

Received 29 November 2023 Accepted 14 December 2023

Edited by J. Reibenspies, Texas A & M University, USA

Keywords: crystal structure; hydrogen bonds; Hirshfeld surface analysis; [4 + 2] cycloaddition; furan; arylsulfonamides.

CCDC reference: 2314397

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of dimethyl 4-hydroxy-5,4'-dimethyl-2'-(toluene-4sulfonylamino)biphenyl-2,3-dicarboxylate

Narmina A. Guliyeva,^a Gleb M. Burkin,^b Selbi Annadurdyyeva,^b Victor N. Khrustalev,^{b,c} Zeliha Atioğlu,^d Mehmet Akkurt^e* and Ajaya Bhattarai^f*

^aDepartment of Organic Substances and Technology of High-Molecular Compounds, SRI Geotechnological Problems of Oil, Gas and Chemistry, Azerbaijan State Oil and Industry University, Azadlig ave. 20, Az-1010 Baku, Azerbaijan, ^bRUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation, ^cZelinsky Institute of Organic Chemistry of RAS, 4, 7 Leninsky Prospect, 119991 Moscow, Russian Federation, ^dDepartment of Aircraft Electrics and Electronics, School of Applied Sciences, Cappadocia University, Mustafapaşa, 50420 Ürgüp, Nevşehir, Türkiye, ^eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, and ^fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal. *Correspondence e-mail: akkurt@erciyes.edu.tr, ajaya.bhattarai@mmamc.tu.edu.np

In the title compound, $C_{25}H_{25}NO_7S$, the molecular conformation is stabilized by intramolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. The molecules are bent at the S atom with a $C-SO_2-NH-C$ torsion angle of $-70.86 (11)^\circ$. In the crystal, molecules are linked by $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, forming molecular layers parallel to the (100) plane. $C-H\cdots \pi$ interactions are observed between these layers.

1. Chemical context

Furan contains a system of conjugated s-cis-double bonds, closed through an oxygen atom, and as a result, this heterocycle easily participates in Diels–Alder reactions. The [4 + 2]cvcloaddition of furan with acetylenedicarboxylic acid esters (as alkynes) was performed for the first time to find a simple route for the preparation of Cantharidin (Diels & Alder, 1931). Furan reacts with esters of acetylenedicarboxylic acid when heated to 373 K. The 7-oxabicyclo[2.2.1]heptene scaffold, the product of the reaction between furans and alkynes, has great synthetic potential as a useful tool for the design of a broad diversity of substances with various practical properties. These cycloadducts have been used to construct polycyclic aromatic hydrocarbons (Eda et al., 2015; Criado et al., 2013). The annulated 7-oxabicyclo[2.2.1]heptane moiety also acts as a framework for synthesis of molecular tweezers (Murphy et al., 2016; Warrener et al., 1999), high-molecular-weight materials (Margetić et al., 2010; Vogel et al., 1999) and various supramolecular systems (Abdelhamid et al., 2011; Akbari Afkhami et al., 2017; Khalilov et al., 2021; Safarova et al., 2019). Under acid catalysis, cycloaddition intermediates can be converted into phenols, cyclohexenoles, or substituted aromatic hydrocarbons (Zaytsev et al., 2019; Zubkov et al., 2012*a*,*b*). In this work, we continued our investigations of the cycloaddition of dimethyl acetylenedicarboxylate (DMAD) with substituted furans (Zubkov et al., 2009; Borisova et al., 2018*a*,*b*). In particular, in the course of the thermic [4 + 2]cycloaddition between DMAD and sulfamide 2, an interesting sequence of reaction steps was observed: a cleavage of the epoxy bridge and a sigmatropic shift of the methyl group

Figure 1

Synthesis of 4-hydroxy-5,4'-dimethyl-2'-(toluene-4-sulfonylamino)biphenyl-2,3-dicarboxylic acid dimethyl ester (1).

(Fig. 1). On the other hand, the biological and catalytic activity as well as coordination ability of the new sulfamide derivative **1** can be dictated by the non-covalent bond-donor or acceptor character of the substituents (Gurbanov *et al.*, 2022*a*,*b*; Kopylovich *et al.*, 2011*a*,*b*; Mahmoudi *et al.*, 2017*a*,*b*; Mahmudov *et al.*, 2013).

2. Structural commentary

In the title compound (Fig. 2), the molecular conformation is stabilized by intramolecular $O-H\cdots O$ and $N-H\cdots O$

Figure 2

Structure and atomic numbering scheme of the title compound, shown as 50% probability ellipsoids.

Table	1		

Hydrogen-bond geometry (Å, $^\circ).$

Cg1 is the centroid of the C1-C6 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O4$	0.836 (18)	2.507 (18)	3.0185 (14)	120.5 (15)
$N1-H1N\cdots O6^{i}$	0.836 (18)	2.280 (18)	3.0643 (14)	156.4 (18)
O1−H1 <i>O</i> ···O2	0.91 (2)	1.72 (2)	2.5596 (14)	152 (2)
$C24 - H24A \cdots O4^{ii}$	0.98	2.60	3.3784 (16)	137
$C25 - H25C \cdots O1^{iii}$	0.98	2.59	3.2177 (17)	122
$C16-H16\cdots Cg1^{iv}$	0.95	2.61	3.4780 (14)	153

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) -x + 2, -y + 1, -z + 1.

hydrogen bonds, which form S(6) and S(8) ring motifs, respectively. Molecules of the title compound are bent at the S atom with a C17-S1-N1-C12 torsion angle of -70.86 (11)°. The benzene ring (C11-C16) attached to the N atom makes a dihedral angle of 77.99 (6)° with the benzene ring (C1-C6) having the OH group, and these rings make angles of 26.98 (6) and 57.58 (6)°, respectively, with the benzene ring (C17-C22) attached to the S atom. The geometric parameters of the title compound are normal and comparable to those of the related compound listed in the *Database survey* section.

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, molecules are linked by $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, forming molecular layers parallel to the (100) plane (Table 1, Figs. 3, 4 and 5). $C-H\cdots \pi$ interactions (Table 1) between these layers also add to the crystal cohesion.

To quantify the intermolecular interactions, a Hirshfeld surface analysis was performed and *CrystalExplorer17.5* (Spackman *et al.*, 2021) was used to generate the accompanying two-dimensional fingerprint plots. Fig. 6 shows the Hirshfeld surface mapped over d_{norm} . On the Hirshfeld surface, shorter and longer contacts are indicated by red and blue spots, respectively, and contacts with lengths about equal

Figure 3 Packing of molecules in the title compound with the $N-H\cdots O$, $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, viewed along the *a* axis.

research communications

Table 2		
Summary of short inte	ratomic contacts (Å) i	in the title compound.

Contact	Distance	Symmetry operation
H15···O1	2.67	2 - x, 1 - y, 1 - z
$H1O \cdots H25C$	2.40	$x, \frac{3}{2} - y, \frac{1}{2} + z$
H10 <i>C</i> ···O2	2.71	2 - x, 1 - y, 2 - z
$H1N \cdots O6$	2.28	1 - x, 1 - y, 1 - z
$O4 \cdot \cdot \cdot H24A$	2.60	$x, \frac{1}{2} - y, \frac{1}{2} + z$
H22···H22	2.47	1 - x, 1 - y, -z
H8C···C15	2.65	x, y, 1 + z
H13···H19	2.57	$1 - x, -\frac{1}{2} + y, \frac{1}{2} - z$

to the sum of the van der Waals radii are indicated by white spots. The C-H···O and N-H···O interactions (Tables 1 and 2) are represented by the two most significant red spots on the d_{norm} surface.

Fig. 7 depicts the two-dimensional fingerprint plots of $(d_i,$ d_{e}) points from all the contacts contributing to the Hirshfeld surface analysis in normal mode for all atoms. The most important intermolecular interactions are H...H contacts, contributing 52.3% to the overall crystal packing. Other interactions and their respective contributions are O···H/ $H \cdots O$ (27.0%), $C \cdots H/H \cdots C$ (15.2%), $O \cdots C/C \cdots O$ (2.5%),

Figure 4 Packing of molecules in the title compound, viewed along the b axis.

 $O \cdots O$ (2.0%) and $N \cdots H/H \cdots N$ (1.1%). The Hirshfeld surface analysis confirms the significance of H-atom interactions in the packing formation. The significant frequency of $H{\cdots}H$ and $O{\cdots}H/H{\cdots}O$ interactions implies that van der Waals interactions and hydrogen bonding are important in crystal packing (Hathwar et al., 2015).

(a) Front and (b) back views of the three-dimensional Hirshfeld surface for the title compound.

research communications

Figure 7

The two-dimensional fingerprint plots for the title compound showing (a)all interactions, and delineated into (b) $H \cdots H$, (c) $F \cdots H/H \cdots F$, (d) $O \cdots H/H \cdots O$ and (e) $C \cdots H/H \cdots C$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the N,4-dimethylbenzene-1-sulfonamide unit, resulted in two hits, CSD refcodes EVOJAB (Shakuntala, et al., 2011a) and EVOFAX (Shakuntala, et al., 2011b).

The molecule of EVOJAB (Shakuntala, et al., 2011a) is twisted about the N-S bond with a C-SO₂-NH-C torsion angle of 44.55 (17)°. The two aromatic rings are inclined to each other by 66.2 (1)°. In the crystal, $N-H \cdots O$ hydrogen bonds link the molecules into infinite chains parallel to the baxis. Molecules of EVOFAX (Shakuntala, et al., 2011b), are bent at the S atom with a C-SO₂-NH-C torsion angle of 57.7 (2) $^{\circ}$. The benzene rings are rotated relative to each other by 68.1 (1)°. In the crystal, $N-H \cdots O(S)$ hydrogen bonds pack the molecules into infinite chains parallel to the b axis.

5. Synthesis and crystallization

Dimethyl but-2-ynedioate (87.6 µL, 0.7 mmol) was added to a solution of 4-methyl-*N*-(5-methyl-2-(5-methylfuran-2-yl) phenyl)benzenesulfonamide (100 mg, 0.3 mmol) in o-xylene (5 mL). The mixture was refluxed for 5 h. After cooling of the reaction to r.t, the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (eluent: from hexane to ethyl acetate). The

Table 3 Experimental details	
Crystal data	
Chemical formula	$C_{25}H_{25}NO_78$
M _r	483.52
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	
<i>a</i> , <i>b</i> , <i>c</i> (A)	12.52978 (9), 18.87277 (12), 10.63916 (7)
β (°)	109.4092 (8)
$V(Å^3)$	2372.88 (3)
Ζ	4
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	1.61
Crystal size (mm)	$0.22 \times 0.20 \times 0.15$
Data collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2021)
T_{\min}, T_{\max}	0.654, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	37027, 5051, 4842
R _{int}	0.044
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.634
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.088, 1.03
No. of reflections	5051
No. of parameters	321
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho = \Delta \rho \cdot (e \dot{A}^{-3})$	0.33 - 0.44

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2016/6 (Sheldrick, 2015a), SHELXL2016/6 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

title compound was obtained as a colourless powder, yield 68%, 97 mg (0.2 mmol); m.p. > 523 K (with decomp.). A single crystal of the title compound was grown from a mixture of hexane and ethyl acetate. IR (KBr), ν (cm⁻¹): br. 3277 (NH, OH), 1745, 1671 (CO₂), 1353 (v_{as} SO₂), 1238 (C-OH), 1172 $(\nu_{\rm s} \, {\rm SO}_2)$. ¹H NMR (700.2 MHz, CDCl₃) (J, Hz): δ 11.31 (s, 1H, OH), 7.52 (s, 1H, NH), 7.42 (d, J = 8.2, 2H, H Ar), 7.18 (d, J = 8.2, 2H, H Ar), 6.96 (*d*, *J* = 7.6, 1H, H Ar), 6.85 (*d*, *J* = 7.6, 1H, H Ar), 6.71 (s, 1H, H Ar), 6.08 (s, 1H, H Ar), 3.92 (s, 3H, OCH₃), 3.51 (s, 3H, OCH₃), 2.43 (s, 3H, CH₃), 2.39 (s, 3H, CH₃), 2.06 (s, 3H, CH₃). ${}^{13}C{}^{1}H$ NMR (176.1 MHz, CDCl₃): δ 169.5, 168.7, 159.9, 143.3, 139.4, 137.3, 136.9, 134.1, 133.0, 130.7, 129.5 (2C), 129.4, 128.5, 127.1 (2C), 126.3, 125.7, 124.7, 107.9, 53.1, 52.3, 21.6, 21.4, 16.0. MS (ESI) m/z: $[M + H]^+$ 484. Elemental analysis calculated (%) for C₂₅H₂₅NO₇S: C 62.10, H 5.21, N 2.90, S 6.63; found: C 61.87, H 5.48, N 3.09, S 6.37.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were included in the refinement using the riding-model approximation with C-H distances of 0.95–0.98 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The H atoms of the NH and OH groups were found in a difference map and refined freely [N1-H1N =0.836(18) Å and O1-H1O = 0.91(2) Å].

Acknowledgements

GMB and SA thank the Common Use Center "Physical and Chemical Research of New Materials, Substances and Catalytic Systems" RUDN. The author's contributions are as follows. Conceptualization, MA and AB; synthesis, NAG, GMB and SA; X-ray analysis, VNK, ZA and MA; writing (review and editing of the manuscript) MA and AB; funding acquisition, GMB and SA; supervision, MA and AB.

Funding information

Funding for this research was provided by: the Russian Science Foundation (https://rscf.ru/project/22-73-00127/).

References

- Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). *Acta Cryst.* E67, 0744.
- Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). *Dalton Trans.* 46, 14888– 14896.
- Borisova, K., Nikitina, E., Novikov, R., Khrustalev, V., Dorovatovskii, P., Zubavichus, Y., Kuznetsov, M., Zaytsev, V., Varlamov, A. & Zubkov, F. (2018a). *Chem. Commun.* 54, 2850–2853.
- Borisova, K. K., Kvyatkovskaya, E. A., Nikitina, E. V., Aysin, R. R., Novikov, R. A. & Zubkov, F. I. (2018b). J. Org. Chem. 83, 4840– 4850.
- Criado, A., Vilas-Varela, M., Cobas, A., Pérez, D., Peña, D. & Guitián, E. (2013). J. Org. Chem. 78, 12637–12649.
- Diels, O. & Alder, K. (1931). Justus Liebigs Ann. Chem. 490, 257-266.
- Eda, S., Eguchi, F., Haneda, H. & Hamura, T. (2015). *Chem. Commun.* **51**, 5963–5966.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022a). *Dalton Trans.* 51, 1019–1031.
- Gurbanov, A. V., Kuznetsov, M. L., Resnati, G., Mahmudov, K. T. & Pombeiro, A. J. L. (2022b). Cryst. Growth Des. 22, 3932–3940.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.
- Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.

- Kopylovich, M. N., Karabach, Y. Y., Mahmudov, K. T., Haukka, M., Kirillov, A. M., Figiel, P. J. & Pombeiro, A. J. L. (2011*a*). *Cryst. Growth Des.* **11**, 4247–4252.
- Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011b). *Inorg. Chim. Acta*, **374**, 175–180.
- Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). *Inorg. Chim. Acta*, 461, 192–205.
- Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.
- Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). *J. Mol. Struct.* **1048**, 108–112.
- Margetić, D., Eckert-Maksić, M., Trošelj, P. & Marinić, Z. (2010). J. Fluor. Chem. 131, 408-416.
- Murphy, R. B., Norman, R. E., White, J. M., Perkins, M. V. & Johnston, M. R. (2016). Org. Biomol. Chem. 14, 8707–8720.
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Safarova, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. (2019). Z. Krist. New Cryst. St. 234, 1183–1185.
- Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, 02178.
- Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, 02160.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521–13642.
- Warrener, R. N., Margetic, D., Amarasekara, A. S., Butler, D. N., Mahadevan, I. B. & Russell, R. A. (1999). Org. Lett. 1, 199–202.
- Zaytsev, V. P., Mertsalov, D. F., Chervyakova, L. V., Krishna, G., Zubkov, F. I., Dorovatovskii, P. V., Khrustalev, V. N. & Zarubaev, V. V. (2019). *Tetrahedron Lett.* **60**, 151204.
- Zubkov, F. I., Airiyan, I. K., Ershova, J. D., Galeev, T. R., Zaytsev, V. P., Nikitina, E. V. & Varlamov, A. V. (2012*b*). *RSC Adv.* **2**, 4103–4109.
- Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina,
 E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev,
 V. N., Maharramov, A. M. & Varlamov, A. V. (2009). *Tetrahedron*,
 65, 3789–3803.
- Zubkov, F. I., Zaytsev, V. P., Puzikova, E. S., Nikitina, E. V., Khrustalev, V. N., Novikov, R. A. & Varlamov, A. V. (2012a). *Chem Heterocycl Compd*, **48**, 514-524.

Acta Cryst. (2024). E80, 62-66 [https://doi.org/10.1107/S205698902301071X]

Crystal structure and Hirshfeld surface analysis of dimethyl 4-hydroxy-5,4'-dimethyl-2'-(toluene-4-sulfonylamino)biphenyl-2,3-dicarboxylate

Narmina A. Guliyeva, Gleb M. Burkin, Selbi Annadurdyyeva, Victor N. Khrustalev, Zeliha Atioğlu, Mehmet Akkurt and Ajaya Bhattarai

Computing details

Dimethyl 4-hydroxy-5,4'-dimethyl-2'-{[(4-methylphenyl)sulfonyl]amino}biphenyl-\ 2,3-dicarboxylate

Crystal data

C₂₅H₂₅NO₇S $M_r = 483.52$ Monoclinic, $P2_1/c$ a = 12.52978 (9) Å b = 18.87277 (12) Å c = 10.63916 (7) Å $\beta = 109.4092$ (8)° V = 2372.88 (3) Å³ Z = 4

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer Radiation source: micro-focus sealed X-ray tube φ and ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) $T_{\min} = 0.654, T_{\max} = 1.000$ 37027 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.088$ S = 1.035051 reflections 321 parameters 0 restraints Primary atom site location: difference Fourier map Secondary atom site location: difference Fourier map F(000) = 1016 $D_x = 1.354 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 26913 reflections $\theta = 4.4-77.8^{\circ}$ $\mu = 1.61 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.22 \times 0.20 \times 0.15 \text{ mm}$

5051 independent reflections 4842 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 77.8^{\circ}, \theta_{min} = 3.7^{\circ}$ $h = -15 \rightarrow 15$ $k = -22 \rightarrow 23$ $l = -13 \rightarrow 13$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0419P)^2 + 1.207P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.33 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.44 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00097 (9)

Special details

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

			_	IT */IT	
	X	У	Z	$U_{\rm iso} * / U_{\rm eq}$	
S1	0.47540 (2)	0.47876 (2)	0.28445 (3)	0.01572 (9)	
01	0.87334 (8)	0.69147 (5)	0.70753 (10)	0.0219 (2)	
H1O	0.8780 (19)	0.6776 (12)	0.791 (2)	0.054 (6)*	
02	0.87491 (9)	0.61396 (5)	0.90556 (9)	0.0289 (2)	
03	0.83061 (9)	0.49945 (5)	0.87207 (9)	0.0254 (2)	
O4	0.75736 (8)	0.38919 (5)	0.63886 (9)	0.0229 (2)	
05	0.94306 (8)	0.41300 (5)	0.73522 (9)	0.0245 (2)	
06	0.40571 (7)	0.48386 (5)	0.36703 (9)	0.01983 (19)	
O7	0.43510(7)	0.44113 (5)	0.16051 (8)	0.01987 (19)	
N1	0.59121 (9)	0.43960 (5)	0.37778 (10)	0.0167 (2)	
H1N	0.6110 (15)	0.4544 (9)	0.4562 (18)	0.028 (4)*	
C1	0.85341 (10)	0.63093 (6)	0.63507 (12)	0.0172 (2)	
C2	0.84786 (10)	0.56433 (6)	0.69114 (12)	0.0165 (2)	
C3	0.82958 (10)	0.50356 (6)	0.60943 (12)	0.0155 (2)	
C4	0.81082 (10)	0.51001 (6)	0.47363 (12)	0.0159 (2)	
C5	0.81682 (10)	0.57750 (7)	0.42116 (12)	0.0181 (2)	
H5	0.8049	0.5819	0.3285	0.022*	
C6	0.83940 (10)	0.63786 (6)	0.49899 (12)	0.0188 (2)	
C7	0.85359 (10)	0.56214 (7)	0.83223 (12)	0.0193 (2)	
C8	0.82815 (14)	0.49568 (9)	1.00727 (14)	0.0332 (3)	
H8A	0.7721	0.5293	1.0178	0.050*	
H8B	0.9030	0.5076	1.0700	0.050*	
H8C	0.8077	0.4476	1.0254	0.050*	
C9	0.83582 (10)	0.42959 (6)	0.66379 (11)	0.0175 (2)	
C10	0.95930 (14)	0.34207 (8)	0.78924 (16)	0.0360 (4)	
H10A	0.9373	0.3076	0.7161	0.054*	
H10B	0.9125	0.3352	0.8460	0.054*	
H10C	1.0391	0.3352	0.8423	0.054*	
C11	0.78777 (10)	0.44813 (6)	0.38084 (11)	0.0161 (2)	
C12	0.67941 (10)	0.41792 (6)	0.32872 (11)	0.0160 (2)	
C13	0.65792 (10)	0.36524 (6)	0.23203 (12)	0.0183 (2)	
H13	0.5840	0.3457	0.1970	0.022*	
C14	0.74280 (11)	0.34054 (7)	0.18550 (12)	0.0193 (2)	
C15	0.85138 (11)	0.36831 (7)	0.24215 (13)	0.0210 (3)	
H15	0.9113	0.3506	0.2151	0.025*	
C16	0.87306 (10)	0.42142 (7)	0.33738 (12)	0.0201 (3)	
H16	0.9475	0.4399	0.3737	0.024*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C17	0.51190 (10)	0.56517 (6)	0.25010 (12)	0.0178 (2)
C18	0.50126 (11)	0.62124 (7)	0.32991 (13)	0.0222 (3)
H18	0.4745	0.6133	0.4024	0.027*
C19	0.53028 (12)	0.68894 (7)	0.30225 (13)	0.0224 (3)
H19	0.5228	0.7273	0.3565	0.027*
C20	0.57021 (10)	0.70204 (7)	0.19664 (12)	0.0198 (2)
C21	0.58170 (11)	0.64480 (7)	0.11927 (12)	0.0211 (3)
H21	0.6100	0.6526	0.0480	0.025*
C22	0.55246 (11)	0.57649 (7)	0.14447 (12)	0.0197 (2)
H22	0.5600	0.5380	0.0904	0.024*
C23	0.59565 (12)	0.77675 (7)	0.16557 (13)	0.0250 (3)
H23A	0.5250	0.8006	0.1147	0.037*
H23B	0.6466	0.7758	0.1128	0.037*
H23C	0.6319	0.8025	0.2489	0.037*
C24	0.71670 (12)	0.28600 (7)	0.07589 (14)	0.0264 (3)
H24A	0.6916	0.2420	0.1064	0.040*
H24B	0.7849	0.2767	0.0528	0.040*
H24C	0.6566	0.3038	-0.0027	0.040*
C25	0.85016 (13)	0.70949 (7)	0.44329 (14)	0.0273 (3)
H25A	0.9281	0.7264	0.4826	0.041*
H25B	0.7985	0.7427	0.4645	0.041*
H25C	0.8308	0.7061	0.3463	0.041*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01611 (15)	0.01641 (15)	0.01492 (15)	-0.00118 (10)	0.00555 (11)	-0.00276 (10)
01	0.0258 (5)	0.0150 (4)	0.0243 (5)	-0.0007 (3)	0.0075 (4)	-0.0048 (3)
O2	0.0414 (6)	0.0258 (5)	0.0193 (4)	-0.0024 (4)	0.0098 (4)	-0.0067 (4)
O3	0.0356 (5)	0.0253 (5)	0.0150 (4)	-0.0039 (4)	0.0081 (4)	0.0016 (4)
O4	0.0268 (5)	0.0180 (4)	0.0221 (4)	-0.0035 (4)	0.0057 (4)	0.0021 (3)
05	0.0248 (5)	0.0180 (4)	0.0243 (5)	0.0032 (4)	-0.0005 (4)	0.0032 (4)
O6	0.0185 (4)	0.0218 (4)	0.0211 (4)	-0.0015 (3)	0.0091 (4)	-0.0028 (3)
07	0.0205 (4)	0.0210 (4)	0.0166 (4)	-0.0011 (3)	0.0041 (3)	-0.0050 (3)
N1	0.0180 (5)	0.0184 (5)	0.0138 (5)	-0.0011 (4)	0.0056 (4)	-0.0025 (4)
C1	0.0146 (5)	0.0162 (6)	0.0198 (6)	0.0002 (4)	0.0043 (4)	-0.0032 (4)
C2	0.0148 (5)	0.0173 (6)	0.0166 (5)	0.0004 (4)	0.0043 (4)	-0.0011 (4)
C3	0.0139 (5)	0.0153 (6)	0.0166 (5)	0.0002 (4)	0.0042 (4)	0.0002 (4)
C4	0.0138 (5)	0.0169 (6)	0.0163 (5)	-0.0005 (4)	0.0041 (4)	-0.0002 (4)
C5	0.0176 (5)	0.0202 (6)	0.0148 (5)	-0.0012 (4)	0.0033 (4)	0.0009 (4)
C6	0.0176 (6)	0.0165 (6)	0.0202 (6)	-0.0004 (4)	0.0036 (5)	0.0026 (5)
C7	0.0182 (6)	0.0207 (6)	0.0178 (6)	0.0016 (5)	0.0042 (5)	-0.0006 (5)
C8	0.0423 (8)	0.0419 (9)	0.0158 (6)	-0.0051 (7)	0.0099 (6)	0.0034 (6)
C9	0.0223 (6)	0.0167 (6)	0.0125 (5)	0.0014 (5)	0.0044 (4)	-0.0001 (4)
C10	0.0417 (9)	0.0202 (7)	0.0336 (8)	0.0070 (6)	-0.0043 (6)	0.0068 (6)
C11	0.0179 (6)	0.0163 (6)	0.0130 (5)	-0.0001 (4)	0.0036 (4)	0.0005 (4)
C12	0.0178 (5)	0.0152 (5)	0.0153 (5)	0.0009 (4)	0.0059 (4)	0.0014 (4)
C13	0.0186 (6)	0.0170 (6)	0.0183 (6)	-0.0010 (4)	0.0045 (5)	-0.0016 (4)

C14	0.0223 (6)	0.0170 (6)	0.0169 (5)	0.0028 (5)	0.0043 (5)	-0.0011 (4)
C15	0.0199 (6)	0.0229 (6)	0.0206 (6)	0.0042 (5)	0.0074 (5)	-0.0020 (5)
C16	0.0175 (6)	0.0226 (6)	0.0193 (6)	-0.0008 (5)	0.0048 (5)	-0.0013 (5)
C17	0.0181 (6)	0.0178 (6)	0.0163 (5)	0.0003 (4)	0.0042 (4)	-0.0008 (4)
C18	0.0284 (7)	0.0220 (6)	0.0190 (6)	-0.0007 (5)	0.0114 (5)	-0.0021 (5)
C19	0.0293 (7)	0.0184 (6)	0.0203 (6)	0.0013 (5)	0.0094 (5)	-0.0023 (5)
C20	0.0199 (6)	0.0192 (6)	0.0177 (6)	0.0006 (5)	0.0029 (5)	0.0018 (5)
C21	0.0245 (6)	0.0244 (6)	0.0150 (5)	0.0001 (5)	0.0073 (5)	0.0006 (5)
C22	0.0230 (6)	0.0206 (6)	0.0161 (5)	0.0007 (5)	0.0072 (5)	-0.0027 (5)
C23	0.0301 (7)	0.0206 (6)	0.0233 (6)	-0.0013 (5)	0.0076 (5)	0.0032 (5)
C24	0.0261 (7)	0.0250 (7)	0.0262 (7)	0.0035 (5)	0.0062 (5)	-0.0093 (5)
C25	0.0354 (7)	0.0187 (6)	0.0243 (7)	-0.0053 (5)	0.0054 (6)	0.0031 (5)

Geometric parameters (Å, °)

S1—06	1.4330 (9)	C11—C16	1.3922 (17)
S1—07	1.4338 (9)	C11—C12	1.4056 (17)
S1—N1	1.6372 (11)	C12—C13	1.3911 (17)
S1—C17	1.7643 (13)	C13—C14	1.3940 (17)
01—C1	1.3543 (14)	C13—H13	0.9500
01—H10	0.91 (2)	C14—C15	1.3942 (18)
O2—C7	1.2239 (16)	C14—C24	1.5076 (17)
O3—C7	1.3203 (16)	C15—C16	1.3864 (18)
O3—C8	1.4507 (16)	C15—H15	0.9500
O4—C9	1.2020 (16)	C16—H16	0.9500
О5—С9	1.3425 (15)	C17—C18	1.3907 (17)
O5—C10	1.4444 (16)	C17—C22	1.3952 (17)
N1-C12	1.4298 (15)	C18—C19	1.3864 (18)
N1—H1N	0.836 (18)	C18—H18	0.9500
C1—C2	1.4029 (17)	C19—C20	1.3955 (18)
C1—C6	1.4054 (17)	C19—H19	0.9500
C2—C3	1.4112 (16)	C20—C21	1.3943 (18)
С2—С7	1.4794 (17)	C20—C23	1.5064 (17)
C3—C4	1.3899 (16)	C21—C22	1.3904 (18)
С3—С9	1.5031 (16)	C21—H21	0.9500
C4—C5	1.4028 (17)	C22—H22	0.9500
C4—C11	1.4941 (16)	C23—H23A	0.9800
C5—C6	1.3811 (17)	C23—H23B	0.9800
С5—Н5	0.9500	C23—H23C	0.9800
C6—C25	1.4999 (17)	C24—H24A	0.9800
C8—H8A	0.9800	C24—H24B	0.9800
C8—H8B	0.9800	C24—H24C	0.9800
C8—H8C	0.9800	C25—H25A	0.9800
C10—H10A	0.9800	C25—H25B	0.9800
C10—H10B	0.9800	C25—H25C	0.9800
C10—H10C	0.9800		
O6—S1—O7	119.80 (5)	C13—C12—C11	120.39 (11)

O6—S1—N1	104.85 (5)	C13—C12—N1	119.43 (11)
O7—S1—N1	107.72 (5)	C11—C12—N1	120.16 (10)
O6—S1—C17	108.52 (6)	C12—C13—C14	121.23 (11)
O7—S1—C17	107.68 (6)	C12—C13—H13	119.4
N1—S1—C17	107.72 (6)	C14—C13—H13	119.4
C1	104.7 (14)	C13—C14—C15	118.09 (11)
C7—O3—C8	116.17 (11)	C13—C14—C24	120.53 (11)
C9—O5—C10	115.05 (11)	C15—C14—C24	121.37 (11)
C12—N1—S1	123.00 (8)	C16—C15—C14	120.91 (11)
C12—N1—H1N	116.8 (12)	C16—C15—H15	119.5
S1—N1—H1N	111.3 (12)	C14—C15—H15	119.5
O1—C1—C2	122.66 (11)	C15—C16—C11	121.26 (11)
O1—C1—C6	116.37 (11)	C15—C16—H16	119.4
C2—C1—C6	120.97 (11)	C11—C16—H16	119.4
C1—C2—C3	119.15 (11)	C18—C17—C22	120.65 (12)
C1—C2—C7	117.65 (11)	C18—C17—S1	119.52 (10)
C3—C2—C7	123.06 (11)	C22—C17—S1	119.82 (9)
C4—C3—C2	120.39 (11)	C19—C18—C17	119.11 (12)
C4—C3—C9	116.77 (10)	C19—C18—H18	120.4
C2—C3—C9	122.74 (10)	C17—C18—H18	120.4
C3—C4—C5	118.70 (11)	C18—C19—C20	121.58 (12)
C3—C4—C11	123.18 (11)	С18—С19—Н19	119.2
C5—C4—C11	118.10 (10)	С20—С19—Н19	119.2
C6—C5—C4	122.53 (11)	C21—C20—C19	118.23 (12)
С6—С5—Н5	118.7	C21—C20—C23	121.65 (12)
С4—С5—Н5	118.7	C19—C20—C23	120.08 (12)
C5—C6—C1	118.13 (11)	C22—C21—C20	121.27 (11)
C5—C6—C25	122.27 (11)	C22—C21—H21	119.4
C1—C6—C25	119.60 (11)	C20—C21—H21	119.4
O2—C7—O3	122.41 (12)	C21—C22—C17	119.15 (11)
O2—C7—C2	123.45 (12)	C21—C22—H22	120.4
O3—C7—C2	114.12 (11)	С17—С22—Н22	120.4
O3—C8—H8A	109.5	С20—С23—Н23А	109.5
O3—C8—H8B	109.5	С20—С23—Н23В	109.5
H8A—C8—H8B	109.5	H23A—C23—H23B	109.5
O3—C8—H8C	109.5	С20—С23—Н23С	109.5
H8A—C8—H8C	109.5	H23A—C23—H23C	109.5
H8B—C8—H8C	109.5	H23B—C23—H23C	109.5
O4—C9—O5	124.64 (11)	C14—C24—H24A	109.5
O4—C9—C3	124.75 (11)	C14—C24—H24B	109.5
O5—C9—C3	110.41 (10)	H24A—C24—H24B	109.5
O5-C10-H10A	109.5	C14—C24—H24C	109.5
O5-C10-H10B	109.5	H24A—C24—H24C	109.5
H10A—C10—H10B	109.5	H24B—C24—H24C	109.5
O5—C10—H10C	109.5	С6—С25—Н25А	109.5
H10A—C10—H10C	109.5	С6—С25—Н25В	109.5
H10B—C10—H10C	109.5	H25A—C25—H25B	109.5
C16—C11—C12	118.01 (11)	С6—С25—Н25С	109.5

C16—C11—C4	120.09 (11)	H25A—C25—H25C	109.5
C12—C11—C4	121.80 (11)	H25B—C25—H25C	109.5
O6—S1—N1—C12	173.68 (9)	C3—C4—C11—C16	-102.44 (14)
O7—S1—N1—C12	45.03 (11)	C5-C4-C11-C16	75.74 (15)
C17—S1—N1—C12	-70.86 (11)	C3—C4—C11—C12	81.40 (15)
O1—C1—C2—C3	-178.41 (11)	C5-C4-C11-C12	-100.42 (14)
C6—C1—C2—C3	0.95 (17)	C16—C11—C12—C13	-2.95 (17)
O1—C1—C2—C7	5.80 (17)	C4—C11—C12—C13	173.28 (11)
C6—C1—C2—C7	-174.84 (11)	C16-C11-C12-N1	175.10 (11)
C1—C2—C3—C4	-3.68 (17)	C4—C11—C12—N1	-8.66 (17)
C7—C2—C3—C4	171.87 (11)	S1—N1—C12—C13	-65.05 (14)
C1—C2—C3—C9	172.71 (11)	S1—N1—C12—C11	116.88 (11)
C7—C2—C3—C9	-11.74 (18)	C11—C12—C13—C14	0.72 (18)
C2—C3—C4—C5	3.56 (17)	N1-C12-C13-C14	-177.35 (11)
C9—C3—C4—C5	-173.04 (10)	C12-C13-C14-C15	2.31 (19)
C2-C3-C4-C11	-178.27 (11)	C12-C13-C14-C24	-176.98 (12)
C9—C3—C4—C11	5.13 (17)	C13—C14—C15—C16	-3.09 (19)
C3—C4—C5—C6	-0.73 (18)	C24—C14—C15—C16	176.20 (12)
C11—C4—C5—C6	-178.99 (11)	C14-C15-C16-C11	0.8 (2)
C4—C5—C6—C1	-1.93 (18)	C12-C11-C16-C15	2.20 (18)
C4—C5—C6—C25	177.57 (12)	C4—C11—C16—C15	-174.11 (11)
O1—C1—C6—C5	-178.81 (11)	O6—S1—C17—C18	18.25 (12)
C2-C1-C6-C5	1.80 (18)	O7—S1—C17—C18	149.32 (10)
O1—C1—C6—C25	1.68 (17)	N1—S1—C17—C18	-94.76 (11)
C2—C1—C6—C25	-177.72 (12)	O6—S1—C17—C22	-162.58 (10)
C8—O3—C7—O2	2.03 (19)	O7—S1—C17—C22	-31.51 (12)
C8—O3—C7—C2	-176.26 (11)	N1—S1—C17—C22	84.42 (11)
C1—C2—C7—O2	-8.10 (18)	C22-C17-C18-C19	0.8 (2)
C3—C2—C7—O2	176.29 (12)	S1-C17-C18-C19	179.92 (10)
C1—C2—C7—O3	170.16 (11)	C17—C18—C19—C20	-0.2 (2)
C3—C2—C7—O3	-5.45 (17)	C18—C19—C20—C21	-0.7 (2)
C10—O5—C9—O4	-3.35 (18)	C18—C19—C20—C23	177.09 (12)
C10—O5—C9—C3	-178.35 (11)	C19—C20—C21—C22	1.12 (19)
C4—C3—C9—O4	-68.07 (16)	C23—C20—C21—C22	-176.63 (12)
C2—C3—C9—O4	115.42 (14)	C20—C21—C22—C17	-0.61 (19)
C4—C3—C9—O5	106.91 (12)	C18—C17—C22—C21	-0.35 (19)
C2—C3—C9—O5	-69.60 (14)	S1—C17—C22—C21	-179.51 (9)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
N1—H1 <i>N</i> ···O4	0.836 (18)	2.507 (18)	3.0185 (14)	120.5 (15)
N1—H1 <i>N</i> ···O6 ⁱ	0.836 (18)	2.280 (18)	3.0643 (14)	156.4 (18)
O1—H1 <i>O</i> ···O2	0.91 (2)	1.72 (2)	2.5596 (14)	152 (2)
C13—H13…O7	0.95	2.53	3.0022 (16)	111
C18—H18…O6	0.95	2.58	2.9370 (16)	103

C24—H24 <i>A</i> ···O4 ⁱⁱ	0.98	2.60	3.3784 (16)	137
C25—H25C…O1 ⁱⁱⁱ	0.98	2.59	3.2177 (17)	122
C16—H16… <i>Cg</i> 1 ^{iv}	0.95	2.61	3.4780 (14)	153

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y+1/2, z-1/2; (iii) x, -y+3/2, z-1/2; (iv) -x+2, -y+1, -z+1.