CRYSTALLOGRAPHIC COMMUNICATIONS

Received 31 October 2023
Accepted 4 December 2023

Edited by T. Akitsu, Tokyo University of Science, Japan

Keywords: crystal structure; hydrogen bonding; Li ion.

CCDC reference: 2295223

Supporting information: this article has supporting information at journals.iucr.org/e

Published under a CC BY 4.0 licence

Crystal structure of dilithium biphenyl-4,4'disulfonate dihydrate

Hitoshi Kumagai, ${ }^{\text {a }}{ }^{*}$ Satoshi Kawata ${ }^{\text {b }}$ and Nobuhiro Ogihara ${ }^{\text {a }}$
${ }^{\text {a }}$ Nagakute, Aichi 480-1192, Japan, and ${ }^{\text {b }}$ Jonan-ku, Fukuoka 814-0180, Japan. ${ }^{*}$ Correspondence e-mail: e1254@mosk.tytlabs.co.jp

The asymmetric unit of the title compound, μ-biphenyl-4,4'-disulfonato-bis(aqualithium), $\left[\mathrm{Li}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{6} \mathrm{~S}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ or $\mathrm{Li}_{2}\left[\mathrm{Bph}\left(\mathrm{SO}_{3}\right)_{2}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, consists of an Li ion, half of the diphenyl-4, 4^{\prime}-disulfonate $\left[\mathrm{Bph}\left(\mathrm{SO}_{3}{ }^{-}\right)_{2}\right]$ ligand, and a water molecule. The Li ion exhibits a four-coordinate tetrahedral geometry with three oxygen atoms of the $\operatorname{Bph}\left(\mathrm{SO}_{3}{ }^{-}\right)_{2}$ ligands and a water molecule. The tetrahedral LiO_{4} units, which are interconnected by biphenyl moieties, form a layer structure parallel to (100). These layers are further connected by hydrogen-bonding interactions to yield a three-dimensional network.

1. Chemical context

Coordination networks (CNs) are crystalline materials composed of infinite arrays of s-block metal ions, connected by organic linkers, forming chain, layer or 3-D networks. These materials offer several advantages such as being non-toxic, abundant on the planet, and cheap and provide good results when gravimetric methods are used (Banerjee \& Parise 2011). Li-dicarboxylates may be good candidates as electrode materials for eco-friendly alternatives to other inorganic materials, and have been reported for use in battery applications (Armand et al., 2009; Ogihara et al., 2014, 2023; Yasuda \& Ogihara, 2014; Mikita et al., 2020). To improve our chemistry and electrode applications, we investigated CNs using disulfonate ligands. While the structures of dicarboxylate salts of alkali metals have been reported (Banerjee \& Parise, 2011), the CNs of the disulfonates of alkali metals are still scarcely reported. Our present investigation focuses on the use of diphenyl-4,4'-disulfonic acid $\left[\mathrm{Bph}\left(\mathrm{SO}_{3} \mathrm{H}\right)_{2}\right]$ as a structural building block in the synthesis of CNs. Here, we report a rare example of a crystal structure of a Li -disulfonate CN material.

2. Structural commentary

The title compound $\left[\mathrm{Li}_{2}\left(\mathrm{Bph}\left(\mathrm{SO}_{3}\right)_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Fig. 1) consists of two Li cations, two water molecules, and a diphenyl-4, 4^{\prime} disulfonate $\left[\mathrm{Bph}\left(\mathrm{SO}_{3}{ }^{-}\right)_{2}\right]$ ligand. Its asymmetric unit consists of an Li ion, half of the $\mathrm{Bph}\left(\mathrm{SO}_{3}{ }^{-}\right)_{2}$ ligand, and a water molecule. The key feature of the structure is a di-periodic layer structure in which the layers are built up by LiO_{4} units bridged by $\mathrm{Bph}\left(\mathrm{SO}_{3}{ }^{-}\right)_{2}$ ligands (Fig. 2). The biphenyl groups of the ligands exhibit a planar and herringbone-type arrangement in the layer (Fig. 3). Two parallel biphenyl groups are stacked not in a face-to-face but rather in a paralleldisplaced fashion. The slippage of the layers is $4.43 \AA$ and the nearest intermolecular centroid-to-centroid distance between adjacent parallel phenyl groups is $5.47 \AA$. The angle formed by the two centroids of the phenyl rings and the ring plane is 34.5°. Intermolecular distances between the carbon atoms of the planar biphenyl moieties of $3.66 \AA$ are indicative of some degree of $\pi-\pi$ stacking interaction along the crystallographic b-axis direction. Similar herringbone-type stacking of aromatic organic moieties are found in Li-dicarboxylate CN materials in which herringbone-type stacking structures play an important role in electron mobilities and electrode performance (Ogihara et al., 2017; Ozawa et al., 2018). The Li cation exhibits a four-coordinate tetrahedral geometry formed by an oxygen atom of a coordinated water molecule and three oxygen atoms coming from three different $\mathrm{Bph}\left(\mathrm{SO}_{3}{ }^{-}\right)_{2}$ ligands. The tetrahedrons are connected to one another by $\mathrm{O}-$ $\mathrm{S}-\mathrm{O}$ bridges of the disulfonate group, and the shortest $\mathrm{Li} \cdots \mathrm{Li}$ distance is $4.80 \AA$. All the oxygen atoms of a sulfonate group coordinate to different Li cations. Thus, each sulfonate group

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	$0.89(5)$	$2.17(5)$	$3.016(3)$	$157(5)$
$\mathrm{O} 4-\mathrm{H} 1 \cdots 3^{\mathrm{ii}}$	$2.41(5)$	$3.21(1)$	$0.89(5)$	$149(4)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {iii }}$	$2.50(5)$	$3.14(1)$	$0.89(5)$	$129(4)$

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (iii) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.
coordinates to three Li cations to obtain a di-periodic layer. The bond distances between the Li cation and the oxygen atoms lie in the range $1.901(5)-1.944(5) \AA$ at angles of 103.7 (2)-114.8 (2) ${ }^{\circ}$, which are shorter than those of reported Na_{2}-disulfonate $\left[2.313\right.$ (3)-2.560 (3) \AA] and K_{2}-disulfonate [2.657 (3)-3.079 (4) Å] complexes (Albat \& Stock 2016; Smith et al., 2007). Similar trends of bond distances are observed in alkali metal-carboxylate network materials (Banerjee \& Parise, 2011).

3. Supramolecular features

The hydrogen atoms of the coordinated water molecules are oriented in such a direction exiting the di-periodic layers to form hydrogen-bonding interactions (Table 1). A hydrogen atom of the water molecule (H 4) and an oxygen atom of the $\mathrm{Bph}\left(\mathrm{SO}_{3}{ }^{-}\right)_{2}$ ligand acts as a hydrogen-bond donor and a hydrogen-bond acceptor, respectively, resulting in a threedimensional hydrogen-bonding network (Fig. 2). Because of the hydrogen-bonding interaction, another hydrogen atom of the coordinated water molecule (H1) is directed towards the oxygen atom of the $\operatorname{Bph}\left(\mathrm{SO}_{3}{ }^{-}\right)_{2}$ ligand, where the distance between the oxygen atoms of 3.204 (3) \AA is indicative of some degree of interaction. Li_{2}-dicarboxylates where the dicarboxylate is terephthalate, biphenyl dicarboxylate or naphthalene dicarboxylate, also consist of LiO_{4} layers (Banerjee \& Parise 2011; Kaduk et al., 2000; Armand et al., 2009; Banerjee

Figure 2
View of the layer structure of the title compound along the crystallographic b-axis. The layer is built up by LiO_{4} tetrahedra connected by the organic ligands. The dashed lines represent hydrogen bonds between the oxygen atoms of the $\mathrm{Bph}\left(\mathrm{SO}_{3}{ }^{-}\right)_{2}$ ligands and the coordinated water molecules.

Figure 3
View of the herringbone-type stacking structure in the layer along the crystallographic a-axis.
et al., 2009a,b; Ogihara et al., 2014). In contrast to the sulfonate compound, four oxygen atoms come from the carboxylate group and LiO_{4} units share the edges and corners of the tetrahedrons, forming a coordination-bonded three-dimensional structure in these Li_{2}-dicarboxylates.

4. Database survey

A survey of the Cambridge Structural Database (CSD, v5.44, April 2023; Groom et al., 2016) for structures with biphenyl and sulfonate and alkali metals resulted in seven hits. Of these, the alkali metal-coordinated compounds are a potassium complex (HIQKEY; Smith et al., 2007), which is related to this work, and a sodium complex (SIWVUP; Anderson et al., 1998). No coordination bonds are found in other alkali-metal salts. Our structure is a rare example of the crystal structure of an Li -disulfonate CN material.

5. Synthesis and crystallization

An aqueous solution (5 mL) of $\mathrm{LiOH}\left(0.28 \mathrm{~g}, 1 \mathrm{mmol} \mathrm{L}{ }^{-1}\right)$ was added to an aqueous solution of $\mathrm{Bph}\left(\mathrm{SO}_{3} \mathrm{H}\right)_{2}(1.8 \mathrm{~g}$, $2 \mathrm{mmol} \mathrm{L}^{-1}$). Colorless crystals began to form at ambient temperature in one month. One of these crystals was used for X-ray crystallography.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen-atom parameters were fully refined. The final cycle of the full-matrix least-squares refinement on F^{2} was based on 1666 observed reflections and 133 variable parameters.

Acknowledgements

We would like to thank Dr Mitsutaro Umehara for the help with the database survey.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $\left[F^{2}>2.0 \sigma\left(F^{2}\right)\right]$ reflections

$R_{\text {int }}$	0.067
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.649

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.061,0.159,1.12$
No. of reflections	1666
No. of parameters	133
No. of restraints	3
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \mathrm{A}^{-3}\right)$	$0.74,-0.28$

$\Delta \rho_{\max }, \Delta \rho_{\min }(\mathrm{e} \mathrm{A})$
$\left[\mathrm{Li}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{6} \mathrm{~S}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
362.22

Monoclinic, $P 2_{1} / c$
286
15.8584 (11), 5.3693 (4), 8.8636 (6)
99.994 (7)
743.27 (9)

2
Mo $K \alpha$
0.40
$0.50 \times 0.40 \times 0.20$

Rigaku R-AXIS RAPID
Multi-scan (ABSCOR; Rigaku, 1995)
0.213, 0.924

9858, 1666, 1490
0.067
0.649
$0.061,0.159,1.12$
1666
3
All H -atom parameters refined

Computer programs: RAPID-AUTO (Rigaku, 1995), SHELXT2014/5 (Sheldrick, 2015a),
SHELXL2018/3 (Sheldrick, 2015b) and CrystalStructure (Rigaku, 2019).

References

Albat, M. \& Stock, N. (2016). IUCrData, 1, x160039.
Anderson, S., Anderson, H. L. \& Clegg, W. (1998). Chem. Commun. pp. 2379-2380.
Armand, M., Grugeon, S., Vezin, H., Laruelle, S., Ribiére, P., Poizot, P. \& Tarascon, J. M. (2009). Nat. Mater. 2009 8, 120-125.
Banerjee, D., Borkowski, L. A., Kim, S. J. \& Parise, B. (2009a). Cryst. Growth Des. 9, 4922-4926.
Banerjee, D., Kim, S. J. \& Parise, J. B. (2009b). Cryst. Growth Des. 9, 2500-2503.
Banerjee, D. \& Parise, J. B. (2011). Cryst. Growth Des. 11, 4704-4720.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kaduk, J. A. (2000). Acta Cryst. B56, 474-485.
Mikita, R., Ogihara, N., Takahashi, N., Kosaka, S. \& Isomura, N. (2020). Chem. Mater. 32, 3396-3404.

Ogihara, N., Hasegawa, M., Kumagai, H., Mikita, R. \& Nagasako, N. (2023). Nat. Commun. 14, 1-11.

Ogihara, N., Ohba, N. \& Kishida, Y. (2017). Sci. Adv. 3, e1603103.
Ogihara, N., Yasuda, T., Kishida, Y., Ohsuna, T., Miyamoto, K. \& Ohba, N. (2014). Angew. Chem. Int. Ed. 53, 11467-11472.
Ozawa, Y., Ogihara, N., Hasegawa, M., Hiruta, O., Ohba, N. \& Kishida, Y. (2018). Commun. Chem. 1, 65.
Rigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Smith, G., Wermuth, U. D. \& Healy, P. C. (2007). Acta Cryst. E63, m3056-m3057.
Yasuda, T. \& Ogihara, N. (2014). Chem. Commun. 50, 11565-11567.

supporting information

Acta Cryst. (2024). E80, 22-24 [https://doi.org/10.1107/S2056989023010411]

Crystal structure of dilithium biphenyl-4,4'-disulfonate dihydrate

Hitoshi Kumagai, Satoshi Kawata and Nobuhiro Ogihara

Computing details

μ-Biphenyl-4,4'-disulfonato-bis(aqualithium)

Crystal data

$\left[\mathrm{Li}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{6} \mathrm{~S}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=362.22$
Monoclinic, $P 2_{1} / c$
$a=15.8584$ (11) \AA
$b=5.3693$ (4) \AA
$c=8.8636$ (6) \AA
$\beta=99.994$ (7) ${ }^{\circ}$
$V=743.27(9) \AA^{3}$
$Z=2$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Detector resolution: 10.000 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
$T_{\min }=0.213, T_{\text {max }}=0.924$
9858 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.159$
$S=1.12$
1666 reflections
133 parameters
3 restraints
Primary atom site location: structure-invariant direct methods

$$
F(000)=372.00
$$

$D_{\mathrm{x}}=1.618 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71075 \AA$
Cell parameters from 17604 reflections
$\theta=3.2-27.6^{\circ}$
$\mu=0.40 \mathrm{~mm}^{-1}$
$T=286 \mathrm{~K}$
Block, colorless
$0.50 \times 0.40 \times 0.20 \mathrm{~mm}$

1666 independent reflections
1490 reflections with $F^{2}>2.0 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.9^{\circ}$
$h=-20 \rightarrow 20$
$k=-6 \rightarrow 6$
$l=-11 \rightarrow 11$

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from \quad neighbouring sites
> All H-atom parameters refined
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0948 P)^{2}+0.3642 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.74 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.28$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^{2}. R-factor (gt) are based on F. The threshold expression of $\mathrm{F}^{2}>2.0 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating Rfactor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
S1	$0.67846(4)$	$0.56370(10)$	$0.59448(6)$	$0.0341(3)$
O1	$0.66681(15)$	$0.8238(3)$	$0.6295(3)$	$0.0550(6)$
O2	$0.62416(15)$	$0.4887(5)$	$0.4532(2)$	$0.0566(6)$
O3	$0.67041(13)$	$0.4012(4)$	$0.7215(2)$	$0.0451(5)$
O4	$0.49748(14)$	$1.0921(5)$	$0.6579(3)$	$0.0587(6)$
C1	$0.78551(17)$	$0.5384(4)$	$0.5648(3)$	$0.0346(5)$
C2	$0.81715(19)$	$0.7143(6)$	$0.4756(4)$	$0.0566(8)$
C3	$0.90075(19)$	$0.6964(6)$	$0.4499(4)$	$0.0588(9)$
C4	$0.95484(15)$	$0.5075(4)$	$0.5137(3)$	$0.0354(5)$
C5	$0.9221(2)$	$0.3349(6)$	$0.6046(5)$	$0.0628(9)$
C6	$0.8381(2)$	$0.3489(6)$	$0.6297(5)$	$0.0608(9)$
Li1	$0.6195(3)$	$1.0777(8)$	$0.7388(5)$	$0.0413(9)$
H1	$0.464(3)$	$0.986(9)$	$0.696(7)$	$0.13(2)^{*}$
H2	$0.778(3)$	$0.874(10)$	$0.441(5)$	$0.083(13)^{*}$
H3	$0.916(3)$	$0.789(10)$	$0.375(6)$	$0.099(16)^{*}$
H4	$0.462(3)$	$1.197(9)$	$0.600(6)$	$0.12(2)^{*}$
H5	$0.954(3)$	$0.196(9)$	$0.644(5)$	$0.078(13)^{*}$
H6	$0.823(3)$	$0.262(9)$	$0.695(6)$	$0.096(16)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0333(4)$	$0.0345(4)$	$0.0359(4)$	$0.0043(2)$	$0.0093(2)$	$-0.0016(2)$
O1	$0.0641(13)$	$0.0359(11)$	$0.0724(13)$	$0.0116(9)$	$0.0324(11)$	$0.0000(9)$
O2	$0.0377(11)$	$0.0905(17)$	$0.0413(10)$	$0.0008(10)$	$0.0057(9)$	$-0.0115(10)$
O3	$0.0481(11)$	$0.0404(9)$	$0.0485(10)$	$-0.0001(8)$	$0.0131(8)$	$0.0050(8)$
O4	$0.0396(12)$	$0.0691(14)$	$0.0666(14)$	$0.0048(10)$	$0.0073(10)$	$0.0160(11)$
C1	$0.0334(12)$	$0.0316(11)$	$0.0386(11)$	$0.0022(8)$	$0.0060(9)$	$-0.0036(8)$
C2	$0.0352(13)$	$0.0581(17)$	$0.077(2)$	$0.0112(12)$	$0.0120(13)$	$0.0322(15)$
C3	$0.0356(14)$	$0.0630(19)$	$0.079(2)$	$0.0077(12)$	$0.0137(14)$	$0.0355(16)$
C4	$0.0302(13)$	$0.0337(11)$	$0.0414(12)$	$0.0007(8)$	$0.0042(10)$	$-0.0033(9)$
C5	$0.0479(17)$	$0.0465(15)$	$0.100(3)$	$0.0186(13)$	$0.0298(17)$	$0.0301(17)$
C6	$0.0489(16)$	$0.0460(15)$	$0.095(2)$	$0.0149(13)$	$0.0333(17)$	$0.0300(17)$
Li1	$0.041(2)$	$0.041(2)$	$0.043(2)$	$0.0029(17)$	$0.0106(18)$	$0.0036(16)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{O} 3$	$1.4472(19)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.381(4)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.448(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.387(4)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.4492(19)$	$\mathrm{C} 2-\mathrm{H} 2$	$1.07(5)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.768(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.384(4)$

O1-Li1	1.901 (5)	C3-H3	0.90 (5)
O2-Li1 ${ }^{\text {i }}$	1.922 (5)	C4- 55	1.387 (4)
O3-Lil ${ }^{\text {ii }}$	1.933 (5)	C4-C4iii	1.496 (5)
O4-Li1	1.944 (5)	C5-C6	1.390 (4)
O4-H1	0.88 (2)	C5-H5	0.94 (5)
O4-H4	0.89 (2)	C6-H6	0.81 (5)
C1-C6	1.377 (4)		
O3-S1-O2	112.66 (14)	C4-C3-C2	121.8 (3)
O3-S1-O1	112.48 (12)	C4-C3-H3	119 (3)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	112.00 (15)	C2-C3-H3	118 (3)
O3-S1-C1	106.61 (11)	C3-C4-C5	117.3 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	107.01 (12)	C3-C4-C4iii	121.1 (3)
O1-S1-C1	105.51 (12)	C5-C4-C4iii	121.6 (3)
S1-O1-Li1	151.24 (19)	C4-C5-C6	121.5 (3)
S1-O2-Li1 ${ }^{\text {i }}$	145.2 (2)	C4-C5-H5	121 (3)
S1-O3-Li ${ }^{\text {ii }}$	134.28 (19)	C6-C5-H5	118 (3)
Li1-O4-H1	117 (4)	C1-C6-C5	120.1 (3)
Li1-O4-H4	136 (4)	C1-C6-H6	119 (4)
H1-O4-H4	106 (4)	C5-C6-H6	120 (4)
C6-C1-C2	119.4 (3)	O1-Li1-O2 ${ }^{\text {iv }}$	114.8 (2)
C6-C1-S1	121.5 (2)	$\mathrm{O} 1-\mathrm{Li1}-\mathrm{O}^{\text {v }}$	113.3 (2)
C2-C1-S1	119.09 (19)	$\mathrm{O}^{2 \mathrm{iv}}-\mathrm{Li1}-\mathrm{O3}^{\text {v }}$	107.5 (2)
C1-C2-C3	119.9 (3)	O1-Li1-O4	107.2 (3)
C1-C2-H2	117 (2)	$\mathrm{O} 2^{\text {iv- }}$-Li1-O4	103.7 (2)
C3-C2-H2	122 (2)	O3 ${ }^{\text {- }}$ Li1-O4	109.8 (2)
O3-S1-O1-Li1	-27.3 (5)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	74.3 (3)
O2-S1-O1-Li1	100.8 (5)	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	-45.2 (3)
C1-S1-O1-Li1	-143.1 (4)	C6-C1-C2-C3	1.1 (5)
O3-S1-O2-Li1 ${ }^{\text {i }}$	-131.3 (4)	S1-C1-C2-C3	-179.5 (3)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2-\mathrm{Lil}^{\text {i }}$	100.7 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.1 (6)
C1-S1-O2-Li1 ${ }^{\text {i }}$	-14.4 (4)	C2-C3-C4-C5	0.2 (5)
O2-S1-O3-Li1 ${ }^{\text {ii }}$	12.8 (3)	C2-C3-C4-C4iii	-179.3 (3)
O1-S1-O3-Li1ii	140.6 (3)	C3-C4-C5-C6	0.6 (6)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 3-\mathrm{Lil}^{\text {ii }}$	-104.2 (3)	C4iii-C4-C5-C6	-179.8 (4)
O3-S1-C1-C6	14.5 (3)	C2-C1-C6-C5	-0.3 (6)
O2-S1-C1-C6	-106.3 (3)	S1-C1-C6-C5	-179.7 (3)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	134.3 (3)	C4-C5-C6-C1	-0.6 (6)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	-165.0 (2)		

Symmetry codes: (i) $x,-y+3 / 2, z-1 / 2$; (ii) $x, y-1, z$; (iii) $-x+2,-y+1,-z+1$; (iv) $x,-y+3 / 2, z+1 / 2$; (v) $x, y+1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {vi }}$	$0.89(5)$	$2.17(5)$	$3.016(3)$	$157(5)$

supporting information

$\mathrm{O} 4 — \mathrm{H} 1 \cdots \mathrm{O} 3^{\text {vii }}$	$2.41(5)$	$3.21(1)$	$0.89(5)$	$149(4)$
$\mathrm{O} 4 — \mathrm{H} 1 \cdots 4^{\text {viii }}$	$2.50(5)$	$3.14(1)$	$0.89(5)$	$129(4)$

Symmetry codes: (vi) $-x+1,-y+2,-z+1$; (vii) $-x+1, y+1 / 2,-z+3 / 2$; (viii) $-x+1, y-1 / 2,-z+3 / 2$.

