	0.0034 (8)
C25	0.0300 (13)	0.0257 (13)	0.0309 (13)	-0.0029 (10)	0.0112 (10)	-0.0025 (10)
C26	0.0295 (12)	0.0291 (13)	0.0231 (12)	0.0066 (10)	-0.0002 (9)	-0.0028 (10)
C27	0.0159 (10)	0.0227 (12)	0.0264 (11)	0.0069 (9)	0.0018 (8)	-0.0003 (9)
C28	0.0250 (12)	0.0269 (13)	0.0278 (12)	0.0100 (10)	-0.0049 (9)	0.0001 (10)
C29	0.0224 (11)	0.0199 (11)	0.0204 (11)	0.0080 (9)	0.0040 (8)	-0.0014 (9)
C30	0.0205 (11)	0.0354 (14)	0.0241 (12)	0.0105 (10)	-0.0024 (9)	-0.0099 (10)
C31	0.0256 (13)	0.0350 (15)	0.0510 (16)	0.0146 (11)	-0.0156 (11)	-0.0192 (12)
C32	0.0279 (14)	0.0510 (19)	0.0564 (18)	0.0209 (13)	-0.0111 (12)	-0.0310 (15)
C33	0.0236 (13)	0.071 (2)	0.0338 (14)	0.0192 (13)	-0.0053 (10)	-0.0261 (14)
C34	0.0287 (13)	0.0533 (17)	0.0278 (13)	0.0149 (12)	0.0029 (10)	-0.0057 (12)
C35	0.0496 (18)	0.0297 (16)	0.085 (2)	0.0216 (14)	-0.0150 (16)	-0.0088 (15)
C36	0.0461 (19)	0.128 (4)	0.0462 (19)	0.037 (2)	0.0071 (15)	-0.033 (2)
C37	0.0225 (11)	0.0223 (12)	0.0210 (11)	0.0041 (9)	-0.0010 (8)	-0.0052 (9)
C38	0.0266 (12)	0.0217 (12)	0.0313 (13)	0.0000 (9)	0.0004 (9)	-0.0044 (10)
OIA	0.0359 (10)	0.0399 (11)	0.0449 (12)	0.0089 (8)	0.0008 (8)	0.0031 (9)
N1A	0.0491 (14)	0.0412 (14)	0.0344 (13)	0.0221 (11)	0.0066 (11)	0.0081 (11)
C1A	0.0381 (15)	0.0267 (14)	0.0449 (16)	0.0093 (11)	0.0109 (12)	0.0082 (12)

Geometric parameters (Å, °)

01—C8	1.383 (3)	C18—H18B	0.9800
O1—C7	1.447 (2)	C18—H18C	0.9800
O2—C14	1.399 (3)	C19—H19A	0.9900
O2—H2	0.8400	C19—H19B	0.9900
O3—C16	1.423 (3)	C20—C24	1.397 (3)
O3—H3A	0.847 (10)	C21—C22	1.380 (3)
N1-C20	1.361 (3)	C21—C25	1.499 (3)
N1-C19	1.455 (3)	C22—C23	1.397 (3)
N1—H1	0.883 (10)	C22—H22	0.9500
N2-C20	1.346 (3)	C23—C24	1.378 (3)
N2-C21	1.349 (3)	C23—C26	1.498 (3)
N3—C30	1.376 (3)	C24—H24	0.9500
N3—C29	1.455 (3)	C25—H25A	0.9800
N3—H3	0.879 (10)	C25—H25B	0.9800
N4—C30	1.329 (3)	C25—H25C	0.9800
N4—C31	1.355 (3)	C26—H26A	0.9800
C1—C2	1.401 (3)	C26—H26B	0.9800
C1-C6	1.404 (3)	C26—H26C	0.9800
C1—C7	1.513 (3)	C27—C28	1.531 (3)
C2—C3	1.409 (3)	C27—H27A	0.9900
C2-C17	1.520 (3)	C27—H27B	0.9900
C3—C4	1.401 (3)	C28—H28A	0.9800
C3—C19	1.510 (3)	C28—H28B	0.9800
C4—C5	1.401 (3)	C28—H28C	0.9800
C4—C27	1.521 (3)	C29—H29A	0.9900
C5—C6	1.401 (3)	C29—H29B	0.9900
C5—C29	1.511 (3)	C30—C34	1.405 (3)

C6—C37	1.517 (3)	C31—C32	1.365 (4)
C7—H7A	0.9900	C31—C35	1.494 (4)
С7—Н7В	0.9900	C32—C33	1.384 (5)
C8—C13	1.394 (3)	С32—Н32	0.9500
C8—C9	1.404 (3)	C33—C34	1.377 (4)
C9—C10	1.388 (4)	C33—C36	1.508 (4)
C9—C14	1.515 (3)	C34—H34	0.9500
C10—C11	1.382 (4)	С35—Н35А	0.9800
С10—Н10	0.9500	С35—Н35В	0.9800
C11—C12	1.398 (3)	С35—Н35С	0.9800
C11—C15	1.499 (4)	С36—Н36А	0.9800
C12—C13	1.382 (3)	С36—Н36В	0.9800
С12—Н12	0.9500	С36—Н36С	0.9800
C13—C16	1.517 (3)	C37—C38	1.532 (3)
C14—H14A	0.9900	С37—Н37А	0.9900
C14—H14B	0.9900	С37—Н37В	0.9900
С15—Н15А	0.9800	C38—H38A	0.9800
С15—Н15В	0.9800	C38—H38B	0.9800
C15—H15C	0.9800	C38—H38C	0.9800
C16—H16A	0.9900	O1A—C1A	1.239 (3)
C16—H16B	0.9900	N1A—C1A	1.315 (4)
C17—C18	1.527 (3)	N1A—H1B	0.901 (10)
С17—Н17А	0.9900	N1A—H2B	0.890 (10)
C17—H17B	0.9900	C1A—H1A	0.9500
C18—H18A	0.9800		
C8—O1—C7	113.60 (16)	N2—C20—C24	122.24 (19)
C14—O2—H2	109.5	N1—C20—C24	122.13 (19)
C16—O3—H3A	106 (2)	N2—C21—C22	122.4 (2)
C20—N1—C19	123.01 (18)	N2—C21—C25	115.76 (19)
C20—N1—H1	117.4 (19)	C22—C21—C25	121.8 (2)
C19—N1—H1	117.1 (19)	C21—C22—C23	119.5 (2)
C20—N2—C21	118.20 (18)	C21—C22—H22	120.3
C30—N3—C29	122.7 (2)	C23—C22—H22	120.3
C30—N3—H3	118.3 (17)	C24—C23—C22	118.3 (2)
C29—N3—H3	118.1 (17)	C24—C23—C26	120.9 (2)
C30—N4—C31	117.7 (2)	C22—C23—C26	120.8 (2)
C2—C1—C6	120.73 (18)	C23—C24—C20	119.36 (19)
C2—C1—C7	120.88 (19)	C23—C24—H24	120.3
C6—C1—C7			
C1 - C2 - C3	118.40 (19)	C20—C24—H24	120.3
01 02 05	118.40 (19) 119.03 (18)	C20—C24—H24 C21—C25—H25A	120.3 109.5
C1C2C17	118.40 (19) 119.03 (18) 121.45 (18)	C20—C24—H24 C21—C25—H25A C21—C25—H25B	120.3 109.5 109.5
C1—C2—C17 C3—C2—C17	118.40 (19) 119.03 (18) 121.45 (18) 119.50 (18)	C20—C24—H24 C21—C25—H25A C21—C25—H25B H25A—C25—H25B	120.3 109.5 109.5 109.5
C1-C2-C17 C3-C2-C17 C4-C3-C2	118.40 (19) 119.03 (18) 121.45 (18) 119.50 (18) 120.61 (19)	C20—C24—H24 C21—C25—H25A C21—C25—H25B H25A—C25—H25B C21—C25—H25C	120.3 109.5 109.5 109.5 109.5
C1 C2 C3 C1 C2 C17 C3 C2 C17 C4 C3 C2 C4 C3 C2 C4 C3 C19	118.40 (19) 119.03 (18) 121.45 (18) 119.50 (18) 120.61 (19) 118.92 (18)	C20—C24—H24 C21—C25—H25A C21—C25—H25B H25A—C25—H25B C21—C25—H25C H25A—C25—H25C	120.3 109.5 109.5 109.5 109.5 109.5
C1 C2 C3 C1 C2 C17 C3 C2 C17 C4 C3 C2 C4 C3 C19 C2 C3 C19	118.40 (19) 119.03 (18) 121.45 (18) 119.50 (18) 120.61 (19) 118.92 (18) 120.41 (18)	C20—C24—H24 C21—C25—H25A C21—C25—H25B H25A—C25—H25B C21—C25—H25C H25A—C25—H25C H25B—C25—H25C	120.3 109.5 109.5 109.5 109.5 109.5 109.5
C1 - C2 - C3 C1 - C2 - C17 C3 - C2 - C17 C4 - C3 - C2 C4 - C3 - C19 C2 - C3 - C19 C3 - C4 - C5	118.40 (19) 119.03 (18) 121.45 (18) 119.50 (18) 120.61 (19) 118.92 (18) 120.41 (18) 119.65 (18)	C20—C24—H24 C21—C25—H25A C21—C25—H25B H25A—C25—H25B C21—C25—H25C H25A—C25—H25C H25B—C25—H25C C23—C26—H26A	120.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5
C1 - C2 - C17 C1 - C2 - C17 C3 - C2 - C17 C4 - C3 - C2 C4 - C3 - C19 C2 - C3 - C19 C3 - C4 - C5 C3 - C4 - C27	118.40 (19) 119.03 (18) 121.45 (18) 119.50 (18) 120.61 (19) 118.92 (18) 120.41 (18) 119.65 (18) 120.14 (19)	C20—C24—H24 C21—C25—H25A C21—C25—H25B H25A—C25—H25B C21—C25—H25C H25A—C25—H25C H25B—C25—H25C C23—C26—H26A C23—C26—H26B	120.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5

C5—C4—C27	120.19 (18)	H26A—C26—H26B	109.5
C6—C5—C4	120.32 (19)	C23—C26—H26C	109.5
C6—C5—C29	120.37 (19)	H26A—C26—H26C	109.5
C4—C5—C29	119.31 (18)	H26B—C26—H26C	109.5
C5—C6—C1	119.63 (19)	C4—C27—C28	112.15 (17)
C5—C6—C37	120.37 (19)	C4—C27—H27A	109.2
C1—C6—C37	119.98 (18)	C28—C27—H27A	109.2
O1—C7—C1	113.79 (16)	C4—C27—H27B	109.2
O1—C7—H7A	108.8	C28—C27—H27B	109.2
C1—C7—H7A	108.8	H27A—C27—H27B	107.9
01—C7—H7B	108.8	C27—C28—H28A	109.5
C1—C7—H7B	108.8	C27—C28—H28B	109.5
H7A—C7—H7B	107.7	H28A—C28—H28B	109.5
01 - C8 - C13	118 96 (19)	C27—C28—H28C	109.5
01 - C8 - C9	120.0(2)	H28A-C28-H28C	109.5
$C_{13} - C_{8} - C_{9}$	120.0(2) 1210(2)	H28B-C28-H28C	109.5
$C_{10} - C_{9} - C_{8}$	121.0(2) 1184(2)	N_{3} C_{29} C_{5}	109.5 109.95(17)
$C_{10} - C_{9} - C_{14}$	110.1(2) 119.8(2)	N3-C29-H29A	109.95 (17)
C8-C9-C14	119.0(2) 121.7(2)	C_{5} C_{29} H_{29A}	109.7
C_{11} C_{10} C_{9}	121.7(2) 121.8(2)	N3_C29_H29B	109.7
$C_{11} - C_{10} - H_{10}$	121.0 (2)	C_{5} C_{29} H_{29B}	109.7
C_{9} C_{10} H_{10}	119.1	$H_{20A} = C_{20} = H_{20B}$	109.7
C_{10} C_{11} C_{12}	119.1 118.3(2)	N4_C30_N3	100.2 117.7(2)
C_{10} C_{11} C_{12}	110.3(2) 122.1(2)	N4 C30 C34	117.7(2) 123.0(2)
$C_{10} = C_{11} = C_{15}$	122.1(2) 110 5 (2)	$N_{1} = C_{30} = C_{34}$	123.0(2) 110.4(2)
C_{12} C_{13} C_{12} C_{11}	119.3(2) 121.0(2)	$N_{3} = C_{30} = C_{34}$	119.4(2) 122.3(3)
$C_{13} = C_{12} = C_{11}$	121.9 (2)	N4 = C31 = C32	122.3(3)
C_{13} $-C_{12}$ $-H_{12}$	119.1	N4 - C31 - C35	113.9(3)
C12 C12 C12 C2	119.1	$C_{32} - C_{31} - C_{33}$	121.0(3)
C12 - C13 - C8	118.3(2)	$C_{31} = C_{32} = C_{33}$	120.2 (2)
C12 - C13 - C16	120.9 (2)	C_{31} C_{32} H_{32}	119.9
C_{8} C_{13} C_{16}	120.5(2)	$C_{33} - C_{32} - H_{32}$	119.9
02 - C14 - C9	113.4 (2)	$C_{34} - C_{33} - C_{32}$	118.3 (3)
$O_2 - C_1 4 - H_1 4 A$	108.9	$C_{34} - C_{33} - C_{36}$	120.5 (3)
C9—C14—H14A	108.9	$C_{32} = C_{33} = C_{36}$	121.2(3)
02—C14—H14B	108.9	$C_{33} - C_{34} - C_{30}$	118.5 (3)
C9—C14—H14B	108.9	C33—C34—H34	120.7
HI4A—CI4—HI4B	107.7	C30—C34—H34	120.7
CII—CI5—HI5A	109.5	C31—C35—H35A	109.5
CII—CI5—HI5B	109.5	C31—C35—H35B	109.5
H15A—C15—H15B	109.5	H35A—C35—H35B	109.5
C11—C15—H15C	109.5	C31—C35—H35C	109.5
H15A—C15—H15C	109.5	H35A—C35—H35C	109.5
H15B—C15—H15C	109.5	H35B—C35—H35C	109.5
O3—C16—C13	112.9 (2)	С33—С36—Н36А	109.5
O3—C16—H16A	109.0	С33—С36—Н36В	109.5
C13—C16—H16A	109.0	H36A—C36—H36B	109.5
O3—C16—H16B	109.0	C33—C36—H36C	109.5
C13—C16—H16B	109.0	H36A—C36—H36C	109.5

H16A—C16—H16B	107.8	H36B—C36—H36C	109.5
C2-C17-C18	112.48 (17)	C6—C37—C38	112.11 (18)
C2—C17—H17A	109.1	С6—С37—Н37А	109.2
C18—C17—H17A	109.1	С38—С37—Н37А	109.2
С2—С17—Н17В	109.1	С6—С37—Н37В	109.2
C18—C17—H17B	109.1	С38—С37—Н37В	109.2
H17A—C17—H17B	107.8	Н37А—С37—Н37В	107.9
C17—C18—H18A	109.5	С37—С38—Н38А	109.5
C17—C18—H18B	109.5	С37—С38—Н38В	109.5
H18A—C18—H18B	109.5	H38A—C38—H38B	109.5
C17—C18—H18C	109.5	С37—С38—Н38С	109.5
H18A—C18—H18C	109.5	H38A—C38—H38C	109.5
H18B—C18—H18C	109.5	H38B—C38—H38C	109.5
N1—C19—C3	109.64 (17)	C1A—N1A—H1B	112 (2)
N1—C19—H19A	109.7	C1A—N1A—H2B	120 (2)
C3—C19—H19A	109.7	H1B—N1A—H2B	127 (3)
N1-C19-H19B	109.7	O1A—C1A—N1A	124.7 (3)
C3-C19-H19B	109.7	O1A-C1A-H1A	117.6
H19A—C19—H19B	108.2	N1A—C1A—H1A	117.6
N2-C20-N1	115 64 (18)		117.0
	115.01 (10)		
C6-C1-C2-C3	1.9 (3)	C10-C9-C14-O2	37.5 (3)
C7-C1-C2-C3	-17807(18)	C8-C9-C14-O2	-1389(2)
$C_{6}-C_{1}-C_{2}-C_{17}$	-17953(18)	$C_{12} - C_{13} - C_{16} - O_{3}$	78(3)
C_{7} C_{1} C_{2} C_{17}	0.4(3)	C_{8} C_{13} C_{16} C_{03}	-175.02(19)
$C_1 - C_2 - C_3 - C_4$	-15(3)	C1 - C2 - C17 - C18	-897(2)
$C_{17} = C_{2} = C_{3} = C_{4}$	180,00,(18)	C_{3} C_{2} C_{17} C_{18}	88.8 (2)
C1 - C2 - C3 - C19	-17876(18)	$C_{20} = N_{1} = C_{19} = C_{3}$	$174\ 41\ (18)$
$C_{17} - C_{2} - C_{3} - C_{19}$	27(3)	C4-C3-C19-N1	-825(2)
$C_2 - C_3 - C_4 - C_5$	2.7(3)	$C_{2} = C_{3} = C_{19} = N_{1}$	94.8(2)
$C_{19} = C_{3} = C_{4} = C_{5}$	177 79 (18)	$C_{21} = N_{2} = C_{20} = N_{1}$	179.63(18)
$C_2 C_3 C_4 C_{27}$	178 81 (18)	$C_{21} = N_2 = C_{20} = N_1$	-0.4(3)
$C_2 - C_3 - C_4 - C_27$	-3.8(3)	$C_{21} = N_{2} = C_{20} = C_{24}$	170.68(18)
$C_{1}^{3} = C_{1}^{4} = C_{2}^{5} = C_{1}^{6} = C_{2}^{7}$	0.1(3)	C19 N1 C20 C24	-0.3(3)
$C_{2} = C_{4} = C_{5} = C_{6}$	-178 27 (18)	C_{1}^{2} C_{2}^{1} C_{2}^{2} C_{2	-0.2(3)
$C_{2}^{-} = C_{1}^{-} = C_{2}^{-} = C_{2$	-170.15(18)	$C_{20} = N_2 = C_{21} = C_{22}$	170.2(3)
C_{2}^{-} C_{4}^{-} C_{5}^{-} C_{2}^{0}	25(3)	$N_2 C_{21} C_{22} C_{23}$	179.23(19) 0.8(3)
$C_{2}^{\prime} = C_{4}^{\prime} = C_{3}^{\prime} = C_{2}^{\prime}$	2.5(3)	12 - 621 - 622 - 623	-1787(2)
$C_{+} C_{-} C_{-$	0.4(3)	$C_{23} = C_{21} = C_{22} = C_{23}$	-0.6(3)
$C_{2} = C_{2} = C_{1} = C_{1}$	179.02(18) 170.18(18)	$C_{21} = C_{22} = C_{23} = C_{24}$	178.0(2)
$C_4 = C_5 = C_6 = C_3^7$	1/9.10(10) 1.6(2)	$C_{21} = C_{22} = C_{23} = C_{20}$	1/0.9(2)
$C_{29} = C_{3} = C_{0} = C_{37}$	-1.0(3)	$C_{22} = C_{23} = C_{24} = C_{20}$	0.0(3)
$C_2 - C_1 - C_0 - C_3$	-1.4(3)	$C_{20} = C_{23} = C_{24} = C_{20}$	-1/9.49(19)
$C_{}C_{-$	1/8.39 (18)	$N_2 = C_{20} = C_{24} = C_{23}$	0.5(3)
$C_2 - C_1 - C_0 - C_3 / C_7 - C_1 - C_6 - C_2 / C_7 - C_7 $	1/9.70(10)	1 1 - 0.20 - 0.24 - 0.23	-1/9.55(19)
$C_{1} = C_{1} = C_{2} = C_{3}$	-0.2(3)	$C_{5} = C_{4} = C_{27} = C_{28}^{20}$	-88.0(2)
$C_{0} = C_{1} = C_{1} = C_{1}$	/1.1 (2)	$C_{20} = C_{4} = C_{20} = C_{20}^{2}$	89.7 (2)
$U_2 - U_1 - U_1 - U_1$	-103.1(2)	$C_{30} = N_{3} = C_{29} = C_{30}$	1/0.2 (2)
C6—C1—C7—O1	76.9 (2)	C6—C5—C29—N3	-94.9 (2)

C7 - 01 - C8 - C13	86 4 (2)	C4—C5—C29—N3	84 3 (2)
C7—O1—C8—C9	-96.8 (2)	C31—N4—C30—N3	-178.8(2)
O1—C8—C9—C10	179.56 (19)	C31—N4—C30—C34	0.8 (3)
C13—C8—C9—C10	-3.7 (3)	C29—N3—C30—N4	5.8 (3)
O1—C8—C9—C14	-4.0 (3)	C29—N3—C30—C34	-173.8 (2)
C13—C8—C9—C14	172.7 (2)	C30—N4—C31—C32	-1.5 (3)
C8-C9-C10-C11	3.2 (3)	C30—N4—C31—C35	177.7 (2)
C14—C9—C10—C11	-173.3 (2)	N4—C31—C32—C33	1.5 (4)
C9—C10—C11—C12	-0.3 (3)	C35—C31—C32—C33	-177.6 (2)
C9—C10—C11—C15	176.3 (2)	C31—C32—C33—C34	-0.8 (4)
C10-C11-C12-C13	-2.3 (3)	C31—C32—C33—C36	178.3 (3)
C15—C11—C12—C13	-178.9 (2)	C32—C33—C34—C30	0.2 (4)
C11—C12—C13—C8	1.7 (3)	C36—C33—C34—C30	-178.9 (2)
C11—C12—C13—C16	179.0 (2)	N4—C30—C34—C33	-0.2 (4)
O1-C8-C13-C12	178.08 (18)	N3—C30—C34—C33	179.4 (2)
C9—C8—C13—C12	1.3 (3)	C5—C6—C37—C38	-88.2 (2)
O1-C8-C13-C16	0.8 (3)	C1—C6—C37—C38	90.6 (2)
C9—C8—C13—C16	-175.9 (2)		

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 represent the centroids of the C1-C6, C20-C24/N2 and C30-C34/N4 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O3 ⁱ	0.88 (1)	2.46 (2)	3.183 (2)	140 (2)
N1A— $H2B$ ···N4 ⁱⁱ	0.89(1)	2.12(1)	3.000 (3)	170 (3)
$N1A$ — $H1B$ ···O1 A^{iii}	0.90(1)	2.01 (1)	2.893 (3)	167 (3)
O2—H2…O3 ^{iv}	0.84	2.26	2.968 (3)	142
$O3$ — $H3A$ ··· $N2^{v}$	0.85 (1)	2.00(1)	2.822 (2)	162 (2)
C10—H10…O2 ^{vi}	0.95	2.53	3.418 (4)	156
C12—H12···O3	0.95	2.42	2.788 (3)	103
C14—H14A…O1	0.99	2.47	2.894 (3)	105
C15—H15C···O1 ^{iv}	0.98	2.52	3.412 (3)	151
C22—H22…O1 <i>A</i> ^{vii}	0.95	2.63	3.523 (3)	157
C29—H29 <i>B</i> ····N1 <i>A</i> ⁱⁱ	0.99	2.59	3.374 (3)	137
C37—H37A···O1	0.99	2.49	3.238 (3)	132
C26—H26 A ···Cg1 ^{viii}	0.98	2.71	3.658 (3)	164
C18—H18 B ···Cg2 ^v	0.98	2.76	3.679 (3)	156
C38—H38 <i>B</i> ··· <i>C</i> g3 ^v	0.98	2.81	3.545 (3)	132

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*, -*y*+2, -*z*+1; (iii) -*x*, -*y*+2, -*z*+2; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*+1, *y*, *z*; (vi) -*x*, -*y*+1, -*z*+1; (vii) *x*-1, *y*-1, *z*-1; (viii) -*x*, -*y*+1, -*z*.

1-{[2,6-Bis(hydroxymethyl)-4-methylphenoxy]methyl}-3,5-bis{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzene–*n*-propanol–water (1/0.777/0.223) (1b)

Crystal data

C ₃₈ H ₅₀ N ₄ O ₃ ·0.777C ₃ H ₈ O·0.223H ₂ O	a = 8.6241 (2) Å
$M_r = 661.08$	b = 11.1755(2) Å
Triclinic, $P\overline{1}$	c = 20.1270 (4) Å

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.3 - 28.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Rod, colourless

 $0.35 \times 0.12 \times 0.10 \text{ mm}$

 $\theta_{\rm max} = 27.4^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$

T = 100 K

 $R_{\rm int} = 0.029$

 $h = -11 \rightarrow 11$

 $k = -14 \rightarrow 13$

 $l = -26 \rightarrow 26$

Cell parameters from 9616 reflections

 $a = 102.2675 (12)^{\circ}$ $\beta = 98.8911 (10)^{\circ}$ $\gamma = 92.9034 (10)^{\circ}$ $V = 1865.73 (7) \text{ Å}^{3}$ Z = 2 F(000) = 716.4 $D_{x} = 1.177 \text{ Mg m}^{-3}$

Data collection

Bruker Kappa APEXII CCD area detector diffractometer φ and ω scans 32606 measured reflections 8447 independent reflections 6498 reflections with $I > 2\sigma(I)$

Refinement

0	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.045$	and constrained refinement
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.0511P)^2 + 0.8172P]$
<i>S</i> = 1.03	where $P = (F_0^2 + 2F_c^2)/3$
8447 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
526 parameters	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
25 restraints	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

T 1		1	1	• , •		• • •	• , •	1. 1			18:	21
Fractional	atomic	coordinates	and	isofronic	or	eauivalent	isofronic	displa	icement	narameters	1 A 4	·)
1 / actionat	aronne	coordinates	cirici	isonopie	01	equivalent	isonopie	cuspic	accincin	parameters	(**	/

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	1.09845 (11)	0.21196 (9)	0.25578 (5)	0.0186 (2)	
O2	0.73337 (11)	0.35817 (9)	0.35632 (5)	0.0202 (2)	
H2	0.698 (2)	0.4167 (15)	0.3391 (10)	0.051 (6)*	
03	1.53531 (11)	0.16740 (10)	0.37193 (6)	0.0228 (2)	
H3	1.595 (2)	0.2298 (14)	0.3714 (11)	0.055 (7)*	
N1	0.56482 (15)	-0.11050 (12)	0.33365 (7)	0.0224 (3)	
H1B	0.574 (2)	-0.0295 (9)	0.3422 (9)	0.029 (5)*	
N2	0.45201 (13)	-0.28824 (11)	0.35529 (6)	0.0169 (2)	
C1	0.89520 (15)	0.03615 (13)	0.20963 (7)	0.0172 (3)	
C2	0.84608 (15)	-0.04442 (13)	0.24865 (7)	0.0168 (3)	
C3	0.68766 (16)	-0.09218 (13)	0.23522 (7)	0.0177 (3)	
C4	0.57876 (16)	-0.05761 (14)	0.18474 (7)	0.0194 (3)	
C5	0.62879 (16)	0.02517 (14)	0.14751 (7)	0.0194 (3)	
C6	0.78643 (16)	0.07368 (13)	0.16017 (7)	0.0181 (3)	
C7	1.06643 (15)	0.08464 (13)	0.21945 (7)	0.0188 (3)	
H7A	1.1318	0.0338	0.2453	0.023*	

H7B	1.0984	0.0754	0.1736	0.023*
C8	1.11557 (15)	0.23328 (12)	0.32727 (7)	0.0150 (3)
C9	0.99458 (15)	0.28480 (13)	0.35935 (7)	0.0170 (3)
C10	1.01731 (15)	0.31362 (13)	0.43082 (7)	0.0181 (3)
H10	0.9363	0.3494	0.4534	0.022*
C11	1.15576 (16)	0.29156 (13)	0.47053 (7)	0.0189 (3)
C12	1.27600 (15)	0.24325 (13)	0.43672 (7)	0.0183 (3)
H12	1.3717	0.2293	0.4632	0.022*
C13	1.25877 (15)	0.21523 (12)	0.36541 (7)	0.0164 (3)
C14	0.84727 (17)	0.31143 (16)	0.31560 (8)	0.0272 (3)
H14A	0.8754	0 3721	0 2891	0.033*
H14B	0.8009	0.2350	0.2822	0.033*
C15	1.17600(18)	0.2330	0.54809 (8)	0.033 0.0273(3)
H15A	1.17000 (10)	0.2537	0.54869 (8)	0.0275(3)
H15R	1.1276	0.2957	0.5637	0.041*
H15C	1.1250	0.3342	0.5676	0.041*
C16	1.2005	0.5542 0.17201 (15)	0.3070 0.32754(8)	0.041
	1.39213 (10)	0.17201(13)	0.32734 (8)	0.0240 (3)
	1.5594	0.0891	0.2980	0.029*
HI6B	1.4108	0.2280	0.2970	0.029*
	0.96211 (16)	-0.08286 (14)	0.30354 (7)	0.0206 (3)
HI/A	0.9064	-0.0985	0.3407	0.025*
HI7B	1.0451	-0.0149	0.3240	0.025*
C18	1.03917 (17)	-0.19885 (14)	0.27405 (8)	0.0259 (3)
H18A	0.9576	-0.2670	0.2548	0.039*
H18B	1.1133	-0.2203	0.3109	0.039*
H18C	1.0958	-0.1834	0.2377	0.039*
C19	0.63062 (16)	-0.17910 (13)	0.27645 (7)	0.0190 (3)
H19A	0.5494	-0.2412	0.2464	0.023*
H19B	0.7196	-0.2226	0.2942	0.023*
C20	0.46973 (15)	-0.16490 (13)	0.36898 (7)	0.0164 (3)
C21	0.35623 (16)	-0.34081 (13)	0.39077 (8)	0.0201 (3)
C22	0.27879 (16)	-0.27285 (14)	0.43864 (8)	0.0213 (3)
H22	0.2130	-0.3132	0.4623	0.026*
C23	0.29668 (15)	-0.14425 (13)	0.45257 (7)	0.0182 (3)
C24	0.39397 (16)	-0.09037 (13)	0.41748 (7)	0.0179 (3)
H24	0.4101	-0.0034	0.4258	0.021*
C25	0.3398 (2)	-0.47858 (15)	0.37504 (10)	0.0357 (4)
H25A	0.3121	-0.5103	0.3250	0.054*
H25B	0.2569	-0.5070	0.3977	0.054*
H25C	0.4398	-0.5086	0.3921	0.054*
C26	0.20822 (17)	-0.06871 (15)	0.50283 (8)	0.0251 (3)
H26A	0.2463	0.0182	0.5111	0.038*
H26B	0.2252	-0.0958	0.5464	0.038*
H26C	0.0955	-0.0793	0.4837	0.038*
C27	0.40803 (16)	-0.11206 (16)	0.16904 (8)	0.0275 (3)
H27A	0.3392	-0.0505	0.1548	0.033*
H27B	0.3779	-0.1305	0.2115	0.033*
C28	0.3810 (2)	-0.22925 (19)	0.11221 (10)	0.0407 (4)
	× /	(· ·)	(')	\ / /

H28A	0.4138	-0.2121	0.0704	0.061*	
H28B	0.2689	-0.2583	0.1023	0.061*	
H28C	0.4430	-0.2926	0.1274	0.061*	
C29	0.50860 (18)	0.06695 (16)	0.09561 (8)	0.0248 (3)	0.7770 (18)
H29A	0.557 (3)	0.092 (2)	0.0586 (10)	0.012 (6)*	0.7770 (18)
H29B	0.435 (6)	-0.003 (4)	0.067 (3)	0.07 (2)*	0.7770 (18)
N3	0.4192 (2)	0.15643 (19)	0.13029 (10)	0.0251 (4)	0.7770 (18)
H3A	0.436 (2)	0.1759 (19)	0.1758 (5)	0.020 (5)*	0.7770 (18)
N4	0.2978 (4)	0.2039 (3)	0.02829 (14)	0.0257 (6)	0.7770 (18)
C30	0.3194 (2)	0.2263 (2)	0.09810(11)	0.0180 (4)	0.7770 (18)
C31	0.2037 (3)	0.2785 (3)	-0.00194(12)	0.0248 (5)	0.7770 (18)
C32	0.1361 (3)	0.3734 (3)	0.03600 (12)	0.0298 (6)	0.7770 (18)
H32	0.0745	0.4257	0.0133	0.036*	0.7770 (18)
C33	0.1582 (2)	0.3925 (2)	0.10761 (13)	0.0252(5)	0.7770 (18)
C34	0.2507 (2)	0.31710 (17)	0.13893 (10)	0.0189(4)	0.7770 (18)
H34	0.2672	0.3270	0.1876	0.023*	0.7770 (18)
C35	0 1725 (4)	0.2488(3)	-0.07895(13)	0.0414 (6)	0 7770 (18)
H35A	0 2727	0 2440	-0.0962	0.062*	0 7770 (18)
H35B	0.1148	0.3132	-0.0953	0.062*	0 7770 (18)
H35C	0 1094	0.1696	-0.0959	0.062*	0 7770 (18)
C36	0.0891(3)	0.4958(2)	0.15129 (15)	0.0446 (6)	0.7770 (18)
H36A	0.0779	0.4752	0.1954	0.067*	0.7770 (18)
H36B	-0.0146	0.5081	0.1272	0.067*	0.7770(18)
H36C	0 1588	0.5714	0.1598	0.067*	0.7770(18)
C29B	0.1986	0.06695 (16)	0.09561 (8)	0.007	0.7770(18)
H29C	0.579 (9)	0.000000(10)	0.079(5)	0.0248(3)	0.2230(18)
Н290	0.379(9)	-0.003(7)	0.072(6)	0.02(3)	0.2230(18)
N2D	0.430(10) 0.4781(0)	0.003(7)	0.072(0) 0.1400(4)	$0.00(3)^{-1}$	0.2230(18)
	0.4781 (9)	0.2014 (7)	0.1409 (4)	0.0201 (4)	0.2230(18)
C30P	0.3311 0.3666 (0)	0.2308 0.2663(7)	0.1828 0.1110 (4)	0.030°	0.2230(18)
N/P	0.3000(9) 0.3042(18)	0.2003(7) 0.2338(12)	0.1110(4) 0.0422(5)	0.0180(4) 0.0257(6)	0.2230(18)
IN4D C21D	0.3042(10) 0.1882(14)	0.2338(12) 0.2023(12)	0.0422(3)	0.0237(0)	0.2230(18)
COD	0.1005(14) 0.1411(12)	0.3023(12) 0.3078(10)	0.0170(4)	0.0248(3)	0.2230(18)
U32D	0.1411(13)	0.3978 (10)	0.0042 (3)	0.0298 (0)	0.2230(18)
П32Б С22В	0.0370	0.4420	0.0484 0.1221 (4)	0.030°	0.2230(18)
C33D	0.2104(9)	0.4298(7)	0.1521(4) 0.1572(2)	0.0232(3)	0.2230(18)
U34B	0.3272 (8)	0.3042 (0)	0.1572 (5)	0.0189 (4)	0.2230(18)
H34B	0.3780	0.3855	0.2040	0.023*	0.2230 (18)
C32R	0.1166 (13)	0.2733 (10)	-0.0584 (4)	0.0414 (6)	0.2230 (18)
H35D	0.1545	0.3374	-0.0800	0.062*	0.2230 (18)
H35E	0.0016	0.2701	-0.0633	0.062*	0.2230 (18)
H35F	0.1476	0.1936	-0.0810	0.062*	0.2230 (18)
C36B	0.1663 (12)	0.5312 (9)	0.1880 (5)	0.0446 (6)	0.2230 (18)
H36D	0.0909	0.5805	0.1668	0.067*	0.2230 (18)
H36E	0.2612	0.5839	0.2123	0.067*	0.2230 (18)
H36F	0.1185	0.4942	0.2209	0.067*	0.2230 (18)
C37	0.83976 (17)	0.16528 (14)	0.12075 (7)	0.0229 (3)	
H37A	0.9310	0.2190	0.1496	0.028*	
H37B	0.7535	0.2178	0.1116	0.028*	

C38	0.88619 (19)	0.10262 (17)	0.05233 (8)	0.0303 (4)	
H38A	0.9800	0.0588	0.0614	0.045*	
H38B	0.9091	0.1648	0.0266	0.045*	
H38C	0.7992	0.0442	0.0251	0.045*	
O1A	0.64599 (19)	0.54143 (15)	0.29387 (8)	0.0208 (3)	0.7770 (18)
H1A	0.585 (3)	0.5911 (19)	0.3115 (12)	0.040 (7)*	0.7770 (18)
C1A	0.5739 (2)	0.49317 (18)	0.22359 (11)	0.0214 (4)	0.7770 (18)
H1A1	0.4747	0.5319	0.2138	0.026*	0.7770 (18)
H1A2	0.5475	0.4036	0.2163	0.026*	0.7770 (18)
C2A	0.6820(2)	0.5168 (2)	0.17434 (10)	0.0276 (5)	0.7770 (18)
H2A1	0.7823	0.4801	0.1853	0.033*	0.7770 (18)
H2A2	0.7063	0.6065	0.1812	0.033*	0.7770 (18)
C3A	0.6105 (3)	0.4638 (2)	0.09917 (10)	0.0294 (5)	0.7770 (18)
H3A1	0.5876	0.3748	0.0919	0.044*	0.7770 (18)
H3A2	0.6852	0.4810	0.0696	0.044*	0.7770 (18)
H3A3	0.5128	0.5016	0.0876	0.044*	0.7770 (18)
O1W	0.5762 (7)	0.4957 (6)	0.2720 (3)	0.0296 (13)	0.2230 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0204 (5)	0.0201 (5)	0.0178 (5)	0.0030 (4)	0.0064 (4)	0.0072 (4)
O2	0.0156 (5)	0.0217 (5)	0.0265 (5)	0.0072 (4)	0.0071 (4)	0.0086 (4)
O3	0.0127 (4)	0.0220 (6)	0.0356 (6)	0.0032 (4)	0.0032 (4)	0.0107 (5)
N1	0.0283 (6)	0.0178 (7)	0.0258 (7)	0.0030 (5)	0.0147 (5)	0.0079 (5)
N2	0.0161 (5)	0.0168 (6)	0.0190 (6)	0.0021 (4)	0.0033 (4)	0.0064 (5)
C1	0.0161 (6)	0.0197 (7)	0.0173 (7)	0.0049 (5)	0.0061 (5)	0.0044 (6)
C2	0.0176 (6)	0.0197 (7)	0.0151 (6)	0.0070 (5)	0.0054 (5)	0.0052 (5)
C3	0.0188 (6)	0.0210(7)	0.0169 (7)	0.0066 (5)	0.0074 (5)	0.0078 (6)
C4	0.0153 (6)	0.0249 (8)	0.0211 (7)	0.0067 (5)	0.0067 (5)	0.0081 (6)
C5	0.0188 (6)	0.0251 (8)	0.0183 (7)	0.0098 (6)	0.0064 (5)	0.0094 (6)
C6	0.0205 (6)	0.0207 (7)	0.0161 (7)	0.0062 (5)	0.0074 (5)	0.0066 (6)
C7	0.0166 (6)	0.0223 (7)	0.0188 (7)	0.0039 (5)	0.0058 (5)	0.0048 (6)
C8	0.0160 (6)	0.0127 (6)	0.0184 (7)	-0.0003 (5)	0.0051 (5)	0.0067 (5)
C9	0.0142 (6)	0.0181 (7)	0.0211 (7)	0.0019 (5)	0.0038 (5)	0.0090 (6)
C10	0.0159 (6)	0.0205 (7)	0.0203 (7)	0.0018 (5)	0.0066 (5)	0.0072 (6)
C11	0.0198 (6)	0.0165 (7)	0.0206 (7)	-0.0006 (5)	0.0027 (5)	0.0056 (6)
C12	0.0155 (6)	0.0148 (7)	0.0246 (7)	0.0011 (5)	0.0003 (5)	0.0065 (6)
C13	0.0146 (6)	0.0122 (6)	0.0234 (7)	0.0008 (5)	0.0045 (5)	0.0054 (5)
C14	0.0207 (7)	0.0426 (10)	0.0206 (7)	0.0165 (7)	0.0054 (6)	0.0079 (7)
C15	0.0269 (8)	0.0338 (9)	0.0203 (7)	0.0056 (6)	0.0008 (6)	0.0053 (7)
C16	0.0143 (6)	0.0308 (9)	0.0273 (8)	0.0064 (6)	0.0031 (6)	0.0029 (7)
C17	0.0201 (7)	0.0251 (8)	0.0177 (7)	0.0041 (6)	0.0006 (5)	0.0087 (6)
C18	0.0203 (7)	0.0264 (8)	0.0312 (8)	0.0075 (6)	-0.0015 (6)	0.0101 (7)
C19	0.0192 (6)	0.0218 (7)	0.0200 (7)	0.0049 (5)	0.0076 (5)	0.0095 (6)
C20	0.0147 (6)	0.0198 (7)	0.0162 (6)	0.0011 (5)	0.0018 (5)	0.0079 (5)
C21	0.0184 (6)	0.0186 (7)	0.0254 (7)	0.0012 (5)	0.0044 (5)	0.0090 (6)
C22	0.0188 (6)	0.0236 (8)	0.0254 (8)	-0.0002 (6)	0.0080 (6)	0.0117 (6)

C23	0.0146 (6)	0.0221 (7)	0.0184 (7)	0.0029 (5)	0.0025 (5)	0.0059 (6)
C24	0.0193 (6)	0.0150 (7)	0.0206 (7)	0.0023 (5)	0.0042 (5)	0.0059 (6)
C25	0.0391 (9)	0.0212 (9)	0.0521 (11)	0.0000 (7)	0.0222 (8)	0.0097 (8)
C26	0.0237 (7)	0.0267 (8)	0.0267 (8)	0.0032 (6)	0.0109 (6)	0.0046 (6)
C27	0.0146 (6)	0.0417 (10)	0.0319 (8)	0.0051 (6)	0.0051 (6)	0.0194 (7)
C28	0.0285 (8)	0.0520 (12)	0.0387 (10)	-0.0090 (8)	-0.0030(7)	0.0130 (9)
C29	0.0224 (7)	0.0351 (9)	0.0230 (8)	0.0132 (7)	0.0067 (6)	0.0154 (7)
N3	0.0277 (11)	0.0317 (13)	0.0181 (9)	0.0151 (8)	0.0019 (8)	0.0086 (9)
N4	0.0223 (7)	0.0286 (18)	0.0277 (14)	0.0028 (12)	0.0026 (10)	0.0109 (10)
C30	0.0127 (10)	0.0196 (12)	0.0242 (10)	-0.0010 (7)	0.0029 (8)	0.0116 (9)
C31	0.0271 (10)	0.0277 (15)	0.0251 (15)	0.0065 (9)	0.0085 (11)	0.0141 (12)
C32	0.0321 (9)	0.0346 (15)	0.0293 (14)	0.0151 (10)	0.0048 (13)	0.0194 (14)
C33	0.0230 (11)	0.0232 (12)	0.0328 (15)	0.0037 (8)	0.0098 (9)	0.0093 (10)
C34	0.0200 (9)	0.0196 (10)	0.0199 (9)	0.0025 (7)	0.0053 (7)	0.0087 (8)
C35	0.0623 (19)	0.0386 (14)	0.0274 (14)	0.0118 (12)	0.0078 (11)	0.0149 (11)
C36	0.0515 (16)	0.0380 (14)	0.0493 (17)	0.0188 (12)	0.0218 (12)	0.0081 (12)
C29B	0.0224 (7)	0.0351 (9)	0.0230 (8)	0.0132 (7)	0.0067 (6)	0.0154 (7)
N3B	0.0277 (11)	0.0317 (13)	0.0181 (9)	0.0151 (8)	0.0019 (8)	0.0086 (9)
C30B	0.0127 (10)	0.0196 (12)	0.0242 (10)	-0.0010 (7)	0.0029 (8)	0.0116 (9)
N4B	0.0223 (7)	0.0286 (18)	0.0277 (14)	0.0028 (12)	0.0026 (10)	0.0109 (10)
C31B	0.0271 (10)	0.0277 (15)	0.0251 (15)	0.0065 (9)	0.0085 (11)	0.0141 (12)
C32B	0.0321 (9)	0.0346 (15)	0.0293 (14)	0.0151 (10)	0.0048 (13)	0.0194 (14)
C33B	0.0230 (11)	0.0232 (12)	0.0328 (15)	0.0037 (8)	0.0098 (9)	0.0093 (10)
C34B	0.0200 (9)	0.0196 (10)	0.0199 (9)	0.0025 (7)	0.0053 (7)	0.0087 (8)
C35B	0.0623 (19)	0.0386 (14)	0.0274 (14)	0.0118 (12)	0.0078 (11)	0.0149 (11)
C36B	0.0515 (16)	0.0380 (14)	0.0493 (17)	0.0188 (12)	0.0218 (12)	0.0081 (12)
C37	0.0252 (7)	0.0257 (8)	0.0213 (7)	0.0020 (6)	0.0051 (6)	0.0120 (6)
C38	0.0317 (8)	0.0410 (10)	0.0212 (8)	-0.0033 (7)	0.0092 (6)	0.0119 (7)
O1A	0.0259 (8)	0.0184 (8)	0.0186 (8)	0.0062 (6)	0.0029 (6)	0.0046 (6)
C1A	0.0240 (9)	0.0193 (10)	0.0187 (11)	0.0009 (7)	-0.0008 (8)	0.0023 (8)
C2A	0.0301 (10)	0.0274 (11)	0.0237 (10)	-0.0051 (8)	0.0030 (8)	0.0049 (8)
C3A	0.0367 (11)	0.0273 (11)	0.0235 (10)	-0.0009 (9)	0.0053 (8)	0.0051 (9)
O1W	0.032 (3)	0.024 (3)	0.028 (4)	0.006 (2)	-0.005 (3)	0.000 (3)

Geometric parameters (Å, °)

01-C8	1.3907 (16)	C27—C28	1.526 (3)	
O1—C7	1.4460 (17)	C27—H27A	0.9900	
O2—C14	1.4241 (17)	С27—Н27В	0.9900	
O2—H2	0.850 (9)	C28—H28A	0.9800	
O3—C16	1.4179 (17)	C28—H28B	0.9800	
О3—Н3	0.850 (10)	C28—H28C	0.9800	
N1-C20	1.3642 (18)	C29—N3	1.425 (2)	
N1—C19	1.4513 (18)	C29—H29A	0.988 (9)	
N1—H1B	0.881 (9)	C29—H29B	0.996 (10)	
N2—C20	1.3429 (18)	N3—C30	1.372 (3)	
N2-C21	1.3599 (18)	N3—H3A	0.883 (9)	
C1—C2	1.404 (2)	N4—C30	1.355 (3)	

C1-C7 1.5154 (18) C30-C34 1.383 (3) C2-C3 1.4054 (19) C31-C32 1.381 (3) C3-C4 1.4043 (19) C32-C33 1.393 (3) C3-C4 1.4043 (19) C32-C33 1.393 (3) C3-C4 1.4043 (19) C32-C33 1.393 (3) C4-C5 1.390 (2) C33-C34 1.372 (3) C4-C27 1.5237 (19) C33-C36 1.504 (3) C5-C29 1.5184 (19) C35-H35A 0.9800 C5-C29 1.5184 (19) C35-H35A 0.9800 C7-H7A 0.9900 C36-H36A 0.9800 C7-H7B 0.9900 C36-H36A 0.9800 C8-C13 1.3975 (18) C29B-H29C 0.991 (10) C9-C14 1.5105 (19) C29B-H29C 0.991 (10) C9-C14 1.5105 (19) C30B-N4B 1.370 (9) C11-C12 1.3959 (19) C30B-N4B 1.370 (9) C11-C12 1.3959 (19) C30B-N4B 1.371 (7) C12-H12 0.9500 C31B	C1—C6	1.4055 (19)	N4—C31	1.362 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C7	1.5154 (18)	C30—C34	1.383 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.4054 (19)	C31—C32	1.381 (3)
C3-C4 1.4043 (19) $C32-C33$ 1.393 (3) $C3-C19$ 1.5147 (19) $C32-H32$ 0.9500 $C4-C5$ 1.399 (2) $C33-C34$ 1.372 (3) $C4-C27$ 1.5237 (19) $C33-C36$ 1.504 (3) $C5-C6$ 1.4024 (19) $C34-H34$ 0.9500 $C5-C29$ 1.5184 (19) $C35-H35A$ 0.9800 $C6-C37$ 1.516 (2) $C35-H35B$ 0.9800 $C7-H7A$ 0.9900 $C36-H36A$ 0.9800 $C7-H7B$ 0.9900 $C36-H36B$ 0.9800 $C8-C13$ 1.3975 (18) $C29B-N3B$ 1.640 (8) $C9-C10$ 1.3860 (19) $C29B-H29C$ 0.991 (10) $C9-C14$ 1.5105 (19) $C29B-H29C$ 0.991 (10) $C10-C11$ 1.3952 (19) C30B-C34B 1.376 (1) $C10-H10$ 0.9500 N3B-H3B 0.8800 $C11-C12$ 1.3953 (19) C30B-C34B 1.371 (7) $C12-C13$ 1.385 (2) N4B-C31B 1.384 (9) $C12-H1$	C2—C17	1.5198 (18)	C31—C35	1.493 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.4043 (19)	C32—C33	1.393 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C19	1.5147 (19)	С32—Н32	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.399 (2)	C33—C34	1.372 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C27	1.5237 (19)	C33—C36	1.504 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.4024 (19)	С34—Н34	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C29B	1.5184 (19)	С35—Н35А	0.9800
C6-C37 $1.516 (2)$ $C35-H35C$ 0.9800 $C7-H7A$ 0.9900 $C36-H36A$ 0.9800 $C8-C9$ $1.3958 (18)$ $C36-H36C$ 0.9800 $C8-C9$ $1.3958 (18)$ $C26-H36C$ 0.9800 $C8-C13$ $1.3975 (18)$ $C29B-H3B$ $1.640 (8)$ $C9-C10$ $1.3860 (19)$ $C29B-H29C$ $0.991 (10)$ $C9-C14$ $1.516 (19)$ $C29B-H29C$ $0.994 (11)$ $C10-C11$ $1.3942 (19)$ $N3B-C30B$ $1.375 (11)$ $C10-H10$ 0.9500 $N3B-H3B$ 0.8800 $C11-C12$ $1.3959 (19)$ $C30B-C34B$ $1.371 (7)$ $C12-C13$ $1.385 (2)$ $N4B-C31B$ $1.385 (8)$ $C13-H12$ 0.9500 $C31B-C32B$ $1.385 (8)$ $C13-H14A$ 0.9900 $C32B-C33B$ $1.518 (8)$ $C14-H14A$ 0.9900 $C33B-C34B$ $1.371 (7)$ $C15-H15A$ 0.9800 $C33B-C36B$ $1.527 (8)$ $C14-H14A$ 0.9900 $C33B$	C5—C29	1.5184 (19)	С35—Н35В	0.9800
C7-H7A 0.9900 $C36-H36A$ 0.9800 $C7-H7B$ 0.9900 $C36-H36B$ 0.9800 $C8-C9$ 1.3958 (18) $C36-H36C$ 0.9800 $C8-C13$ 1.3975 (18) $C29B-N3B$ 1.640 (8) $C9-C10$ 1.3860 (19) $C29B-H29C$ 0.991 (10) $C9-C14$ 1.5105 (19) $C29B-H29D$ 0.994 (11) $C10-C11$ 1.3942 (19) $N3B-C30B$ 1.375 (11) $C10-H10$ 0.9500 $N3B-H3B$ 0.8800 $C11-C12$ 1.3959 (19) $C30B-N4B$ 1.370 (9) $C11-C12$ 1.3959 (19) $C30B-C34B$ 1.371 (7) $C12-H12$ 0.9500 $C31B-C32B$ 1.384 (9) $C12-H12$ 0.9500 $C31B-C32B$ 1.384 (8) $C14-H14A$ 0.9900 $C32B-C33B$ 1.368 (8) $C15-H15A$ 0.9800 $C33B-C34B$ 1.371 (7) $C15-H15A$ 0.9800 $C33B-C34B$ 1.371 (7) $C15-H15A$ 0.9800 $C33B-C34B$ 1.371 (7) $C15-H15A$ 0.9800 $C33B-C34B$ 1.527 (8) $C16-H16A$ 0.9900 $C35B-H35D$ 0.9800 $C17-H17B$ 0.9900 $C36B-H36D$ 0.9800 $C17-H17A$ 0.9900 $C36B-H36D$ 0.9800 $C17-H17B$ 0.9900 $C36B-H36F$ 0.9800 $C17-H17B$ 0.9900 $C36B-H36F$ 0.9800 $C17-H17B$ 0.9900 $C36B-H36F$ 0.9800 $C18-H18A$ 0.9800 $C37-H37A$ 0.9900 $C18-H18B$ </td <td>C6—C37</td> <td>1.516 (2)</td> <td>С35—Н35С</td> <td>0.9800</td>	C6—C37	1.516 (2)	С35—Н35С	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—H7A	0.9900	С36—Н36А	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—Н7В	0.9900	С36—Н36В	0.9800
C8-C13 1.3975 (18) $C29B-N3B$ 1.640 (8) $C9-C10$ 1.3860 (19) $C29B-H29C$ 0.991 (10) $C9-C14$ 1.5105 (19) $C29B-H29D$ 0.994 (11) $C10-C11$ 1.3942 (19) $N3B-C30B$ 1.375 (11) $C10-H10$ 0.9500 $N3B-H3B$ 0.8800 $C11-C12$ 1.3959 (19) $C30B-N4B$ 1.370 (9) $C11-C12$ 1.3959 (19) $C30B-C34B$ 1.371 (7) $C12-C13$ 1.385 (2) $N4B-C31B$ 1.384 (9) $C12-H12$ 0.9500 $C31B-C32B$ 1.385 (8) $C14-H14A$ 0.9900 $C32B-C33B$ 1.518 (8) $C14-H14A$ 0.9900 $C32B-C33B$ 1.368 (8) $C14-H14B$ 0.9900 $C32B-C33B$ 1.518 (8) $C15-H15A$ 0.9800 $C33B-C34B$ 1.371 (7) $C15-H15B$ 0.9800 $C33B-C34B$ 1.527 (8) $C15-H15C$ 0.9800 $C35B-H35D$ 0.9800 $C16-H16A$ 0.9900 $C35B-H35D$ 0.9800 $C17-C18$ 1.535 (2) $C35B-H35F$ 0.9800 $C17-H17A$ 0.9900 $C36B-H36E$ 0.9800 $C17-H17A$ 0.9900 $C36B-H36E$ 0.9800 $C18-H18A$ 0.9800 $C37-H37A$ 0.9900 $C19-H19A$ 0.9900 $C38-H38A$ 0.9800 $C17-H17B$ 0.9900 $C38-H38A$ 0.9800 $C17-H17B$ 0.9900 $C38-H38A$ 0.9800 $C19-H19A$ 0.9900 $C38-H38A$ 0.9800 $C19-H1$	C8—C9	1.3958 (18)	С36—Н36С	0.9800
C9-C10 $1.3860 (19)$ C29B-H29C $0.991 (10)$ C9-C14 $1.5105 (19)$ C29B-H29D $0.994 (11)$ C10-C11 $1.3942 (19)$ N3B-C30B $1.375 (11)$ C10-H10 0.9500 N3B-H3B 0.8800 C11-C12 $1.3959 (19)$ C30B-N4B $1.370 (9)$ C11-C15 $1.506 (2)$ C30B-C34B $1.371 (7)$ C12-C13 $1.385 (2)$ N4B-C31B $1.384 (9)$ C12-H12 0.9500 C31B-C32B $1.385 (8)$ C14-H14A 0.9900 C32B-C33B $1.368 (8)$ C14-H14A 0.9900 C32B-C33B $1.368 (8)$ C14-H14B 0.9900 C32B-H32B 0.9500 C15-H15A 0.9800 C33B-C34B $1.571 (7)$ C15-H15A 0.9800 C33B-C36B $1.527 (8)$ C15-H15C 0.9800 C35B-H35D 0.9800 C16-H16A 0.9900 C35B-H35D 0.9800 C17-C18 $1.535 (2)$ C35B-H35F 0.9800 C17-H17A 0.9900 C36B-H36E 0.9800 C17-H17A 0.9900 C36B-H36E 0.9800 C17-H17B 0.9900 C36B-H36E 0.9800 C18-H18B 0.9800 C37-C38 $1.528 (2)$ C18-H18B 0.9800 C37-H37A 0.9900 C18-H18B 0.9800 C37-H37A 0.9900 C18-H18B 0.9800 C37-H37A 0.9900 C18-H18B 0.9800 C37-H37A 0.9900 C19-H19A 0.9900 C38-H38A 0.9800 C12-C22 $1.375 (2)$ <t< td=""><td>C8—C13</td><td>1.3975 (18)</td><td>C29B—N3B</td><td>1.640 (8)</td></t<>	C8—C13	1.3975 (18)	C29B—N3B	1.640 (8)
C9C14 1.5105 (19)C29BH29D 0.994 (11)C10C11 1.3942 (19)N3BC30B 1.375 (11)C10H10 0.9500 N3BH3B 0.8800 C11C12 1.3959 (19)C30BN4B 1.370 (9)C11C15 1.506 (2)C30BC34B 1.371 (7)C12C13 1.385 (2)N4BC31B 1.384 (9)C12H12 0.9500 C31BC32B 1.385 (8)C14H14A 0.9900 C32BC33B 1.518 (8)C14H14B 0.9900 C32BC33B 1.368 (8)C14H14B 0.9900 C32BC34B 1.371 (7)C15H15A 0.9800 C33BC36B 1.527 (8)C15H15B 0.9800 C35BH35D 0.9800 C16H16A 0.9900 C35B-H35D 0.9800 C17C18 1.535 (2)C35B-H35D 0.9800 C17H17A 0.9900 C36B-H36D 0.9800 C17H17B 0.9900 C36B-H36D 0.9800 C17H17B 0.9900 C36B-H36E 0.9800 C17H17B 0.9900 C36B-H36E 0.9800 C18H18D 0.9800 C37C38 1.528 (2)C18H18D 0.9900 C37H37A 0.9900 C19H19A 0.9900 C38H38E 0.9800 C12C22 1.375 (2)C38H38A 0.9800 C12C24 1.4073 (19)C38H38A 0.9800 C21C25 1.499 (2)O1AC1A 1.431 (2)C22C23 1.400 (2)O1AH1A 0.9900	C9—C10	1.3860 (19)	С29В—Н29С	0.991 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C14	1.5105 (19)	C29B—H29D	0.994 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—C11	1.3942 (19)	N3B—C30B	1.375 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С10—Н10	0.9500	N3B—H3B	0.8800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12	1.3959 (19)	C30B—N4B	1.370 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C15	1.506 (2)	C30B—C34B	1.371 (7)
C12—H12 0.9500 C31B—C32B $1.385(8)$ C13—C16 $1.5194(19)$ C31B—C35B $1.518(8)$ C14—H14A 0.9900 C32B—C33B $1.368(8)$ C14—H14B 0.9900 C32B—H32B 0.9500 C15—H15A 0.9800 C33B—C34B $1.371(7)$ C15—H15B 0.9800 C33B—C36B $1.527(8)$ C15—H15C 0.9800 C35B—H35D 0.9800 C16—H16A 0.9900 C35B—H35D 0.9800 C17—C18 $1.535(2)$ C35B—H35F 0.9800 C17—H17A 0.9900 C36B—H36D 0.9800 C17—H17A 0.9900 C36B—H36E 0.9800 C17—H17A 0.9900 C36B—H36E 0.9800 C18—H18A 0.9800 C37—C38 $1.528(2)$ C18—H18D 0.9900 C37—H37A 0.9900 C19—H19A 0.9900 C38—H38B 0.9800 C20—C24 $1.4073(19)$ C38—H38B 0.9800 C21—C25 $1.499(2)$ O1A—C1A $1.431(2)$ C22—C23 $1.400(2)$ O1A—H1A $0.845(10)$ C22—H22 0.9500 C1A—C2A $1.514(3)$ C23—C26 $1.5030(19)$ C1A—H1A2 0.9900 C23—C26 $1.5030(19)$ C1A—H1A2 0.9900	C12—C13	1.385 (2)	N4B—C31B	1.384 (9)
C13—C16 $1.5194(19)$ C31B—C35B $1.518(8)$ C14—H14A0.9900C32B—C33B1.368(8)C14—H14B0.9900C32B—H32B0.9500C15—H15A0.9800C33B—C34B1.371(7)C15—H15B0.9800C33B—C36B1.527(8)C15—H15C0.9800C34B—H34B0.9500C16—H16A0.9900C35B—H35D0.9800C17—C181.535(2)C35B—H35E0.9800C17—H17A0.9900C36B—H36D0.9800C17—H17A0.9900C36B—H36E0.9800C17—H17B0.9900C36B—H36E0.9800C18—H18A0.9800C37—C381.528(2)C18—H18B0.9900C37—H37A0.9900C19—H19A0.9900C38—H38B0.9800C20—C241.4073(19)C38—H38B0.9800C21—C251.499(2)O1A—C1A1.431(2)C22—C231.400(2)O1A—H1A0.845(10)C22—C241.370(2)C1A—H1A0.9900C23—C261.5030(19)C1A—H1A20.9900C23—C261.5030(19)C1A—H1A20.9900C24—C241.5030(19)C1A—H1A20.9900	С12—Н12	0.9500	C31B—C32B	1.385 (8)
C14—H14A 0.9900 C32B—C33B $1.368 (8)$ C14—H14B 0.9900 C32B—H32B 0.9500 C15—H15A 0.9800 C33B—C34B $1.371 (7)$ C15—H15B 0.9800 C33B—C36B $1.527 (8)$ C15—H15C 0.9800 C34B—H34B 0.9500 C16—H16A 0.9900 C35B—H35D 0.9800 C16—H16B 0.9900 C35B—H35E 0.9800 C17—C18 $1.535 (2)$ C35B—H35F 0.9800 C17—H17A 0.9900 C36B—H36E 0.9800 C17—H17B 0.9900 C36B—H36E 0.9800 C18—H18A 0.9800 C37—C38 $1.528 (2)$ C18—H18B 0.9800 C37—H37A 0.9900 C19—H19A 0.9900 C38—H38A 0.9800 C20—C24 $1.4073 (19)$ C38—H38B 0.9800 C21—C25 $1.499 (2)$ O1A—C1A $1.431 (2)$ C22—C23 $1.400 (2)$ O1A—C1A $1.431 (2)$ C22—H22 0.9500 C1A—C2A $1.514 (3)$ C23—C24 $1.570 (2)$ C1A—H1A1 0.9900 C24—H24 0.9500 C2A—C3A $1.521 (3)$	C13—C16	1.5194 (19)	C31B—C35B	1.518 (8)
C14-H14B 0.9900 $C32B-H32B$ 0.9500 $C15-H15A$ 0.9800 $C33B-C34B$ 1.371 (7) $C15-H15B$ 0.9800 $C33B-C36B$ 1.527 (8) $C15-H15C$ 0.9800 $C34B-H34B$ 0.9500 $C16-H16A$ 0.9900 $C35B-H35D$ 0.9800 $C16-H16B$ 0.9900 $C35B-H35E$ 0.9800 $C17-C18$ 1.535 (2) $C35B-H35F$ 0.9800 $C17-H17A$ 0.9900 $C36B-H36D$ 0.9800 $C17-H17B$ 0.9900 $C36B-H36E$ 0.9800 $C18-H18A$ 0.9800 $C37-C38$ 1.528 (2) $C18-H18B$ 0.9800 $C37-H37A$ 0.9900 $C19-H19A$ 0.9900 $C38-H38A$ 0.9800 $C19-H19B$ 0.9900 $C38-H38A$ 0.9800 $C21-C22$ 1.375 (2) $C38-H38B$ 0.9800 $C21-C25$ 1.499 (2) $01A-C1A$ 1.431 (2) $C22-C23$ 1.400 (2) $01A-H1A$ 0.845 (10) $C22-H22$ 0.9500 $C1A-H1A1$ 0.9900 $C23-C24$ 1.5030 (19) $C1A-H1A2$ 0.9900 $C24-H24$ 0.9500 $C2A-C3A$ 1.521 (3)	C14—H14A	0.9900	C32B—C33B	1.368 (8)
C15—H15A 0.9800 $C33B$ —C34B 1.371 (7)C15—H15B 0.9800 $C33B$ —C36B 1.527 (8)C15—H15C 0.9800 $C34B$ —H34B 0.9500 C16—H16A 0.9900 $C35B$ —H35D 0.9800 C16—H16B 0.9900 $C35B$ —H35E 0.9800 C17—C18 1.535 (2) $C35B$ —H35F 0.9800 C17—H17A 0.9900 $C36B$ —H36D 0.9800 C17—H17B 0.9900 $C36B$ —H36E 0.9800 C18—H18A 0.9800 $C37$ —C38 1.528 (2)C18—H18B 0.9800 $C37$ —H37A 0.9900 C19—H19A 0.9900 $C38$ —H38A 0.9800 C20—C24 1.4073 (19) $C38$ —H38B 0.9800 C21—C25 1.499 (2) $01A$ —C1A 1.431 (2)C22—C23 1.400 (2) $01A$ —H1A 0.845 (10)C22—H22 0.9500 $C1A$ —C2A 1.514 (3)C23—C24 1.370 (2) $C1A$ —H1A1 0.9900 C23—C26 1.5030 (19) $C1A$ —H1A2 0.9900 C24—H24 0.9500 $C2A$ —C3A 1.521 (3)	C14—H14B	0.9900	C32B—H32B	0.9500
C15—H15B 0.9800 C33B—C36B $1.527 (8)$ C15—H15C 0.9800 C34B—H34B 0.9500 C16—H16A 0.9900 C35B—H35D 0.9800 C16—H16B 0.9900 C35B—H35E 0.9800 C17—C18 $1.535 (2)$ C35B—H35F 0.9800 C17—H17A 0.9900 C36B—H36D 0.9800 C17—H17B 0.9900 C36B—H36E 0.9800 C18—H18A 0.9800 C37—C38 $1.528 (2)$ C18—H18B 0.9800 C37—H37A 0.9900 C19—H19A 0.9900 C38—H38A 0.9800 C20—C24 $1.4073 (19)$ C38—H38B 0.9800 C21—C25 $1.499 (2)$ O1A—C1A $1.431 (2)$ C22—C23 $1.400 (2)$ O1A—H1A $0.845 (10)$ C22—C24 $1.370 (2)$ C1A—H1A1 0.9900 C23—C26 $1.5030 (19)$ C1A—H1A2 0.9900 C24—H24 0.9500 C2A—C3A $1.521 (3)$	С15—Н15А	0.9800	C33B—C34B	1.371 (7)
C15—H15C 0.9800 $C34B$ —H34B 0.9500 C16—H16A 0.9900 $C35B$ —H35D 0.9800 C16—H16B 0.9900 $C35B$ —H35E 0.9800 C17—C18 1.535 (2) $C35B$ —H35F 0.9800 C17—H17A 0.9900 $C36B$ —H36D 0.9800 C17—H17B 0.9900 $C36B$ —H36E 0.9800 C18—H18A 0.9800 $C36B$ —H36F 0.9800 C18—H18B 0.9800 $C37$ —C38 1.528 (2)C18—H18C 0.9800 $C37$ —H37A 0.9900 C19—H19A 0.9900 $C38$ —H38A 0.9800 C20—C24 1.4073 (19) $C38$ —H38B 0.9800 C21—C25 1.499 (2) $O1A$ —C1A 1.431 (2)C22—C23 1.400 (2) $O1A$ —H1A 0.845 (10)C22—H22 0.9500 $C1A$ —H1A1 0.9900 C23—C24 1.370 (2) $C1A$ —H1A1 0.9900 C23—C26 1.5030 (19) $C1A$ —H1A2 0.9900 C24—H24 0.9500 $C2A$ —C3A 1.521 (3)	С15—Н15В	0.9800	C33B—C36B	1.527 (8)
C16—H16A 0.9900 C35B—H35D 0.9800 C16—H16B 0.9900 C35B—H35E 0.9800 C17—C18 1.535 (2)C35B—H35F 0.9800 C17—H17A 0.9900 C36B—H36D 0.9800 C17—H17B 0.9900 C36B—H36E 0.9800 C18—H18A 0.9800 C36B—H36F 0.9800 C18—H18B 0.9800 C37—C38 1.528 (2)C18—H18C 0.9800 C37—H37A 0.9900 C19—H19A 0.9900 C38—H38A 0.9800 C20—C24 1.4073 (19)C38—H38B 0.9800 C21—C25 1.499 (2)O1A—C1A 1.431 (2)C22—C23 1.400 (2)O1A—H1A 0.845 (10)C22—H22 0.9500 C1A—C2A 1.514 (3)C23—C24 1.370 (2)C1A—H1A1 0.9900 C23—C26 1.5030 (19)C1A—H1A2 0.9900 C24—H24 0.9500 C2A—C3A 1.521 (3)	C15—H15C	0.9800	C34B—H34B	0.9500
C16—H16B0.9900C35B—H35E0.9800C17—C181.535 (2)C35B—H35F0.9800C17—H17A0.9900C36B—H36D0.9800C17—H17B0.9900C36B—H36E0.9800C18—H18A0.9800C36B—H36F0.9800C18—H18B0.9800C37—C381.528 (2)C18—H18C0.9800C37—H37A0.9900C19—H19A0.9900C37—H37B0.9900C19—H19B0.9900C38—H38A0.9800C20—C241.4073 (19)C38—H38B0.9800C21—C251.499 (2)O1A—C1A1.431 (2)C22—C231.400 (2)O1A—H1A0.845 (10)C22—H220.9500C1A—H1A10.9900C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C16—H16A	0.9900	C35B—H35D	0.9800
C17—C181.535 (2)C35B—H35F0.9800C17—H17A0.9900C36B—H36D0.9800C17—H17B0.9900C36B—H36E0.9800C18—H18A0.9800C36B—H36F0.9800C18—H18B0.9800C37—C381.528 (2)C18—H18C0.9800C37—H37A0.9900C19—H19A0.9900C37—H37B0.9900C19—H19B0.9900C38—H38A0.9800C20—C241.4073 (19)C38—H38B0.9800C21—C251.499 (2)O1A—C1A1.431 (2)C22—C231.400 (2)O1A—H1A0.845 (10)C22—H220.9500C1A—C2A1.514 (3)C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C16—H16B	0.9900	С35В—Н35Е	0.9800
C17—H17A0.9900C36B—H36D0.9800C17—H17B0.9900C36B—H36E0.9800C18—H18A0.9800C36B—H36F0.9800C18—H18B0.9800C37—C381.528 (2)C18—H18C0.9800C37—H37A0.9900C19—H19A0.9900C37—H37B0.9900C19—H19B0.9900C38—H38A0.9800C20—C241.4073 (19)C38—H38B0.9800C21—C221.375 (2)C38—H38C0.9800C22—C231.400 (2)O1A—C1A1.431 (2)C22—C231.400 (2)O1A—H1A0.845 (10)C22—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C17—C18	1.535 (2)	C35B—H35F	0.9800
C17—H17B0.9900C36B—H36E0.9800C18—H18A0.9800C36B—H36F0.9800C18—H18B0.9800C37—C381.528 (2)C18—H18C0.9800C37—H37A0.9900C19—H19A0.9900C37—H37B0.9900C19—H19B0.9900C38—H38A0.9800C20—C241.4073 (19)C38—H38B0.9800C21—C221.375 (2)C38—H38C0.9800C21—C251.499 (2)O1A—C1A1.431 (2)C22—C231.400 (2)O1A—H1A0.845 (10)C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	С17—Н17А	0.9900	C36B—H36D	0.9800
C18—H18A0.9800C36B—H36F0.9800C18—H18B0.9800C37—C381.528 (2)C18—H18C0.9800C37—H37A0.9900C19—H19A0.9900C37—H37B0.9900C19—H19B0.9900C38—H38A0.9800C20—C241.4073 (19)C38—H38B0.9800C21—C221.375 (2)C38—H38C0.9800C21—C251.499 (2)O1A—C1A1.431 (2)C22—C231.400 (2)O1A—H1A0.845 (10)C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C17—H17B	0.9900	С36В—Н36Е	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18—H18A	0.9800	C36B—H36F	0.9800
C18—H18C0.9800C37—H37A0.9900C19—H19A0.9900C37—H37B0.9900C19—H19B0.9900C38—H38A0.9800C20—C241.4073 (19)C38—H38B0.9800C21—C221.375 (2)C38—H38C0.9800C21—C251.499 (2)O1A—C1A1.431 (2)C22—C231.400 (2)O1A—H1A0.845 (10)C22—H220.9500C1A—C2A1.514 (3)C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C18—H18B	0.9800	С37—С38	1.528 (2)
C19—H19A0.9900C37—H37B0.9900C19—H19B0.9900C38—H38A0.9800C20—C241.4073 (19)C38—H38B0.9800C21—C221.375 (2)C38—H38C0.9800C21—C251.499 (2)O1A—C1A1.431 (2)C22—C231.400 (2)O1A—H1A0.845 (10)C22—H220.9500C1A—C2A1.514 (3)C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C18—H18C	0.9800	С37—Н37А	0.9900
C19—H19B0.9900C38—H38A0.9800C20—C241.4073 (19)C38—H38B0.9800C21—C221.375 (2)C38—H38C0.9800C21—C251.499 (2)O1A—C1A1.431 (2)C22—C231.400 (2)O1A—H1A0.845 (10)C22—H220.9500C1A—C2A1.514 (3)C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	С19—Н19А	0.9900	С37—Н37В	0.9900
C20—C241.4073 (19)C38—H38B0.9800C21—C221.375 (2)C38—H38C0.9800C21—C251.499 (2)O1A—C1A1.431 (2)C22—C231.400 (2)O1A—H1A0.845 (10)C22—H220.9500C1A—C2A1.514 (3)C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C19—H19B	0.9900	C38—H38A	0.9800
C21—C22 1.375 (2) C38—H38C 0.9800 C21—C25 1.499 (2) O1A—C1A 1.431 (2) C22—C23 1.400 (2) O1A—H1A 0.845 (10) C22—H22 0.9500 C1A—C2A 1.514 (3) C23—C24 1.370 (2) C1A—H1A1 0.9900 C23—C26 1.5030 (19) C1A—H1A2 0.9900 C24—H24 0.9500 C2A—C3A 1.521 (3)	C20—C24	1.4073 (19)	C38—H38B	0.9800
C21—C251.499 (2)O1A—C1A1.431 (2)C22—C231.400 (2)O1A—H1A0.845 (10)C22—H220.9500C1A—C2A1.514 (3)C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C21—C22	1.375 (2)	C38—H38C	0.9800
C22—C231.400 (2)O1A—H1A0.845 (10)C22—H220.9500C1A—C2A1.514 (3)C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C21—C25	1.499 (2)	O1A—C1A	1.431 (2)
C22—H220.9500C1A—C2A1.514 (3)C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C22—C23	1.400 (2)	O1A—H1A	0.845 (10)
C23—C241.370 (2)C1A—H1A10.9900C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	С22—Н22	0.9500	C1A—C2A	1.514 (3)
C23—C261.5030 (19)C1A—H1A20.9900C24—H240.9500C2A—C3A1.521 (3)	C23—C24	1.370 (2)	C1A—H1A1	0.9900
C24—H24 0.9500 C2A—C3A 1.521 (3)	C23—C26	1.5030 (19)	C1A—H1A2	0.9900
	C24—H24	0.9500	C2A—C3A	1.521 (3)

С25—Н25А	0.9800	C2A—H2A1	0.9900
C25—H25B	0.9800	C2A—H2A2	0.9900
C25—H25C	0.9800	C3A—H3A1	0.9800
C26—H26A	0.9800	C3A—H3A2	0.9800
C26—H26B	0.9800	C3A - H3A3	0.9800
C26—H26C	0.9800		0.9000
020 11200	0.9000		
C8-01-C7	115 57 (10)	С4—С27—Н27А	109 1
$C_{14} = 0^{2} = H^{2}$	113.57(10) 104.6(15)	$C_{1}^{2} = C_{2}^{2} = H_{2}^{2} / X$	109.1
C16 O3 H3	104.0(15) 106.9(15)	$C_{20} = C_{27} = H_{27R}$	109.1
$C_{10} = 0.5 = 115$	100.9(13) 122.82(12)	$C_{4} = C_{2} / = H_{2} / B$	109.1
$C_{20} = N_1 = C_{19}$	122.03(12) 117.4(12)	C_{20} C_{27} H_{27B}	107.8
C_{20} NI UID	117.4(12)	$\Pi 2/A - C 2/ - \Pi 2/B$	107.8
C19-N1-H1B	119.1(12)	$C_2/-C_{28}$ -H_28A	109.5
C_{20} N_{2} C_{21}	117.10(12)	C27-C28-H28B	109.5
$C_2 - C_1 - C_6$	120.70 (12)	H28A-C28-H28B	109.5
C2C1C7	121.07 (12)	C27—C28—H28C	109.5
C6—C1—C7	118.23 (12)	H28A—C28—H28C	109.5
C1—C2—C3	119.07 (12)	H28B—C28—H28C	109.5
C1—C2—C17	121.05 (12)	N3—C29—H29A	114.9 (14)
C3—C2—C17	119.86 (12)	N3—C29—H29B	109 (4)
C4—C3—C2	120.64 (12)	H29A—C29—H29B	99 (4)
C4—C3—C19	118.89 (12)	C30—N3—C29	124.39 (17)
C2—C3—C19	120.45 (12)	C30—N3—H3A	116.1 (14)
C5—C4—C3	119.56 (13)	C29—N3—H3A	119.1 (14)
C5—C4—C27	119.92 (12)	C30—N4—C31	116.3 (2)
C3—C4—C27	120.50 (13)	N4—C30—N3	117.7 (2)
C4—C5—C6	120.59 (12)	N4—C30—C34	124.2 (2)
C5—C6—C1	119.36 (13)	N3—C30—C34	118.01 (18)
C5—C6—C37	120.51 (12)	N4—C31—C32	122.3 (2)
C1—C6—C37	120.13 (12)	N4—C31—C35	116.1 (2)
01—C7—C1	113.97 (11)	C32—C31—C35	121.5 (2)
O1—C7—H7A	108.8	C31—C32—C33	119.9 (2)
C1—C7—H7A	108.8	C31—C32—H32	120.0
O1—C7—H7B	108.8	C33—C32—H32	120.0
С1—С7—Н7В	108.8	C34—C33—C32	118.57 (19)
H7A—C7—H7B	107.7	C34—C33—C36	119.4 (2)
01	118.59 (11)	C32—C33—C36	122.0(2)
01 - C8 - C13	119.47 (11)	$C_{33} - C_{34} - C_{30}$	118.60(18)
C9 - C8 - C13	121 57 (12)	C33—C34—H34	120.7
$C_{10} - C_{9} - C_{8}$	118 17 (12)	C30-C34-H34	120.7
C10-C9-C14	122.45(12)	C31-C35-H35A	109.5
C8 - C9 - C14	122.13(12) 119.34(12)	C31—C35—H35B	109.5
C9 - C10 - C11	119.54(12) 121.80(13)	H35A_C35_H35B	109.5
$C_{9} = C_{10} = C_{11}$	110.1	C_{31} C_{35} H_{35C}	109.5
$C_{11} C_{10} = 10$	110.1	$H_{35A} = C_{35} = H_{35C}$	109.5
C10-C11 - C12	119.1	$H_{35B_{-}} C_{35} = H_{35C}$	109.5
$C_{10} = C_{11} = C_{12}$	120.43 (13)	C33 C26 U26A	109.5
C_{10} $-C_{11}$ $-C_{15}$	120.03(13) 120.02(12)	$C_{33} = C_{30} = H_{30}A$	109.5
-12 - 011 - 013	120.93 (12)	UJJ—UJU—UJUD	109.3

C13—C12—C11	121.44 (12)	H36A—C36—H36B	109.5
C13—C12—H12	119.3	С33—С36—Н36С	109.5
C11—C12—H12	119.3	H36A—C36—H36C	109.5
C12—C13—C8	118.48 (12)	H36B—C36—H36C	109.5
C12—C13—C16	122.44 (12)	N3B—C29B—H29C	79 (6)
C8—C13—C16	119.01 (12)	N3B—C29B—H29D	128 (7)
O2—C14—C9	111.93 (12)	H29C—C29B—H29D	133 (9)
O2—C14—H14A	109.2	C30B—N3B—C29B	117.4 (6)
C9—C14—H14A	109.2	C30B—N3B—H3B	121.3
Ω^2 —C14—H14B	109.2	$C_{29B} N_{3B} H_{3B}$	121.3
C9-C14-H14B	109.2	N4B-C30B-C34B	1251(8)
H_{14A} $-C_{14}$ H_{14B}	107.9	N4B-C30B-N3B	123.1(0) 122.1(8)
C11 C15 H15A	109.5	C34B C30B N3B	122.1(6)
C11 C15 H15R	109.5	$C_{34D} = C_{30D} = N_{3D}$	112.8(0)
	109.5	C_{30D} N_{4D} C_{21D} C_{22D}	117.0(9)
	109.5	N4D = C31D = C32D	110.1(9)
	109.5	N4B-C31B-C35B	120.5 (8)
HISA—CIS—HISC	109.5	C32B—C31B—C35B	121.4 (9)
HI5B—CI5—HI5C	109.5	C33B—C32B—C31B	122.3 (9)
O3—C16—C13	113.73 (12)	C33B—C32B—H32B	118.9
O3—C16—H16A	108.8	C31B—C32B—H32B	118.9
C13—C16—H16A	108.8	C32B—C33B—C34B	120.4 (7)
O3—C16—H16B	108.8	C32B—C33B—C36B	126.8 (8)
C13—C16—H16B	108.8	C34B—C33B—C36B	112.7 (7)
H16A—C16—H16B	107.7	C30B—C34B—C33B	116.4 (6)
C2-C17-C18	112.02 (12)	C30B—C34B—H34B	121.8
С2—С17—Н17А	109.2	C33B—C34B—H34B	121.8
C18—C17—H17A	109.2	C31B—C35B—H35D	109.5
C2—C17—H17B	109.2	C31B—C35B—H35E	109.5
C18—C17—H17B	109.2	H35D—C35B—H35E	109.5
H17A—C17—H17B	107.9	C31B—C35B—H35F	109.5
C17—C18—H18A	109.5	H35D—C35B—H35F	109.5
C17—C18—H18B	109.5	H35E—C35B—H35F	109.5
H18A—C18—H18B	109.5	C33B—C36B—H36D	109.5
C17—C18—H18C	109.5	C33B—C36B—H36E	109.5
H18A - C18 - H18C	109.5	H_{36D} C_{36B} H_{36E}	109.5
H18B - C18 - H18C	109.5	$C_{33B} = C_{36B} = H_{36F}$	109.5
N1 - C19 - C3	109.3 109.77(12)	H36D_C36B_H36F	109.5
N1 = C19 = C3	100.77 (12)	H36E C36B H36E	109.5
C_{1}^{2}	109.7	$C_{6} C_{27} C_{28}$	109.5 112.42(13)
N1 C10 H10P	109.7	$C_{0} = C_{37} = C_{38}$	112.42 (13)
NI = CI9 = HI9B	109.7	$C_{0} = C_{3} = C_{3} = C_{3} = C_{3}$	109.1
	109.7	C_{38} C_{37} H_{37} H_{37}	109.1
Н19А—С19—Н19В	108.2	C_{0} C_{3} H_{3} H_{3}	109.1
N2—C20—N1	117.99 (12)	C38—C37—H37B	109.1
N2-C20-C24	122.90 (12)	$H_3/A - C_3/-H_3/B$	107.9
N1—C20—C24	119.11 (13)	C37—C38—H38A	109.5
N2—C21—C22	122.59 (13)	C37—C38—H38B	109.5
N2—C21—C25	116.06 (13)	H38A—C38—H38B	109.5
C22—C21—C25	121.34 (13)	С37—С38—Н38С	109.5

C21—C22—C23	120.18 (13)	H38A—C38—H38C	109.5
C21—C22—H22	119.9	H38B—C38—H38C	109.5
C23—C22—H22	119.9	C1A—O1A—H1A	106.5 (18)
C24—C23—C22	117.67 (13)	O1A—C1A—C2A	111.33 (15)
C24—C23—C26	121.49 (13)	O1A—C1A—H1A1	109.4
C22—C23—C26	120.81 (13)	C2A—C1A—H1A1	109.4
C23—C24—C20	119.50 (13)	O1A—C1A—H1A2	109.4
C23—C24—H24	120.3	C2A—C1A—H1A2	109.4
C20—C24—H24	120.3	H1A1—C1A—H1A2	108.0
C21—C25—H25A	109.5	C1A—C2A—C3A	112.71 (17)
C21—C25—H25B	109.5	C1A—C2A—H2A1	109.0
H25A—C25—H25B	109.5	C3A - C2A - H2A1	109.0
C21—C25—H25C	109.5	C1A - C2A - H2A2	109.0
$H_{25A} - C_{25} - H_{25C}$	109.5	C3A - C2A - H2A2	109.0
$H_{25B} = C_{25} = H_{25C}$	109.5	H^2A^1 C^2A H^2A^2	107.8
C_{23} C_{26} H_{26A}	109.5	C2A - C3A - H3A1	109.5
C_{23} C_{26} H_{26B}	109.5	C2A - C3A - H3A2	109.5
$H_{26A} - C_{26} - H_{26B}$	109.5	H_{3A1} C_{3A} H_{3A2}	109.5
C_{23} C_{26} H_{26}	109.5	C2A - C3A - H3A3	109.5
$H_{26A} - C_{26} - H_{26C}$	109.5	H_{3A1} C_{3A} H_{3A3}	109.5
$H_{26B} = C_{26} = H_{26C}$	109.5	H_{3A2} C_{3A} H_{3A3}	109.5
C4-C27-C28	112 48 (13)		109.5
01 027 020	112.10 (15)		
C6-C1-C2-C3	3.2 (2)	C2-C3-C19-N1	94.74 (15)
C7-C1-C2-C3	-176.64(12)	$C_{21} = N_{2} = C_{20} = N_{1}$	-17971(12)
C6-C1-C2-C17	-178.39(13)	$C_{21} = N_{2} = C_{20} = C_{24}$	-0.16(19)
C7-C1-C2-C17	18(2)	C19 - N1 - C20 - N2	80(2)
C1-C2-C3-C4	-1.6(2)	C19 - N1 - C20 - C24	-171.53(13)
C17—C2—C3—C4	179.94 (13)	C20—N2—C21—C22	0.3 (2)
C1-C2-C3-C19	-179.86(12)	C_{20} N2 C_{21} C_{25}	-179.39(13)
C17—C2—C3—C19	1.7 (2)	N2—C21—C22—C23	0.0 (2)
C2-C3-C4-C5	0.0(2)	C_{25} — C_{21} — C_{22} — C_{23}	179.73 (14)
C19—C3—C4—C5	178.30 (13)	C21—C22—C23—C24	-0.5(2)
C2—C3—C4—C27	178.44 (13)	C21—C22—C23—C26	177.74 (13)
C19—C3—C4—C27	-3.3 (2)	C22—C23—C24—C20	0.69 (19)
C3—C4—C5—C6	0.0 (2)	C26—C23—C24—C20	-177.58(13)
C27—C4—C5—C6	-178.39 (13)	N2-C20-C24-C23	-0.4(2)
C4—C5—C6—C1	1.5 (2)	N1—C20—C24—C23	179.19 (12)
C4—C5—C6—C37	-178.81(13)	C5—C4—C27—C28	88.08 (17)
C2-C1-C6-C5	-3.1 (2)	C3—C4—C27—C28	-90.33 (17)
C7—C1—C6—C5	176.69 (13)	C31—N4—C30—N3	-177.1(3)
C2-C1-C6-C37	177.18 (13)	C31—N4—C30—C34	1.1 (5)
C7—C1—C6—C37	-3.00(19)	C29—N3—C30—N4	3.9 (3)
C8—O1—C7—C1	81.11 (14)	C29—N3—C30—C34	-174.49 (19)
C2-C1-C7-O1	-106.00 (15)	C30—N4—C31—C32	1.3 (5)
C6—C1—C7—O1	74.17 (16)	C30—N4—C31—C35	-176.5(3)
C7—O1—C8—C9	-106.69 (14)	N4—C31—C32—C33	-2.6 (5)
C7—O1—C8—C13	80.09 (15)	C35—C31—C32—C33	175.1 (3)
· -	× /		x- /

O1—C8—C9—C10	-175.59 (12)	C31—C32—C33—C34	1.5 (4)
C13—C8—C9—C10	-2.5 (2)	C31—C32—C33—C36	179.0 (3)
O1—C8—C9—C14	2.16 (19)	C32—C33—C34—C30	0.7 (3)
C13—C8—C9—C14	175.23 (13)	C36—C33—C34—C30	-176.9 (2)
C8—C9—C10—C11	-0.5 (2)	N4-C30-C34-C33	-2.1 (4)
C14—C9—C10—C11	-178.21 (14)	N3-C30-C34-C33	176.15 (19)
C9—C10—C11—C12	2.4 (2)	C29B—N3B—C30B—N4B	-12.4 (13)
C9—C10—C11—C15	-178.90 (14)	C29B—N3B—C30B—C34B	167.6 (6)
C10-C11-C12-C13	-1.2 (2)	C34B—C30B—N4B—C31B	-2 (2)
C15—C11—C12—C13	-179.96 (13)	N3B-C30B-N4B-C31B	177.6 (11)
C11—C12—C13—C8	-1.7 (2)	C30B—N4B—C31B—C32B	-1 (2)
C11—C12—C13—C16	175.12 (13)	C30B—N4B—C31B—C35B	178.6 (12)
O1—C8—C13—C12	176.62 (12)	N4B—C31B—C32B—C33B	3 (2)
C9—C8—C13—C12	3.6 (2)	C35B—C31B—C32B—C33B	-176.2 (11)
O1—C8—C13—C16	-0.29 (19)	C31B—C32B—C33B—C34B	-2.4 (17)
C9—C8—C13—C16	-173.30 (13)	C31B—C32B—C33B—C36B	-178.8 (12)
C10—C9—C14—O2	-5.2 (2)	N4B—C30B—C34B—C33B	3.4 (14)
C8—C9—C14—O2	177.20 (13)	N3B—C30B—C34B—C33B	-176.6 (7)
C12—C13—C16—O3	-2.0 (2)	C32B—C33B—C34B—C30B	-0.9 (12)
C8—C13—C16—O3	174.78 (12)	C36B—C33B—C34B—C30B	175.9 (7)
C1—C2—C17—C18	-89.61 (16)	C5—C6—C37—C38	-86.85 (16)
C3—C2—C17—C18	88.81 (16)	C1—C6—C37—C38	92.84 (16)
C20—N1—C19—C3	163.00 (12)	O1A—C1A—C2A—C3A	178.58 (17)
C4—C3—C19—N1	-83.54 (16)		

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 represent the centroids of the C1–C6, C8–C13 and C20–C24/N2 rings, respectively.

D—H···A	D—H	Н…А	D···A	D—H···A
N1—H1B····O3 ⁱ	0.88 (1)	2.21 (1)	3.0704 (18)	165 (2)
O2—H2…O1A	0.85 (1)	1.86 (2)	2.702 (2)	171 (2)
O2—H2…O1 <i>W</i>	0.85 (1)	1.97 (2)	2.773 (6)	158 (2)
O3—H3…O2 ⁱⁱ	0.85 (1)	1.92 (2)	2.7646 (15)	171 (2)
O1A—H1A····N2 ⁱⁱⁱ	0.85 (1)	1.97 (2)	2.813 (2)	177 (2)
C10—H10…O2	0.95	2.44	2.7925 (17)	102
C12—H12…O3	0.95	2.49	2.8362 (17)	101
C24—H24…O3 ⁱ	0.95	2.65	3.4259 (19)	139
C27—H27A…N3	0.99	2.55	3.257 (3)	128
C34 <i>B</i> —H34 <i>B</i> ···O1 <i>W</i>	0.95	2.16	2.969 (9)	143
С37—Н37А…О1	0.99	2.41	3.1687 (17)	133
C14—H14 <i>B</i> ··· <i>Cg</i> 1	0.99	2.88	3.8427 (18)	166
C25—H25 B ···C $g2^{iv}$	0.98	2.72	3.4520 (18)	132
C18—H18 <i>B</i> ··· <i>Cg</i> 3 ⁱⁱ	0.98	2.69	3.6317 (16)	161

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*+1, *z*; (iv) *x*-1, *y*-1, *z*.