CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 11 December 2023
Accepted 14 December 2023

Edited by S. Parkin, University of Kentucky, USA
Keywords: copper; copper complexes; crystal structure; 1,2,4-triazole; X-ray crystallography; Hirshfeld surface analysis.

CCDC reference: 2314480

Supporting information: this article has supporting information at journals.iucr.org/e

Published

Crystal structure and Hirshfeld-surface analysis of diaquabis(5-methyl-1H-1,2,4-triazole-3carboxylato)copper(II)

Yuliia P. Petrenko, ${ }^{\text {a }}$ Oleksandr S. Vynohradov, ${ }^{\text {a }}$. Dmytro M. Khomenko, ${ }^{\text {a,b }}$, Roman O. Doroshchuk, ${ }^{\text {a,b }}$ Ilona V. Raspertova, ${ }^{\text {a }}$ Sergiu Shova ${ }^{\text {c }}$ and Rostyslav D. Lampeka ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine,
${ }^{\mathbf{b}}$ Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine, and ${ }^{\text {c"PetruPoni" Institute of Macromolecular Chemistry, }}$
Aleea Gr., GhicaVoda 41A, 700487 Iasi, Romania. *Correspondence e-mail: osvynohradov@ukr.net

The title compound, $\left[\mathrm{Cu}(\mathrm{HL})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ or $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, is a mononuclear octahedral $\mathrm{Cu}^{\mathrm{II}}$ complex based on 5-methyl-1 $\mathrm{H}-1,2,4$-triazole-3carboxylic acid $\left(\mathrm{H}_{2} L\right)$. $\left[\mathrm{Cu}(\mathrm{H} L)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ was synthesized by reaction of $\mathrm{H}_{2} L$ with copper(II) nitrate hexahydrate ($2: 1$ stoichiometric ratio) in water under ambient conditions to produce clear light-blue crystals. The central Cu atom exhibits an $\mathrm{N}_{2} \mathrm{O}_{4}$ coordination environment in an elongated octahedral geometry provided by two bidentate $\mathrm{H} L^{-}$anions in the equatorial plane and two water molecules in the axial positions. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from $\mathrm{H} \cdots \mathrm{O} /$ $\mathrm{O} \cdots \mathrm{H}(33.1 \%), \mathrm{H} \cdots \mathrm{H}(29.5 \%)$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(19.3 \%)$ interactions.

1. Chemical context

A few decades ago, 1,2,4-triazole-containing compounds became a focal point for both organic and inorganic chemists. It turned out that 1,2,4-triazoles are substances that show promising results as antibacterial, anticancer, antifungal, antiinflammatory, and antiviral agents and have miscellaneous biological activities (Opsomer \& Dehaen, 2022; Strzelecka \& Świątek, 2021; Karczmarzyk et al., 2020). The presence of three nitrogen atoms and the possibility of being involved in metal bonding, both in their acid and deprotonated forms, resulted in the synthesis and investigation of numerous coordination compounds based on 1,2,4-triazole derivatives (Haasnoot, 2000). As a result of the presence of the $\mathrm{N}-\mathrm{N}$ bridging function in the triazole ring, these ligands can form polynuclear complexes with specific magnetic properties (Aromí et al., 2011; Kitchen \& Brooker, 2008; Klingele \& Brooker, 2003; Petrenko et al., 2020; 2021). Meanwhile, 1,2,4triazole used as linker in ligands for MOF construction, is not usually involved in the formation of coordination bonds (Du et al., 2005). The most widely used ligands of such type are 3-(2-pyridyl)-1,2,4-triazole derivatives, which readily form extremely stable planar coordination compounds with platinum (Chang et al., 2006; Chen et al., 2013) and palladium (Zakharchenko et al., 2017; 2019; 2021), showing promising photoelectronic and catalytic properties, respectively. A carboxylic acid group connected directly to the 1,2,4-triazole ring could potentially play the same role as a 2-pyridyl moiety, forcing the formation of chelates. In addition, it should be noted that the presence of both carboxylic and 1,2,4-triazole groups as parts of one molecule provides interesting theoretical insights into the structural peculiarities of these molecules.

This is mainly due to the possibility of 1,2,4-triazole existing in three tautomeric forms (Pagacz-Kostrzewa et al., 2019, 2020). Generally, compounds containing a carboxylic function are probably the most important materials for high-throughput synthesis and 1,2,4-triazoles are not an exception. Recently, as part of our efforts to prepare new synthesis building blocks, we obtained a series of carboxylic acids and their derivatives (Khomenko et al., 2022). One of those compounds was used to synthesize a copper complex.

2. Structural commentary

The molecular structure of the title compound consists of a neutral complex unit $\left[\mathrm{Cu}(\mathrm{H} L)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ (Fig. 1), where HL is the deprotonated 5-methyl-1H-1,2,4-triazole-3-carboxylate ligand. The $\mathrm{Cu}^{\mathrm{II}}$ atom occupies a special position (inversion centre), thus imposing crystallographic inversion symmetry on the complex. The central atom exhibits an $\mathrm{N}_{2} \mathrm{O}_{4}$ coordination environment in an elongated octahedral geometry provided by two bidentate L^{-}anions in the equatorial plane [$\mathrm{Cu} 1-\mathrm{O} 1$ $=1.9987(12) \AA, \mathrm{Cu} 1-\mathrm{N} 1=1.9603(15) \AA]$ and two water molecules in the axial positions $[\mathrm{Cu} 1-\mathrm{O} 1 W=2.5405(15) \AA$]. It is worth noting that the structure of the title compound closely resembles those of earlier published analogous compounds with unsubstituted $1 H-1,2,4$-triazole-3-carboxylate anions (Liu, 2007; Zhu et al., 2007).

Figure 1
The molecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 . . O1 $W^{\text {i }}$	0.86	2.06	2.822 (2)	147
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{~N} 2^{\text {ii }}$	0.86	2.58	3.121 (2)	122
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 2^{\text {iii }}$	0.85	1.93	2.781 (2)	175
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 2^{\text {iv }}$	0.85	1.92	2.737 (2)	160
Symmetry codes: $-x+1,-y+2,-z+1$	$\begin{array}{r} x, y, z \\ -1, y, \end{array}$	(ii)	$-x+1,-y+2,-z+2 ; \quad$ (iii)	

3. Supramolecular features

In the crystal, the complex molecules $\left[\mathrm{Cu}(\mathrm{HL})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ interact via numerous intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). Each NH group of the carboxylate ligands is involved as the donor of a proton in bifurcated hydrogen bonding towards atom N2 and the coordinated water molecule of the adjacent molecule, while each O1 W molecule acts as donor in two hydrogen bonds with two O 2 atoms of the symmetry-related complexes. Thus, all the potential hydrogen bonds are completely realized in the crystal, which results in the formation of a three-dimensional supramolecular network, as shown in Fig. 2.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer 17.5 software (Spackman et al., 2021), with a standard resolution of the three-dimensional $d_{\text {norm }}$ surfaces. There are 20 red spots on the $d_{\text {norm }}$ surface (Fig. 3). The darkred spots arise as a result of short interatomic contacts and represent contacts shorter than the sum of van der Waals radii, while the other weaker intermolecular interactions appear as light-red spots. The Hirshfeld surfaces mapped over $d_{\text {norm }}$ are shown for the $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ contacts, and the decomposed two-dimensional fingerprint plots of different types of interactions are given in Fig. 4. All short interatomic contacts are in the range of 1.797-2.505 \AA.

Figure 2
Partial view of the crystal packing showing the formation of the threedimensional supramolecular architecture.

Figure 3
Two projections of the Hirshfeld surfaces mapped over $d_{\text {norm }}$ showing the intermolecular interactions within the molecule and the full two-dimensional fingerprint plot for the title compound.

The shortest contacts are $\mathrm{OH} \cdots \mathrm{O}$ and the longest contacts are $\mathrm{NH} \cdots \mathrm{N}$. The most abundant contributions to the overall crystal packing are from $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}(33.1 \%), \mathrm{H} \cdots \mathrm{H}$ (29.5%) and $\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}(19.3 \%)$. There is a small contribution by other weak intermolecular contacts: $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ (4.6\%), $\mathrm{O} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{O}(4.2 \%), \mathrm{O} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{O}(3.3 \%), \mathrm{C} \cdots \mathrm{C}$ (2.2\%), $\mathrm{O} \cdots \mathrm{O}(1.8 \%), \quad \mathrm{N} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{N}(1.4 \%)$ and $\mathrm{N} \cdots \mathrm{N}$ (0.5%). In addition, quantitative physical properties of the Hirshfeld surface for this compound were obtained, such as molecular volume $\left(303.40 \AA^{3}\right)$, surface area ($289.05 \AA^{2}$), globularity (0.755), as well as asphericity (0.087).

(b) $\mathrm{H}^{\cdots} \mathrm{H}$

(c) $H^{\cdots} N / N \cdots H$

Figure 4
Hirshfeld surface representations with the function $d_{\text {norm }}$ plotted onto the surface and the decomposed two-dimensional fingerprint plots for selected interactions.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, November 2021; Groom et al., 2016) for the moiety including a transition metal coordinated by the N and O atoms of the $1 H$-1,2,4-triazole-3-carboxylate anion in a bidentate way revealed 22 hits. Most similar to the title compound are mononuclear complexes with two unsubstituted $1 H-1,2,4-$ triazole-3-carboxylate anions and two water molecules in axial positions: $\mathrm{Mn}^{\mathrm{II}}$ [GEVKAW (Yan et al., 2018)]; $\mathrm{Zn}^{\text {II }}$ [RIRVIY (Liu, 2007)]; $\mathrm{Cd}^{\text {II }}$ [XIRZOO (Zhu et al., 2008)]; Cu ${ }^{\text {II }}$ [YIQROG (Zhu et al., 2007) and YIQROG01 (Liu, 2007)]. Other compounds with a close relation to the title complex are mononuclear complexes with 5 -substituted 1 H -1,2,4-triazole-3-carboxylate anions. In all cases, the substituent was the NH_{2} group: $\mathrm{Mn}^{\mathrm{II}}$ [HEDWIZ (Yang et al., 2019)], Mn ${ }^{\text {II }}$ dihydrate [OPOMAJ (Liu et al., 2015)], Cd ${ }^{\text {II }}$ [ISACEL (Wang et al., 2011)], $\mathrm{Co}^{\text {II }}$ dihydrate [ONILIJ (Li et al., 2021)], $\mathrm{Zn}^{\text {II }}$ based on 5-amino-1H-1,2,4-triazole-3-carboxylate anion and with only one coordinated water molecule [OPOLUC (Liu et al., 2015)].

6. Synthesis and crystallization

$\mathbf{H}_{2} \boldsymbol{L}: \mathrm{LiH} L$ (Khomenko et al., 2022) ($1.33 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$. The obtained solution was cooled and slowly acidified with concentrated $\mathrm{HCl}(1 \mathrm{ml})$, maintaining the temperature between 273 and 278 K . The precipitation of colourless crystals occurred after addition of all the HCl . The reaction mixture was additionally stirred for 15 min at low temperature. Then, the precipitate was filtered off, washed with cold water and dried in vacuo. Yield 0.76 g (60%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 2.61(s, 3 \mathrm{H}) \mathrm{ppm}$. IR data (in $\mathrm{KBr}, \mathrm{cm}^{-1}$): 3330, 1648, 1567, 1509, 1418, 1313, 1103, 835. Elemental analysis: analysis calculated for $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}$ (127.10): C, 37.80%; H, 3.97%; N, 33.06%. Found: C, 37.41%; H, 3.65\%; N, 32.71\%.
$\left[\mathbf{C u}(\mathbf{H} L)_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathrm{O}\right)_{2}\right]$: A solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.148 \mathrm{~g}$, $0.5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was added to an aqueous solution of $\mathrm{H}_{2} L(0.127 \mathrm{~g}, 13 \mathrm{ml}, 1 \mathrm{mmol})$ to give a clear blue solution. The blue crystals obtained after 2 days were filtered off, washed with water and dried in air. Yield $0.140 \mathrm{~g}(80 \%)$. IR data (in $\mathrm{KBr}, \mathrm{cm}^{-1}$): 3330, 1648, 1557, 1509, 1418, 1304, 1113, 835. Elemental analysis: analysis calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{CuN}_{6} \mathrm{O}_{6}$ (351.77): C, 27.32%; H, 3.44\%; N, 23.89\%. Found: C, 27.30\%; H, 3.45\%; N, 23.82\%.

IR and ${ }^{1} \mathrm{H}$ NMR spectra of 5-methyl-1H-1,2,4-triazole-3carboxylic acid are given in the supporting information for this article.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were found in differenceFourier maps, but subsequently included in the refinement using riding models, with constrained distances set to $0.96 \AA$ $\left(R \mathrm{CH}_{3}\right), 0.86 \AA\left(\mathrm{~N} s p^{2}-\mathrm{H}\right)$, and $0.85\left(\mathrm{OH}_{2}\right) . U_{\text {iso }}(\mathrm{H})$ parameters were set to values of either $1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}\left(R \mathrm{CH}_{3}\right.$, OH_{2}) of the attached atom.

Table 2
Experimental details.
Crystal data
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
351.78

Triclinic, $P \overline{1}$
200
6.8465 (4), 7.1097 (7), 7.2090 (5)
79.267 (7), 83.193 (6), 64.076 (8)
309.80 (5)

1
Mo $K \alpha$
1.81
$0.45 \times 0.1 \times 0.1$

Xcalibur, Eos
Multi-scan (CrysAlis PRO;
Agilent, 2012)
0.774, 1.000

2216, 1397, 1381
0.016
0.681

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXT2018/2 (Sheldrick, 2015a),
SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Funding information

This work was supported by grants 22BF037-06 obtained from the Ministry of Education and Science of Ukraine.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Aromí, G., Barrios, L. A., Roubeau, O. \& Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.
Chang, S.-Y., Kavitha, J., Li, S.-W., Hsu, C.-S., Chi, Y., Yeh, Y.-S., Chou, P.-T., Lee, G.-H., Carty, A. J., Tao, Y.-T. \& Chien, C.-H. (2006). Inorg. Chem. 45, 137-146.

Chen, J.-L., Chen, X.-X., Tan, X.-Z., Wang, J.-Y., Fu, X.-F., He, L.-H., Li, Y., Zhong, G.-Q. \& Wen, H.-R. (2013). Inorg. Chem. Commun. 35, 96-99.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Du, M., Chen, S.-T., Guo, Y.-M., Bu, X.-H. \& Ribas, J. (2005). J. Mol. Struct. 737, 17-21.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.
Karczmarzyk, Z., Swatko-Ossor, M., Wysocki, W., Drozd, M., Ginalska, G., Pachuta-Stec, A. \& Pitucha, M. (2020). Molecules, 25, 6033.

Khomenko, D. M., Doroshchuk, R. O., Ohorodnik, Y. M., Ivanova, H. V., Zakharchenko, B. V., Raspertova, I. V., Vaschenko, O. V., Dobrydnev, A. V., Grygorenko, O. O. \& Lampeka, R. D. (2022). Chem. Heterocycl. Compd, 58, 116-128.
Kitchen, J. A. \& Brooker, S. (2008). Coord. Chem. Rev. 252, 20722092.

Klingele, M. H. \& Brooker, S. (2003). Coord. Chem. Rev. 241, 119132.

Li, B., Song, H., Wu, H., Wang, J., Tian, X. \& Ma, X. (2021). J. Coord. Chem. 74, 1159-1167.
Liu, B., Fernandes, J., Tomé, J., Paz, F. \& Cunha-Silva, L. (2015). Molecules, 20, 12341-12363.
Liu, Y.-Y. (2007). J. Coord. Chem. 60, 2597-2605.
Opsomer, T. \& Dehaen, W. (2022). Triazoles. In Comprehensive Heterocyclic Chemistry IV, edited by D. S. Black, J. Cossy \& C. V. Stevens, pp. 78-121. Oxford: Elsevier.
Pagacz-Kostrzewa, M., Krupa, J., Gul, W. \& Wierzejewska, M. (2020). J. Mol. Struct. 1209, 127938.

Pagacz-Kostrzewa, M., Sałdyka, M., Bil, A., Gul, W., Wierzejewska, M., Khomenko, D. M. \& Doroschuk, R. O. (2019). J. Phys. Chem. A, 123, 841-850.
Petrenko, Y. P., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Piasta, K., Gumienna-Kontecka, E. \& Lampeka, R. D. (2020). Inorg. Chim. Acta, 500, 119216.

Petrenko, Y. P., Piasta, K., Khomenko, D. M., Doroshchuk, R. O., Shova, S., Novitchi, G., Toporivska, Y., Gumienna-Kontecka, E., Martins, L. M. D. R. S. \& Lampeka, R. D. (2021). RSC Adv. 11, 23442-23449.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. \& Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.
Strzelecka, M. \& Świątek, P. (2021). Pharmaceuticals, 14, 224.
Wang, J., Li, W.-Z., Wang, J.-G. \& Xiao, H.-P. (2011). Z. Krist. New Cryst. Struct. 226, 163-164.
Yan, J., Lu, L., Zhu, M. \& Feng, S. (2018). J. Solid State Chem. 262, 351-359.
Yang, K., Tan, Y.-H., Wang, B., Zhou, H.-T., Li, C., Yang, C.-S., Liu, Y., Gao, J.-X. \& Tang, Y.-Z. (2019). Wuji Hиахие, 35, 703.
Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Fesych, I. V., Starova, V. S., Rusakova, N. V., Smola, S. S., Shova, S. \& Lampeka, R. D. (2021). Theor. Exp. Chem. 57, 358-365.
Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Raspertova, I. V., Starova, V. S., Trachevsky, V. V., Shova, S., Severynovska, O. V., Martins, L. M. D. R. S., Pombeiro, A. J. L., Arion, V. B. \& Lampeka, R. D. (2019). New J. Chem. 43, 1097310984.

Zakharchenko, B. V., Khomenko, D. M., Doroshchuk, R. O., Severynovska, O. V., Raspertova, I. V., Starova, V. S. \& Lampeka, R. D. (2017). Chem. Pap. 71, 2003-2009.

Zhu, J., Yin, X.-H., Feng, Y., Hu, F.-L., Zhuang, Y. \& Lin, C.-W. (2008). Acta Cryst. E64, m119.

Zhu, J., Yin, X.-H., Feng, Y., Su, Z.-X. \& Lin, C.-W. (2007). Acta Cryst. E63, m3167.

supporting information

Acta Cryst. (2024). E80, 54-57 [https://doi.org/10.1107/S2056989023010770]

Crystal structure and Hirshfeld-surface analysis of diaquabis(5-

 methyl-1H-1,2,4-triazole-3-carboxylato)copper(II)Yuliia P. Petrenko, Oleksandr S. Vynohradov, Dmytro M. Khomenko, Roman O. Doroshchuk,
Ilona V. Raspertova, Sergiu Shova and Rostyslav D. Lampeka

Computing details

Diaquabis(5-methyl-1H-1,2,4-triazole-3-carboxylato)copper(II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=351.78$
Triclinic, $P \overline{1}$
$a=6.8465$ (4) \AA
$b=7.1097$ (7) \AA
$c=7.2090(5) \AA$
$\alpha=79.267(7)^{\circ}$
$\beta=83.193(6)^{\circ}$
$\gamma=64.076(8)^{\circ}$
$V=309.80(5) \AA^{3}$

Data collection

Xcalibur, Eos diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1593 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2012)
$T_{\text {min }}=0.774, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.062$
$S=1.11$
1397 reflections
101 parameters
0 restraints

$$
Z=1
$$

$F(000)=179$
$D_{\mathrm{x}}=1.886 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1444 reflections
$\theta=2.9-28.9^{\circ}$
$\mu=1.81 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Prism, clear light blue
$0.45 \times 0.1 \times 0.1 \mathrm{~mm}$

2216 measured reflections
1397 independent reflections
1381 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=29.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-8 \rightarrow 9$
$k=-9 \rightarrow 9$
$l=-9 \rightarrow 9$

Primary atom site location: dual
Hydrogen site location: mixed
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0239 P)^{2}+0.1883 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cu1	0.500000	0.500000	0.500000	$0.01665(11)$
O1	$0.7195(2)$	$0.6171(2)$	$0.41929(19)$	$0.0200(3)$
O1W	$0.2171(2)$	$0.8296(2)$	$0.31785(19)$	$0.0211(3)$
H1WA	0.100833	0.815339	0.353434	0.032^{*}
H1WB	0.208435	0.929486	0.372183	0.032^{*}
O2	$0.8357(2)$	$0.8422(2)$	$0.49419(19)$	$0.0216(3)$
N1	$0.4392(2)$	$0.6629(2)$	$0.7081(2)$	$0.0148(3)$
N2	$0.5479(2)$	$0.8664(2)$	$0.8331(2)$	$0.0184(3)$
N3	$0.3859(2)$	$0.8329(2)$	$0.9412(2)$	$0.0187(3)$
H3	0.332405	0.882766	1.045013	0.022^{*}
C1	$0.7246(3)$	$0.7403(3)$	$0.5225(3)$	$0.0161(3)$
C2	$0.5727(3)$	$0.7621(3)$	$0.6937(2)$	$0.0151(3)$
C3	$0.3199(3)$	$0.7127(3)$	$0.8661(2)$	$0.0160(3)$
C4	$0.1414(3)$	$0.6522(3)$	$0.9429(3)$	$0.0223(4)$
H4A	0.011749	0.743962	0.876397	0.033^{*}
H4B	0.115402	0.664910	1.074796	0.033^{*}
H4C	0.181446	0.508565	0.927290	0.033^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Cu1	$0.02239(18)$	$0.01979(18)$	$0.01580(17)$	$-0.01517(14)$	$0.00516(11)$	$-0.00932(12)$
O1	$0.0244(7)$	$0.0226(7)$	$0.0205(7)$	$-0.0158(6)$	$0.0067(5)$	$-0.0108(5)$
O1W	$0.0233(7)$	$0.0253(7)$	$0.0215(7)$	$-0.0154(6)$	$0.0071(5)$	$-0.0113(6)$
O2	$0.0219(7)$	$0.0232(7)$	$0.0275(7)$	$-0.0161(6)$	$0.0066(5)$	$-0.0102(6)$
N1	$0.0170(7)$	$0.0143(7)$	$0.0156(7)$	$-0.0087(6)$	$0.0009(5)$	$-0.0038(6)$
N2	$0.0198(7)$	$0.0214(8)$	$0.0188(8)$	$-0.0121(7)$	$0.0022(6)$	$-0.0076(6)$
N3	$0.0215(8)$	$0.0221(8)$	$0.0164(8)$	$-0.0114(7)$	$0.0041(6)$	$-0.0098(6)$
C1	$0.0168(8)$	$0.0150(8)$	$0.0165(8)$	$-0.0067(7)$	$-0.0001(6)$	$-0.0034(7)$
C2	$0.0162(8)$	$0.0148(8)$	$0.0166(8)$	$-0.0085(7)$	$-0.0006(6)$	$-0.0033(7)$
C3	$0.0180(8)$	$0.0151(8)$	$0.0147(8)$	$-0.0063(7)$	$-0.0002(6)$	$-0.0041(7)$
C4	$0.0216(9)$	$0.0270(10)$	$0.0216(9)$	$-0.0140(8)$	$0.0041(7)$	$-0.0056(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9987(12)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.363(2)$
$\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$1.9987(12)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.329(2)$
$\mathrm{Cu} 1-\mathrm{O} 1 \mathrm{~W}$	$2.5405(15)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.361(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.9603(15)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.310(2)$

Cu1-N1 ${ }^{\text {i }}$	1.9603 (15)	N3-C3	1.340 (2)
O1-C1	1.264 (2)	C1-C2	1.501 (2)
O2-C1	1.239 (2)	C3-C4	1.481 (2)
$\mathrm{O} 1^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 1$	180.0	C3-N1-C2	104.36 (14)
O1-Cu1-O1W	89.09 (5)	C2-N2-N3	101.94 (14)
O1-Cul-O1W	90.91 (5)	C3-N3-N2	111.67 (15)
$\mathrm{N1}{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{O} 1$	97.00 (5)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	113.53 (15)
$\mathrm{N} 1^{\text {i }}-\mathrm{Cu} 1-\mathrm{Ol}^{\text {i }}$	83.00 (5)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	127.10 (17)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Ol}^{\text {i }}$	97.00 (5)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	119.35 (16)
N1-Cu1-O1	83.00 (5)	N1-C2-C1	116.79 (15)
N1-Cul-O1W	92.71 (5)	N2-C2-N1	114.35 (16)
N1-Cu1-O1W	87.29 (5)	N2-C2-C1	128.86 (16)
N1 ${ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 1$	180.0	N1-C3-N3	107.67 (15)
C1-O1-Cu1	115.49 (11)	N1-C3-C4	126.36 (16)
C2-N1-Cu1	111.00 (11)	N3-C3-C4	125.95 (16)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{Cu} 1$	144.60 (12)		

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 \cdots \mathrm{O} 1 W^{\mathrm{ii}}$	0.86	2.06	$2.822(2)$	147
$\mathrm{~N} 3 — \mathrm{H} 3 \cdots \mathrm{~N} 2^{\mathrm{iii}}$	0.86	2.58	$3.121(2)$	122
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O}^{\mathrm{iv}}$	0.85	1.93	$2.781(2)$	175
$\mathrm{O} 1 W — \mathrm{H} 1 W A \cdots \mathrm{O}^{v}$	0.85	1.92	$2.737(2)$	160
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots \mathrm{O} 1 W^{\mathrm{ii}}$	0.96	2.59	$3.367(2)$	139

Symmetry codes: (ii) $x, y, z+1$; (iii) $-x+1,-y+2,-z+2$; (iv) $-x+1,-y+2,-z+1$; (v) $x-1, y, z$.

