

Received 22 February 2024 Accepted 15 April 2024

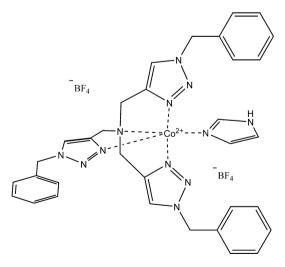
Edited by J. Reibenspies, Texas A & M University, USA

Keywords: cobalt(II); five-coordinate; tbta; imidazole; crystal structure.

CCDC reference: 2348506

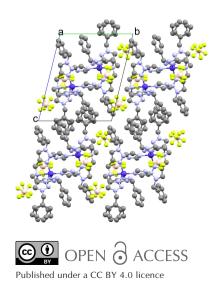
Supporting information: this article has supporting information at journals.iucr.org/e

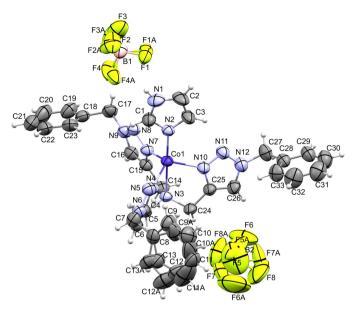
Structure of the five-coordinate Co^{II} complex (1H-imidazole){tris[(1-benzyltriazol-4-yl- κN^3)-methyl]amine- κN }cobalt(II) bis(tetrafluoroborate)


Vipul Batra, Garrett C. Reed and David L. Tierney*

Department of Chemistry and Biochemistry, Miami University, 651 E. High St., Oxford, Ohio 45056, USA. *Correspondence e-mail: dtierney@miamioh.edu

The title compound, $[Co(C_3H_4N_2)(C_{30}H_{30}N_{10})](BF_4)_2$, is a five-coordinate Co^{II} complex based on the neutral ligands tris[(1-benzyltriazol-4-yl)methyl]amine (tbta) and imidazole. It exhibits a distorted trigonal bipyramidal geometry in which the equatorial positions are occupied by the three N-atom donors from the triazole rings of the tripodal tbta ligand. The apical amine N-atom donor of tbta and the N-atom donor of the imidazole ligand occupy the axial positions of the coordination sphere. Two tetrafluoroborate anions provide charge balance in the crystal.


1. Chemical context


Five-coordinate complexes of Co^{II} are under intense investigation as potential single ion magnets, owing to unusually large magnetic anisotropy. The novel five-coordinate Co^{II} title complex is expected to exhibit similar axial magnetic anisotropy, as it shares a similar geometry with related complexes of tris[(1-benzyltriazol-4-yl)methyl]amine (tbta) (Mondal *et al.*, 2017; Schweinfurth *et al.*, 2015, 2017), which have shown promising slow magnetic relaxation. This complex pairs two neutral N-atom donor ligands with Co^{II} . Notably, the title complex, [Co(imidazole)(tbta)](BF₄)₂, represents the first of its kind with a neutral fifth donor, expanding the scope of potential applications within this structural motif.

2. Structural commentary

The central metal ion coordinates five N-atom donors, four from the tbta ligand and one from imidazole (Fig. 1). The Co atom sits 0.51 Å above the equatorial plane (N4/N7/N10)

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Table 1

Selected bond angles (°).

N2-Co1-N7	103.73 (6)	N4-Co1-N10	112.62 (7)
N2-Co1-N4	105.56 (6)	N2-Co1-N3	178.95 (6)
N7-Co1-N4	117.04 (6)	N7-Co1-N3	75.67 (6)
N2-Co1-N10	104.25 (6)	N4-Co1-N3	75.50 (6)
N7-Co1-N10	112.12 (7)	N10-Co1-N3	75.26 (6)

generated by the triazole units of tbta, while the apical N-atom donors form an angle of $178.95 (6)^{\circ}$ with respect to the cobalt ion. The geometry about the cobalt center is distorted trigonal bipyramidal ($\tau_5 = 1.03$; Addison *et al.*, 1984). A complete list of angles in the coordination sphere is given in Table 1. Equatorial N-atom donors are present at an average distance of 2.04 Å from the metal ion, and the imidazole N-atom donor is at 2.02 Å. The apical amine N atom of that is found at 2.34 Å from the central metal (Table 2). Two tetrafluoroborate counter-ions balance the charge on the metal ion. Both counter-ions, and one of the terminal arene rings, are disordered. The terminal benzyl groups of the tbta ligand, rather than packing upright to form a pocket around the imidazole, are rotated away (Fig. 2). Two are nearly coplanar at angles of 19.18 (C18-C23) and 15.92° (C28-C33) with respect to the trigonal plane, while the third (C8-C13) is almost normal at an

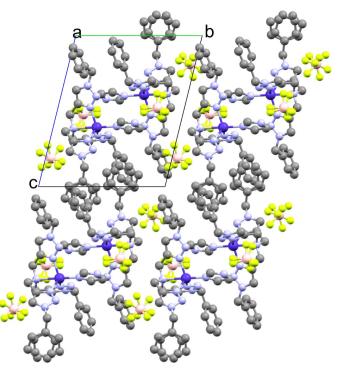


Figure 2

The crystal packing of the title compound. H atoms have been omitted for clarity.

angle of 72.57°. The counter-ions pack nearly along the axial direction of the trigonal bipyramid, where one appears hydrogen bonded to the imidazole N–H group (\sim 2.2 Å N–H···F). The second is translated to a position directly opposite the imidazole, appearing to be shared between two complex molecules.

3. Supramolecular features

The packing of the tbta terminal benzyl groups, as noted above, facilitates the stacking of complexes seen in the extended structure. The complexes pack antiparallel, with the imidazoles of adjacent complexes approximately coplanar and 4.1 Å apart. The counter-ion hydrogen bonded to the imidazole N—H group appears to be tightly associated with one complex. In contrast, the other counter-ion occupies a position that suggests it is shared between two unit cells. This counterion exhibits significantly more disorder than the other, owing to its placement in the lattice. No intermolecular hydrogen bonding is observed in the extended structure.

Table 2

Structural parameters for five-coordinate Co^{II} complexes based on the tbta ligand (distances in Å).

Compound	Co-N _{eq} (tbta)	Co-N _{ax} (tbta)	$Co-X_{ax}$	Reference	CSD refcode
$[Co(tbta)(Im)](BF_4)_2$	2.04	2.34	2.02 (N)	This work	This work
[Co(tbta)(N ₃)]ClO ₄ ·3CH ₃ CN	2.04	2.37	1.96 (N)	Schweinfurth et al. (2015)	RUDDUR
[Co(tbta)(NCS)]BF ₄	2.03	2.37	1.98 (N)	Schweinfurth et al. (2017)	HAWYOW
[Co(tbta)Cl]BF ₄	2.04	2.39	2.26 (Cl)	Schweinfurth et al. (2017)	HAWXEL
[Co(tbta)(NCS)]BF ₄ ·3CH ₃ CN	2.03	2.35	1.95 (N)	Schweinfurth et al. (2017)	HAWXAH
[Co(tbta)(Br)]ClO ₄	2.05	2.33	2.40 (Br)	Mondal et al. (2017)	KENWUY
[Co(tbta)(Cl)]ClO ₄ ·2CH ₃ CN·H ₂ O	2.04	2.34	2.26 (Cl)	Mondal et al. (2017)	KENWOS

4. Database survey

The title compound marks the seventh Co^{II} complex with tbta and an ancillary ligand that presents a distorted five-coordinated structure. It is the first with a neutral ancillary ligand, requiring two counter-anions. The neutral imidazole ligand occupies a position closer to the Co^{II} ion, more like the thiocyanate and azide complexes. The equatorial triazole N-atom donors are remarkably similar across the entire set of compounds. Meanwhile, the apical Co–N distance shows some small variation, trending longer when *trans* to an anionic N-atom donor. This distance in the parent molecule is uniquely short among ancillary N-atom donors in Table 2.

5. Synthesis and crystallization

The click-derived tbta ligand was synthesized according to the literature (Mondal *et al.*, 2017). The title complex was formed under an inert atmosphere by first preparing a solution of 0.1 mmol tbta and 0.14 mmol imidazole in 10 ml of degassed acetonitrile, then adding 0.1 mmol of solid CoBF₄·6H₂O. The mixture was stirred for 2 h at room temperature. The solvent was removed under vacuum to reveal a dark-blue crude product. The methanol-soluble fraction produced brown block-shaped crystals by slow evaporation over a period of 2 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were positioned geometrically (sp^2 -C-H = 0.93 Å, sp^3 -C-H = 0.97 Å and N-H = 0.86 Å) and were refined using a riding model, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ for CH₂ and C-H hydrogens, and $1.5U_{\rm eq}({\rm N})$ for N-H hydrogens.

Acknowledgements

The authors wish to thank Dr John Rakovan and Dr Monu Joy for helpful discussions.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1152755 to D. L. Tierney; grant No. CHE-1532042 to Miami University).

Table 3	
Experimental	details.

Experimental details.	
Crystal data	
Chemical formula	$[Co(C_3H_4N_2)(C_{30}H_{30}N_{10})](BF_4)_2$
M _r	831.27
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	297
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.6861 (4), 13.0639 (5), 15.7006 (6)
α, β, γ (°)	96.304 (2), 107.142 (2), 110.766 (2)
$lpha, eta, \gamma$ (°) V (Å ³)	1901.24 (13)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.53
Crystal size (mm)	$0.23 \times 0.16 \times 0.13$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2016; Krause <i>et al.</i> , 2015)
T_{\min}, T_{\max}	0.681, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	212950, 11085, 8422
R _{int}	0.053
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.705
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.118, 1.04
No. of reflections	11085
No. of parameters	622
No. of restraints	19
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.30, -0.31

Computer programs: *APEX3* (Bruker, 2016), *SAINT* (Bruker, 2016), *SHELXT2018* (Sheldrick, 2015*a*), *SHELXL2019* (Sheldrick, 2015*b*), *publCIF* (Westrip, 2010) and *Mercury* (Macrae *et al.*, 2020).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Mondal, A. K., Jover, J., Ruiz, E. & Konar, S. (2017). *Chem. A Eur. J.* **23**, 12550–12558.
- Schweinfurth, D., Krzystek, J., Atanasov, M., Klein, J., Hohloch, S., Telser, J., Demeshko, S., Meyer, F., Neese, F. & Sarkar, B. (2017). *Inorg. Chem.* 56, 5253–5265.
- Schweinfurth, D., Sommer, M. G., Atanasov, M., Demeshko, S., Hohloch, S., Meyer, F., Neese, F. & Sarkar, B. (2015). *J. Am. Chem. Soc.* 137, 1993–2005.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2024). E80, 486-488 [https://doi.org/10.1107/S205698902400330X]

Structure of the five-coordinate Co^{II} complex (1*H*-imidazole){tris[(1-benzyl-triazol-4-yl- κN^3)methyl]amine- κN }cobalt(II) bis(tetrafluoroborate)

Vipul Batra, Garrett C. Reed and David L. Tierney

Computing details

 $(1H-Imidazole){tris[(1-benzyltriazol-4-yl-\kappa N^3)methyl]amine-\kappa N} cobalt(II) bis(tetrafluoroborate)$

Crystal data

 $[Co(C_{3}H_{4}N_{2})(C_{30}H_{30}N_{10})](BF_{4})_{2}$ $M_{r} = 831.27$ Triclinic, $P\overline{1}$ a = 10.6861 (4) Å b = 13.0639 (5) Å c = 15.7006 (6) Å a = 96.304 (2)° $\beta = 107.142$ (2)° $\gamma = 110.766$ (2)° V = 1901.24 (13) Å³

Data collection

Bruker APEXII CCD diffractometer Detector resolution: 8.33 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016; Krause *et al.*, 2015) $T_{\min} = 0.681$, $T_{\max} = 0.746$ 212950 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.118$ S = 1.0411085 reflections 622 parameters 19 restraints Primary atom site location: dual Z = 2 F(000) = 850 $D_x = 1.452 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9079 reflections $\theta = 2.8-29.5^{\circ}$ $\mu = 0.53 \text{ mm}^{-1}$ T = 297 K Block, brown $0.23 \times 0.16 \times 0.13 \text{ mm}$

11085 independent reflections 8422 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 30.1^\circ, \ \theta_{min} = 2.1^\circ$ $h = -15 \rightarrow 15$ $k = -18 \rightarrow 18$ $l = -22 \rightarrow 22$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 0.8855P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.31$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

$ \begin{array}{llllllllllllllllllllllllllllllllllll$		x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Col	0.36020 (3)	0.34470 (2)	0.60765 (2)	0.04356 (8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F1A	0.2525 (11)	0.8281 (18)	0.5171 (11)	0.099 (5)	0.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	71	0.2441 (11)	0.8323 (18)	0.5417 (11)	0.082 (3)	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F2	0.0306 (12)	0.8431 (8)	0.5049 (6)	0.078 (2)	0.5
3A $0.0676(14)$ $0.7550(8)$ $0.3854(6)$ $0.122(4)$ 0.5 44 $0.0432(12)$ $0.6776(7)$ $0.4778(10)$ $0.122(4)$ 0.5 $4A$ $0.0559(9)$ $0.6868(6)$ $0.5085(10)$ $0.104(3)$ 0.5 55 $0.7255(15)$ $0.1135(11)$ $0.8346(6)$ $0.164(5)$ 0.5 $5A$ $0.7325(14)$ $0.1367(9)$ $0.8346(6)$ $0.149(2)$ 0.5 66 $0.7922(10)$ $0.0967(5)$ $0.7480(5)$ $0.149(2)$ 0.5 $6A$ $0.7169(16)$ $-0.0137(12)$ $0.8717(10)$ $0.280(6)$ 0.5 $7A$ $0.6539(5)$ $-0.0566(4)$ $0.7751(6)$ $0.1246(19)$ 0.5 $7A$ $0.8787(5)$ $0.0559(6)$ $0.8182(5)$ $0.148(4)$ 0.5 $8A$ $0.6436(7)$ $-0.0088(7)$ $0.7250(5)$ $0.152(3)$ 0.5 11 $0.3017(2)$ $0.63686(16)$ $0.57930(15)$ $0.0699(5)$ 11 11 0.246508 0.671656 0.565345 $0.084*$ 2 $0.36964(17)$ $0.5047(12)$ $0.6048(11)$ $0.4688(4)$ 55 $0.22898(18)$ $0.35746(14)$ $0.7569(12)$ $0.0534(4)$ 6 $0.16517(18)$ $0.28550(15)$ $0.79868(11)$ $0.0545(4)$ 7 $0.25982(17)$ $0.254318(13)$ $0.40209(11)$ $0.0540(4)$ 11 $0.68556(19)$ $0.45718(15)$ $0.6587(13)$ $0.5514(1)$ 11 $0.6556(19)$ $0.45718(15)$ $0.6587(13)$ $0.591(4)$ 12	F2A	0.0540 (13)	0.8592 (8)	0.5050 (8)	0.100 (3)	0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F3	0.1035 (14)	0.8054 (8)	0.3951 (5)	0.114 (3)	0.5
4A $0.0559 (9)$ $0.6868 (6)$ $0.5085 (10)$ $0.104 (3)$ 0.5 55 $0.7255 (15)$ $0.1135 (11)$ $0.8639 (8)$ $0.196 (6)$ 0.5 $5A$ $0.7325 (14)$ $0.1367 (9)$ $0.8346 (6)$ $0.164 (5)$ 0.5 66 $0.7922 (10)$ $0.0967 (5)$ $0.7480 (5)$ $0.149 (2)$ 0.5 $6A$ $0.7169 (16)$ $-0.0137 (12)$ $0.8717 (10)$ $0.280 (6)$ 0.5 7 $0.6539 (5)$ $-0.0566 (4)$ $0.7751 (6)$ $0.1246 (19)$ 0.5 $7A$ $0.8787 (5)$ $0.0559 (6)$ $0.8182 (5)$ $0.148 (4)$ 0.5 8 $0.8653 (9)$ $0.0314 (8)$ $0.8542 (8)$ $0.199 (5)$ 0.5 $8A$ $0.6436 (7)$ $-0.0088 (7)$ $0.7250 (5)$ $0.152 (3)$ 0.5 1 $0.3017 (2)$ $0.63686 (16)$ $0.57980 (15)$ $0.0699 (5)$ 11 1 0.246508 0.671656 0.565345 $0.084*$ 2 $0.36964 (17)$ $0.50047 (12)$ $0.60048 (11)$ $0.0460 (3)$ 3 $0.35140 (17)$ $0.16428 (12)$ $0.61403 (11)$ $0.0475 (3)$ 4 $0.25689 (17)$ $0.29742 (13)$ $0.69646 (11)$ $0.0488 (4)$ 5 $0.22898 (18)$ $0.35746 (14)$ $0.75569 (12)$ $0.0534 (4)$ 7 $0.25982 (17)$ $0.25491 (12)$ $0.47541 (11)$ $0.0545 (4)$ 7 $0.25982 (17)$ $0.25491 (12)$ $0.47541 (11)$ $0.0540 (4)$ 10 $0.57001 (18)$ $0.28138 (13)$ 0.40	F3A	0.0676 (14)	0.7550 (8)	0.3854 (6)	0.122 (4)	0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F4	0.0432 (12)	0.6776 (7)	0.4778 (10)	0.122 (4)	0.5
5A $0.7325(14)$ $0.1367(9)$ $0.8346(6)$ $0.164(5)$ 0.5 66 $0.7922(10)$ $0.0967(5)$ $0.7480(5)$ $0.149(2)$ 0.5 $6A$ $0.7169(16)$ $-0.0137(12)$ $0.8717(10)$ $0.280(6)$ 0.5 7 $0.6539(5)$ $-0.0566(4)$ $0.7751(6)$ $0.1246(19)$ 0.5 $7A$ $0.8787(5)$ $0.0559(6)$ $0.8182(5)$ $0.148(4)$ 0.5 8 $0.8653(9)$ $0.0314(8)$ $0.8542(8)$ $0.199(5)$ 0.5 $8A$ $0.6436(7)$ $-0.0088(7)$ $0.7250(5)$ $0.152(3)$ 0.5 1 $0.3017(2)$ $0.63686(16)$ $0.57980(15)$ $0.0699(5)$ 1 1 0.246508 0.671656 0.565345 $0.084*$ 2 $0.36964(17)$ $0.50047(12)$ $0.60048(11)$ $0.0460(3)$ 3 $0.35140(17)$ $0.16428(12)$ $0.61403(11)$ $0.0475(3)$ 4 $0.25689(17)$ $0.29742(13)$ $0.69646(11)$ $0.0488(4)$ 5 $0.22898(18)$ $0.35746(14)$ $0.75569(12)$ $0.0534(4)$ 6 $0.16517(18)$ $0.28550(15)$ $0.79868(11)$ $0.0545(4)$ 7 $0.25982(17)$ $0.25491(12)$ $0.47541(11)$ $0.0540(4)$ 10 $0.57001(18)$ $0.36719(13)$ $0.65807(13)$ $0.0591(4)$ 11 $0.68556(19)$ $0.41538(15)$ $0.68478(14)$ $0.0611(4)$ 11 $0.2593(3)$ $0.52657(18)$ $0.57280(17)$ $0.0638(6)$ $1A$ 0.164029 0.47495	F4A	0.0559 (9)	0.6868 (6)	0.5085 (10)	0.104 (3)	0.5
6 $0.7922(10)$ $0.0967(5)$ $0.7480(5)$ $0.149(2)$ 0.5 $6A$ $0.7169(16)$ $-0.0137(12)$ $0.8717(10)$ $0.280(6)$ 0.5 7 $0.6539(5)$ $-0.0566(4)$ $0.7751(6)$ $0.1246(19)$ 0.5 $7A$ $0.8787(5)$ $0.0559(6)$ $0.8182(5)$ $0.148(4)$ 0.5 8 $0.8653(9)$ $0.0314(8)$ $0.8542(8)$ $0.199(5)$ 0.5 $8A$ $0.6436(7)$ $-0.0088(7)$ $0.7250(5)$ $0.152(3)$ 0.5 1 $0.3017(2)$ $0.63686(16)$ $0.57980(15)$ $0.0699(5)$ 1 1 0.246508 0.671656 0.565345 $0.084*$ 2 $0.36964(17)$ $0.50047(12)$ $0.60048(11)$ $0.0460(3)$ 3 $0.35140(17)$ $0.16428(12)$ $0.61403(11)$ $0.0475(3)$ 4 $0.25689(17)$ $0.29742(13)$ $0.69646(11)$ $0.0488(4)$ 5 $0.22898(18)$ $0.35746(14)$ $0.75569(12)$ $0.0534(4)$ 6 $0.16517(18)$ $0.28491(12)$ $0.47541(11)$ $0.0467(3)$ 8 $0.19169(18)$ $0.28138(13)$ $0.4029(11)$ $0.0530(4)$ 9 $0.14603(19)$ $0.19319(14)$ $0.33275(11)$ $0.0540(4)$ 10 $0.57001(18)$ $0.36719(13)$ $0.65806(13)$ $0.0540(4)$ 11 $0.68556(19)$ $0.45018(15)$ $0.68478(14)$ $0.0611(4)$ 12 $0.79108(19)$ $0.45018(15)$ $0.68478(14)$ $0.0611(4)$ 11 $0.2593(3)$ $0.52657(18)$ <td>F5</td> <td>0.7255 (15)</td> <td>0.1135 (11)</td> <td>0.8639 (8)</td> <td>0.196 (6)</td> <td>0.5</td>	F5	0.7255 (15)	0.1135 (11)	0.8639 (8)	0.196 (6)	0.5
6A $0.7169(16)$ $-0.0137(12)$ $0.8717(10)$ $0.280(6)$ 0.5 7 $0.6539(5)$ $-0.0566(4)$ $0.7751(6)$ $0.1246(19)$ 0.5 $7A$ $0.8787(5)$ $0.0559(6)$ $0.8182(5)$ $0.148(4)$ 0.5 8 $0.8653(9)$ $0.0314(8)$ $0.8542(8)$ $0.199(5)$ 0.5 $8A$ $0.6436(7)$ $-0.0088(7)$ $0.7250(5)$ $0.152(3)$ 0.5 11 $0.3017(2)$ $0.63686(16)$ $0.57980(15)$ $0.0699(5)$ 1 1 0.246508 0.671656 0.565345 $0.084*$ 2 $0.36964(17)$ $0.50047(12)$ $0.60048(11)$ $0.0460(3)$ 3 $0.35140(17)$ $0.16428(12)$ $0.61403(11)$ $0.0475(3)$ 4 $0.25689(17)$ $0.29742(13)$ $0.69646(11)$ $0.0488(4)$ 5 $0.22898(18)$ $0.35746(14)$ $0.75569(12)$ $0.0534(4)$ 6 $0.16517(18)$ $0.28550(15)$ $0.79868(11)$ $0.0467(3)$ 8 $0.19169(18)$ $0.28138(13)$ $0.40209(11)$ $0.0503(4)$ 9 $0.14603(19)$ $0.19319(14)$ $0.33275(11)$ $0.0540(4)$ 10 $0.57001(18)$ $0.36719(13)$ $0.65806(13)$ $0.0511(4)$ 11 $0.68556(19)$ $0.45018(15)$ $0.68478(14)$ $0.0611(4)$ 12 $0.79108(19)$ $0.41538(15)$ $0.68478(14)$ $0.0611(4)$ 14 0.164029 0.474950 0.551155 $0.077*$ 2 $0.4445(3)$ $0.68414(19)$ $0.6131(2)$ <	F5A	0.7325 (14)	0.1367 (9)	0.8346 (6)	0.164 (5)	0.5
7 $0.6539(5)$ $-0.0566(4)$ $0.7751(6)$ $0.1246(19)$ 0.5 7A $0.8787(5)$ $0.0559(6)$ $0.8182(5)$ $0.148(4)$ 0.5 8 $0.8653(9)$ $0.0314(8)$ $0.8542(8)$ $0.199(5)$ 0.5 8A $0.6436(7)$ $-0.0088(7)$ $0.7250(5)$ $0.152(3)$ 0.5 1 $0.3017(2)$ $0.63686(16)$ $0.57980(15)$ $0.0699(5)$ 0.5 1 0.246508 0.671656 0.565345 $0.084*$ 2 $0.36964(17)$ $0.50047(12)$ $0.60048(11)$ $0.0460(3)$ 3 $0.35140(17)$ $0.16428(12)$ $0.61403(11)$ $0.0475(3)$ 4 $0.25689(17)$ $0.29742(13)$ $0.69646(11)$ $0.0488(4)$ 5 $0.22898(18)$ $0.35746(14)$ $0.75569(12)$ $0.0534(4)$ 6 $0.16517(18)$ $0.28550(15)$ $0.79868(11)$ $0.0545(4)$ 7 $0.25982(17)$ $0.25491(12)$ $0.47541(11)$ $0.0467(3)$ 8 $0.19169(18)$ $0.28138(13)$ $0.40209(11)$ $0.0530(4)$ 9 $0.14603(19)$ $0.19319(14)$ $0.33275(11)$ $0.0540(4)$ 10 $0.57001(18)$ $0.36719(13)$ $0.65897(13)$ $0.0511(4)$ 12 $0.79108(19)$ $0.41538(15)$ $0.68478(14)$ $0.0611(4)$ 14 $0.2593(3)$ $0.52657(18)$ $0.57280(17)$ $0.0638(6)$ 1A 0.164029 0.474950 0.551155 $0.077*$ 2 $0.4445(3)$ $0.68414(19)$ $0.6131(2)$ $0.781(7)$	F6	0.7922 (10)	0.0967 (5)	0.7480 (5)	0.149 (2)	0.5
7A 0.8787 (5) 0.0559 (6) 0.8182 (5) 0.148 (4) 0.5 8 0.8653 (9) 0.0314 (8) 0.8542 (8) 0.199 (5) 0.5 8A 0.6436 (7) -0.0088 (7) 0.7250 (5) 0.152 (3) 0.5 1 0.3017 (2) 0.63686 (16) 0.57980 (15) 0.0699 (5)1 0.246508 0.671656 0.565345 $0.084*$ 2 0.36964 (17) 0.50047 (12) 0.60048 (11) 0.0460 (3)3 0.35140 (17) 0.16428 (12) 0.61403 (11) 0.0475 (3)4 0.25689 (17) 0.29742 (13) 0.69646 (11) 0.0488 (4)5 0.22898 (18) 0.35746 (14) 0.75569 (12) 0.0534 (4)6 0.16517 (18) 0.28550 (15) 0.79868 (11) 0.0467 (3)8 0.19169 (18) 0.28138 (13) 0.40209 (11) 0.0530 (4)9 0.14603 (19) 0.19319 (14) 0.33275 (11) 0.0540 (4)10 0.57001 (18) 0.36719 (13) 0.65806 (13) 0.0540 (4)11 0.68556 (19) 0.445018 (15) 0.68478 (14) 0.0611 (4)12 0.79108 (19) 0.41538 (15) 0.68478 (14) 0.0611 (4)14 0.164029 0.474950 0.551155 $0.077*$ 2 0.4445 (3) 0.68414 (19) 0.6131 (2) 0.781 (7)	F6A	0.7169 (16)	-0.0137 (12)	0.8717 (10)	0.280 (6)	0.5
8 0.8653 (9) 0.0314 (8) 0.8542 (8) 0.199 (5) 0.5 8A 0.6436 (7) -0.0088 (7) 0.7250 (5) 0.152 (3) 0.5 1 0.3017 (2) 0.63686 (16) 0.57980 (15) 0.0699 (5) 0.5 1 0.246508 0.671656 0.565345 0.084* 0.3014 (17) 0.16428 (12) 0.61403 (11) 0.0460 (3) 3 0.35140 (17) 0.16428 (12) 0.61403 (11) 0.0488 (4) 0.5569 (12) 0.0534 (4) 5 0.22898 (18) 0.35746 (14) 0.75569 (12) 0.0545 (4) 0.4667 (3) 8 0.19169 (18) 0.28138 (13) 0.40209 (11) 0.0546 (4) 0.0546 (4) 10 0.57001 (18) 0.36719 (13) 0.65806 (13) 0.0540 (4) 11 11 0.68556 (19) 0.41538 (15) 0.68877 (13) 0.0591 (4) 12 11 0.68556 (19) 0.41538 (15) 0.68478 (14) 0.0611 (4) 12 0.79108 (19) 0.41538 (15) 0.68478 (14) 0.0611 (4)	7	0.6539 (5)	-0.0566 (4)	0.7751 (6)	0.1246 (19)	0.5
8A 0.6436 (7) -0.0088 (7) 0.7250 (5) 0.152 (3) 0.5 1 0.3017 (2) 0.63686 (16) 0.57980 (15) 0.0699 (5)1 0.246508 0.671656 0.565345 $0.084*$ 2 0.36964 (17) 0.50047 (12) 0.60048 (11) 0.0460 (3)3 0.35140 (17) 0.16428 (12) 0.61403 (11) 0.0475 (3)4 0.25689 (17) 0.29742 (13) 0.69646 (11) 0.0488 (4)5 0.22898 (18) 0.35746 (14) 0.75569 (12) 0.0534 (4)6 0.16517 (18) 0.28550 (15) 0.79868 (11) 0.0545 (4)7 0.25982 (17) 0.25491 (12) 0.47541 (11) 0.0467 (3)8 0.19169 (18) 0.28138 (13) 0.40209 (11) 0.0534 (4)9 0.14603 (19) 0.19319 (14) 0.33275 (11) 0.0540 (4)10 0.57001 (18) 0.36719 (13) 0.65806 (13) 0.0591 (4)11 0.68556 (19) 0.45018 (15) 0.68478 (14) 0.0611 (4)12 0.79108 (19) 0.41538 (15) 0.68478 (14) 0.0611 (4)14 0.164029 0.474950 0.551155 $0.077*$ 2 0.4445 (3) 0.68414 (19) 0.6131 (2) 0.781 (7)	F7A	0.8787 (5)	0.0559 (6)	0.8182 (5)	0.148 (4)	0.5
1 $0.3017(2)$ $0.63686(16)$ $0.57980(15)$ $0.0699(5)$ 1 0.246508 0.671656 0.565345 $0.084*$ 2 $0.36964(17)$ $0.50047(12)$ $0.60048(11)$ $0.0460(3)$ 3 $0.35140(17)$ $0.16428(12)$ $0.61403(11)$ $0.0475(3)$ 4 $0.25689(17)$ $0.29742(13)$ $0.69646(11)$ $0.0488(4)$ 5 $0.22898(18)$ $0.35746(14)$ $0.75569(12)$ $0.0534(4)$ 6 $0.16517(18)$ $0.28550(15)$ $0.79868(11)$ $0.0545(4)$ 7 $0.25982(17)$ $0.25491(12)$ $0.47541(11)$ $0.0467(3)$ 8 $0.19169(18)$ $0.28138(13)$ $0.40209(11)$ $0.0503(4)$ 9 $0.14603(19)$ $0.19319(14)$ $0.33275(11)$ $0.0540(4)$ 10 $0.57001(18)$ $0.36719(13)$ $0.65806(13)$ $0.0540(4)$ 11 $0.68556(19)$ $0.45018(15)$ $0.68478(14)$ $0.0611(4)$ 12 $0.79108(19)$ 0.474950 0.551155 $0.077*$ 2 $0.4445(3)$ $0.68414(19)$ $0.6131(2)$ $0.0781(7)$	78	0.8653 (9)	0.0314 (8)	0.8542 (8)	0.199 (5)	0.5
1 0.246508 0.671656 0.565345 $0.084*$ 2 $0.36964(17)$ $0.50047(12)$ $0.60048(11)$ $0.0460(3)$ 3 $0.35140(17)$ $0.16428(12)$ $0.61403(11)$ $0.0475(3)$ 4 $0.25689(17)$ $0.29742(13)$ $0.69646(11)$ $0.0488(4)$ 5 $0.22898(18)$ $0.35746(14)$ $0.75569(12)$ $0.0534(4)$ 6 $0.16517(18)$ $0.28550(15)$ $0.79868(11)$ $0.0545(4)$ 7 $0.25982(17)$ $0.25491(12)$ $0.47541(11)$ $0.0467(3)$ 8 $0.19169(18)$ $0.28138(13)$ $0.40209(11)$ $0.0503(4)$ 9 $0.14603(19)$ $0.19319(14)$ $0.33275(11)$ $0.0540(4)$ 10 $0.57001(18)$ $0.36719(13)$ $0.65806(13)$ $0.0540(4)$ 11 $0.68556(19)$ $0.45018(15)$ $0.68478(14)$ $0.0611(4)$ 12 $0.79108(19)$ $0.41538(15)$ $0.68478(14)$ $0.0611(4)$ 14 0.164029 0.474950 0.551155 $0.077*$ 2 $0.4445(3)$ $0.68414(19)$ $0.6131(2)$ $0.0781(7)$	F8A	0.6436 (7)	-0.0088(7)	0.7250 (5)	0.152 (3)	0.5
20.36964 (17)0.50047 (12)0.60048 (11)0.0460 (3)30.35140 (17)0.16428 (12)0.61403 (11)0.0475 (3)40.25689 (17)0.29742 (13)0.69646 (11)0.0488 (4)50.22898 (18)0.35746 (14)0.75569 (12)0.0534 (4)60.16517 (18)0.28550 (15)0.79868 (11)0.0545 (4)70.25982 (17)0.25491 (12)0.47541 (11)0.0467 (3)80.19169 (18)0.28138 (13)0.40209 (11)0.0503 (4)90.14603 (19)0.19319 (14)0.33275 (11)0.0540 (4)100.57001 (18)0.36719 (13)0.65806 (13)0.0540 (4)110.68556 (19)0.45018 (15)0.68877 (13)0.0591 (4)120.79108 (19)0.41538 (15)0.68478 (14)0.0611 (4)10.2593 (3)0.52657 (18)0.57280 (17)0.0638 (6)1A0.1640290.4749500.5511550.077*20.4445 (3)0.68414 (19)0.6131 (2)0.0781 (7)	N1	0.3017 (2)	0.63686 (16)	0.57980 (15)	0.0699 (5)	
30.35140 (17)0.16428 (12)0.61403 (11)0.0475 (3)40.25689 (17)0.29742 (13)0.69646 (11)0.0488 (4)50.22898 (18)0.35746 (14)0.75569 (12)0.0534 (4)60.16517 (18)0.28550 (15)0.79868 (11)0.0467 (3)70.25982 (17)0.25491 (12)0.47541 (11)0.0467 (3)80.19169 (18)0.28138 (13)0.40209 (11)0.0503 (4)90.14603 (19)0.19319 (14)0.33275 (11)0.0540 (4)100.57001 (18)0.36719 (13)0.65806 (13)0.0540 (4)110.68556 (19)0.45018 (15)0.65897 (13)0.0591 (4)120.79108 (19)0.41538 (15)0.68478 (14)0.0611 (4)10.2593 (3)0.52657 (18)0.57280 (17)0.0638 (6)1A0.1640290.4749500.5511550.077*20.4445 (3)0.68414 (19)0.6131 (2)0.0781 (7)	H1	0.246508	0.671656	0.565345	0.084*	
40.25689 (17)0.29742 (13)0.69646 (11)0.0488 (4)50.22898 (18)0.35746 (14)0.75569 (12)0.0534 (4)60.16517 (18)0.28550 (15)0.79868 (11)0.0545 (4)70.25982 (17)0.25491 (12)0.47541 (11)0.0467 (3)80.19169 (18)0.28138 (13)0.40209 (11)0.0503 (4)90.14603 (19)0.19319 (14)0.33275 (11)0.0540 (4)100.57001 (18)0.36719 (13)0.65806 (13)0.0591 (4)110.68556 (19)0.45018 (15)0.68478 (14)0.0611 (4)120.79108 (19)0.41538 (15)0.68478 (14)0.0611 (4)10.2593 (3)0.52657 (18)0.57280 (17)0.0638 (6)1A0.1640290.4749500.5511550.077*20.4445 (3)0.68414 (19)0.6131 (2)0.0781 (7)	N2	0.36964 (17)	0.50047 (12)	0.60048 (11)	0.0460 (3)	
50.22898 (18)0.35746 (14)0.75569 (12)0.0534 (4)60.16517 (18)0.28550 (15)0.79868 (11)0.0545 (4)70.25982 (17)0.25491 (12)0.47541 (11)0.0467 (3)80.19169 (18)0.28138 (13)0.40209 (11)0.0530 (4)90.14603 (19)0.19319 (14)0.33275 (11)0.0540 (4)100.57001 (18)0.36719 (13)0.65806 (13)0.0540 (4)110.68556 (19)0.45018 (15)0.65897 (13)0.0591 (4)120.79108 (19)0.41538 (15)0.68478 (14)0.0611 (4)10.2593 (3)0.52657 (18)0.57280 (17)0.0638 (6)1A0.1640290.4749500.5511550.077*20.4445 (3)0.68414 (19)0.6131 (2)0.0781 (7)	N3	0.35140 (17)	0.16428 (12)	0.61403 (11)	0.0475 (3)	
60.16517 (18)0.28550 (15)0.79868 (11)0.0545 (4)70.25982 (17)0.25491 (12)0.47541 (11)0.0467 (3)80.19169 (18)0.28138 (13)0.40209 (11)0.0503 (4)90.14603 (19)0.19319 (14)0.33275 (11)0.0540 (4)100.57001 (18)0.36719 (13)0.65806 (13)0.0540 (4)110.68556 (19)0.45018 (15)0.65897 (13)0.0591 (4)120.79108 (19)0.41538 (15)0.68478 (14)0.0611 (4)10.2593 (3)0.52657 (18)0.57280 (17)0.0638 (6)1A0.1640290.4749500.5511550.077*20.4445 (3)0.68414 (19)0.6131 (2)0.0781 (7)	N4	0.25689 (17)	0.29742 (13)	0.69646 (11)	0.0488 (4)	
7 $0.25982 (17)$ $0.25491 (12)$ $0.47541 (11)$ $0.0467 (3)$ 8 $0.19169 (18)$ $0.28138 (13)$ $0.40209 (11)$ $0.0503 (4)$ 9 $0.14603 (19)$ $0.19319 (14)$ $0.33275 (11)$ $0.0540 (4)$ 10 $0.57001 (18)$ $0.36719 (13)$ $0.65806 (13)$ $0.0540 (4)$ 11 $0.68556 (19)$ $0.45018 (15)$ $0.65897 (13)$ $0.0591 (4)$ 12 $0.79108 (19)$ $0.41538 (15)$ $0.68478 (14)$ $0.0611 (4)$ 1 $0.2593 (3)$ $0.52657 (18)$ $0.57280 (17)$ $0.0638 (6)$ 1A 0.164029 0.474950 0.551155 $0.077*$ 2 $0.4445 (3)$ $0.68414 (19)$ $0.6131 (2)$ $0.0781 (7)$	N5	0.22898 (18)	0.35746 (14)	0.75569 (12)	0.0534 (4)	
8 0.19169 (18) 0.28138 (13) 0.40209 (11) 0.0503 (4) 9 0.14603 (19) 0.19319 (14) 0.33275 (11) 0.0540 (4) 10 0.57001 (18) 0.36719 (13) 0.65806 (13) 0.0591 (4) 11 0.68556 (19) 0.45018 (15) 0.65897 (13) 0.0591 (4) 12 0.79108 (19) 0.41538 (15) 0.68478 (14) 0.0611 (4) 1 0.2593 (3) 0.52657 (18) 0.57280 (17) 0.0638 (6) 1A 0.164029 0.474950 0.551155 0.077* 2 0.4445 (3) 0.68414 (19) 0.6131 (2) 0.0781 (7)	N6	0.16517 (18)	0.28550 (15)	0.79868 (11)	0.0545 (4)	
90.14603 (19)0.19319 (14)0.33275 (11)0.0540 (4)100.57001 (18)0.36719 (13)0.65806 (13)0.0540 (4)110.68556 (19)0.45018 (15)0.65897 (13)0.0591 (4)120.79108 (19)0.41538 (15)0.68478 (14)0.0611 (4)10.2593 (3)0.52657 (18)0.57280 (17)0.0638 (6)1A0.1640290.4749500.5511550.077*20.4445 (3)0.68414 (19)0.6131 (2)0.0781 (7)	N7	0.25982 (17)	0.25491 (12)	0.47541 (11)	0.0467 (3)	
100.57001 (18)0.36719 (13)0.65806 (13)0.0540 (4)110.68556 (19)0.45018 (15)0.65897 (13)0.0591 (4)120.79108 (19)0.41538 (15)0.68478 (14)0.0611 (4)10.2593 (3)0.52657 (18)0.57280 (17)0.0638 (6)1A0.1640290.4749500.5511550.077*20.4445 (3)0.68414 (19)0.6131 (2)0.0781 (7)	N8	0.19169 (18)	0.28138 (13)	0.40209 (11)	0.0503 (4)	
110.68556 (19)0.45018 (15)0.65897 (13)0.0591 (4)120.79108 (19)0.41538 (15)0.68478 (14)0.0611 (4)10.2593 (3)0.52657 (18)0.57280 (17)0.0638 (6)1A0.1640290.4749500.5511550.077*20.4445 (3)0.68414 (19)0.6131 (2)0.0781 (7)	N9	0.14603 (19)	0.19319 (14)	0.33275 (11)	0.0540 (4)	
120.79108 (19)0.41538 (15)0.68478 (14)0.0611 (4)10.2593 (3)0.52657 (18)0.57280 (17)0.0638 (6)1A0.1640290.4749500.5511550.077*20.4445 (3)0.68414 (19)0.6131 (2)0.0781 (7)	N10	0.57001 (18)	0.36719 (13)	0.65806 (13)	0.0540 (4)	
10.2593 (3)0.52657 (18)0.57280 (17)0.0638 (6)1A0.1640290.4749500.5511550.077*20.4445 (3)0.68414 (19)0.6131 (2)0.0781 (7)	N11	0.68556 (19)	0.45018 (15)	0.65897 (13)	0.0591 (4)	
1A 0.164029 0.474950 0.551155 0.077* 2 0.4445 (3) 0.68414 (19) 0.6131 (2) 0.0781 (7)	N12	0.79108 (19)	0.41538 (15)	0.68478 (14)	0.0611 (4)	
2 0.4445 (3) 0.68414 (19) 0.6131 (2) 0.0781 (7)	C1	0.2593 (3)	0.52657 (18)	0.57280 (17)	0.0638 (6)	
	H1A	0.164029	0.474950	0.551155	0.077*	
2 0.503178 0.760336 0.625526 0.094*	22	0.4445 (3)	0.68414 (19)	0.6131 (2)	0.0781 (7)	
	H2	0.503178	0.760336	0.625526	0.094*	
3 0.4865 (3) 0.59987 (18) 0.6251 (2) 0.0724 (7)	23	0.4865 (3)	0.59987 (18)	0.6251 (2)	0.0724 (7)	
3 0.581285 0.608100 0.646940 0.087*	H3	0.581285	0.608100	0.646940	0.087*	
4 0.2231 (2) 0.10509 (15) 0.63579 (14) 0.0519 (4)	C4	0.2231 (2)	0.10509 (15)	0.63579 (14)	0.0519 (4)	
4A 0.232463 0.043631 0.662777 0.062*	H4A	0.232463	0.043631	0.662777	0.062*	
4B 0.138308 0.074121 0.580297 0.062*	H4B	0.138308	0.074121	0.580297	0.062*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C5	0.2102 (2)	0.18828 (15)	0.70182 (13)	0.0471 (4)	
C6	0.1520 (2)	0.18019 (17)	0.76808 (14)	0.0546 (5)	
H6	0.111784	0.116138	0.788033	0.066*	
C7	0.1203 (3)	0.3250 (2)	0.87159 (16)	0.0655 (6)	
H7A	0.025695	0.270839	0.864156	0.079*	
H7B	0.114029	0.396273	0.865501	0.079*	
C8	0.2227 (2)	0.3399 (2)	0.96547 (15)	0.0622 (5)	
C9	0.3088 (13)	0.4565 (8)	1.0052 (8)	0.079 (2)	0.5
H9	0.294336	0.510554	0.974382	0.095*	0.5
C9A	0.3382 (13)	0.4315 (10)	1.0210 (8)	0.110 (5)	0.5
H9A	0.363220	0.498509	1.002057	0.132*	0.5
C10A	0.4208 (15)	0.4275 (15)	1.1064 (9)	0.142 (8)	0.5
H10A	0.496406	0.492544	1.146208	0.170*	0.5
C10	0.4156 (12)	0.4881 (7)	1.0919 (7)	0.095 (3)	0.5
H10	0.474392	0.563721	1.119591	0.114*	0.5
C11	0.4331 (15)	0.4037 (13)	1.1366 (7)	0.092 (3)	0.5
H11	0.506230	0.422843	1.193140	0.111*	0.5
C11A	0.389 (2)	0.3236 (19)	1.1320 (9)	0.169 (12)	0.5
H11A	0.446306	0.319685	1.187934	0.203*	0.5
C12	0.3450 (17)	0.2972 (12)	1.0976 (8)	0.096 (3)	0.5
H12	0.352928	0.243195	1.130306	0.115*	0.5
C12A	0.2786 (15)	0.2324 (12)	1.0776 (7)	0.127 (4)	0.5
H12A	0.259872	0.163460	1.093508	0.152*	0.5
C13A	0.1901 (13)	0.2404 (10)	0.9958 (8)	0.083 (3)	0.5
H13A	0.106780	0.177653	0.960329	0.099*	0.5
C13	0.2427 (11)	0.2624 (11)	1.0117 (9)	0.079 (3)	0.5
H13	0.187312	0.185938	0.985220	0.095*	0.5
C14	0.3398 (2)	0.10908 (16)	0.52329 (15)	0.0553 (5)	
H14A	0.291509	0.027895	0.512534	0.066*	
H14B	0.434590	0.127033	0.520738	0.066*	
C15	0.2564 (2)	0.15038 (15)	0.45181 (14)	0.0486 (4)	
C16	0.1827 (2)	0.11045 (17)	0.36068 (15)	0.0564 (5)	
H16	0.161605	0.040725	0.324798	0.068*	
C17	0.0726 (3)	0.1974 (2)	0.23878 (15)	0.0658 (6)	
H17A	0.112458	0.169520	0.198112	0.079*	
H17B	0.091285	0.275276	0.237201	0.079*	
C18	-0.0860 (3)	0.12992 (19)	0.20364 (15)	0.0610 (5)	
C19	-0.1537 (3)	0.0617 (2)	0.11573 (18)	0.0823 (8)	
H19	-0.100147	0.055110	0.079913	0.099*	
C20	-0.3023 (4)	0.0027 (3)	0.0807 (3)	0.1080 (12)	
H20	-0.347858	-0.044001	0.021787	0.130*	
C21	-0.3810 (4)	0.0134 (3)	0.1332 (3)	0.1083 (12)	
H21	-0.480250	-0.025614	0.109682	0.130*	
C22	-0.3143 (3)	0.0814 (3)	0.2200 (3)	0.0934 (9)	
H22	-0.368230	0.088724	0.255385	0.112*	
C23	-0.1678 (3)	0.1390 (2)	0.25514 (18)	0.0739 (7)	
H23	-0.123164	0.184765	0.314428	0.089*	
C24	0.4849 (2)	0.17805 (17)	0.68650 (16)	0.0571 (5)	

H24A	0.505512	0.112223	0.675713	0.069*
H24B	0.475498	0.187227	0.746142	0.069*
C25	0.6027 (2)	0.28067 (17)	0.68347 (15)	0.0541 (5)
C26	0.7445 (2)	0.31154 (19)	0.70004 (17)	0.0621 (5)
H26	0.798057	0.269821	0.718105	0.075*
C27	0.9359 (2)	0.4905 (2)	0.69431 (18)	0.0702 (6)
H27A	0.929410	0.542044	0.654856	0.084*
H27B	0.981539	0.445886	0.673334	0.084*
C28	1.0287 (2)	0.55804 (17)	0.79105 (16)	0.0575 (5)
C29	1.1738 (3)	0.6157 (2)	0.8106 (2)	0.0705 (6)
H29	1.211690	0.608547	0.765086	0.085*
C30	1.2629 (3)	0.6833 (2)	0.8963 (2)	0.0869 (8)
H30	1.360261	0.722037	0.908040	0.104*
C31	1.2105 (4)	0.6941 (3)	0.9638 (2)	0.0971 (9)
H31	1.271301	0.740199	1.021701	0.117*
C32	1.0672 (4)	0.6367 (3)	0.9461 (2)	0.0993 (10)
H32	1.030809	0.643570	0.992346	0.119*
C33	0.9763 (3)	0.5687 (2)	0.86031 (19)	0.0775 (7)
H33	0.879207	0.529931	0.849173	0.093*
B1	0.1061 (3)	0.7874 (2)	0.4793 (2)	0.0643 (6)
B2	0.7495 (4)	0.0447 (3)	0.8123 (3)	0.0810 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.04847 (14)	0.03160 (12)	0.04817 (14)	0.01636 (10)	0.01373 (11)	0.01019 (9)
F1A	0.059 (3)	0.065 (6)	0.151 (11)	0.017 (3)	0.011 (4)	0.044 (7)
F1	0.060 (3)	0.061 (4)	0.101 (5)	0.026 (3)	-0.001 (3)	0.012 (4)
F2	0.085 (4)	0.097 (5)	0.081 (4)	0.061 (4)	0.038 (3)	0.029 (4)
F2A	0.092 (5)	0.049 (2)	0.141 (6)	0.033 (2)	0.025 (3)	-0.013 (3)
F3	0.129 (7)	0.169 (9)	0.074 (4)	0.085 (7)	0.047 (4)	0.034 (4)
F3A	0.111 (6)	0.165 (8)	0.086 (3)	0.083 (6)	0.014 (3)	-0.019 (4)
F4	0.098 (4)	0.040 (2)	0.165 (8)	0.004 (2)	0.002 (4)	-0.008 (3)
F4A	0.069 (4)	0.065 (4)	0.192 (10)	0.031 (3)	0.056 (5)	0.046 (5)
F5	0.222 (9)	0.207 (11)	0.182 (9)	0.094 (7)	0.126 (8)	-0.043 (7)
F5A	0.208 (9)	0.133 (5)	0.144 (6)	0.126 (6)	-0.001 (6)	-0.003 (5)
F6	0.249 (7)	0.102 (3)	0.185 (5)	0.102 (4)	0.145 (6)	0.079 (4)
F6A	0.325 (14)	0.303 (13)	0.350 (15)	0.155 (11)	0.216 (13)	0.249 (13)
F7	0.076 (3)	0.080 (3)	0.167 (6)	-0.008(2)	0.034 (3)	-0.003 (3)
F7A	0.061 (3)	0.149 (5)	0.163 (6)	-0.013 (3)	0.054 (3)	-0.087 (5)
F8	0.158 (7)	0.203 (7)	0.249 (9)	0.132 (6)	0.010 (6)	0.081 (7)
F8A	0.116 (4)	0.178 (7)	0.137 (5)	0.098 (5)	-0.007 (4)	-0.041 (4)
N1	0.0898 (15)	0.0575 (11)	0.0846 (14)	0.0477 (11)	0.0356 (12)	0.0292 (10)
N2	0.0526 (9)	0.0340 (7)	0.0504 (9)	0.0174 (6)	0.0168 (7)	0.0112 (6)
N3	0.0518 (9)	0.0383 (7)	0.0528 (9)	0.0203 (7)	0.0157 (7)	0.0141 (7)
N4	0.0554 (9)	0.0383 (7)	0.0506 (9)	0.0182 (7)	0.0170 (7)	0.0116 (7)
N5	0.0573 (10)	0.0478 (9)	0.0534 (9)	0.0210 (8)	0.0186 (8)	0.0108 (7)
N6	0.0552 (10)	0.0594 (10)	0.0467 (9)	0.0227 (8)	0.0160 (8)	0.0135 (8)

supporting information

N7	0.0531 (9)	0.0377 (7)	0.0492 (9)	0.0187 (7)	0.0179 (7)	0.0103 (6)
N8	0.0557 (9)	0.0435 (8)	0.0494 (9)	0.0175 (7)	0.0178 (7)	0.0141 (7)
N9	0.0587 (10)	0.0511 (9)	0.0467 (9)	0.0167 (8)	0.0188 (8)	0.0110 (7)
N10	0.0490 (9)	0.0419 (8)	0.0692 (11)	0.0188 (7)	0.0175 (8)	0.0158 (8)
N11	0.0545 (10)	0.0491 (9)	0.0743 (12)	0.0203 (8)	0.0240 (9)	0.0176 (8)
N12	0.0521 (10)	0.0551 (10)	0.0743 (12)	0.0198 (8)	0.0240 (9)	0.0115 (9)
C1	0.0576 (12)	0.0485 (11)	0.0812 (16)	0.0243 (10)	0.0164 (11)	0.0145 (10)
C2	0.0851 (18)	0.0403 (11)	0.115 (2)	0.0228 (11)	0.0432 (16)	0.0299 (13)
C3	0.0552 (13)	0.0461 (11)	0.113 (2)	0.0168 (10)	0.0270 (13)	0.0283 (12)
C4	0.0559 (11)	0.0369 (9)	0.0573 (11)	0.0162 (8)	0.0149 (9)	0.0147 (8)
C5	0.0469 (10)	0.0397 (9)	0.0479 (10)	0.0143 (8)	0.0109 (8)	0.0127 (8)
C6	0.0548 (11)	0.0504 (11)	0.0525 (11)	0.0174 (9)	0.0142 (9)	0.0169 (9)
C7	0.0643 (13)	0.0801 (15)	0.0593 (13)	0.0352 (12)	0.0256 (11)	0.0146 (11)
C8	0.0553 (12)	0.0833 (16)	0.0509 (12)	0.0270 (11)	0.0256 (10)	0.0130 (11)
C9	0.077 (5)	0.079 (4)	0.062 (5)	0.027 (4)	0.007 (3)	0.008 (3)
C9A	0.074 (6)	0.142 (10)	0.066 (5)	0.000 (6)	0.016 (4)	0.016 (6)
C10A	0.081 (6)	0.192 (19)	0.076 (9)	0.002 (11)	-0.007 (6)	0.023 (10)
C10	0.095 (5)	0.080 (5)	0.070 (5)	0.012 (4)	0.011 (4)	0.002 (4)
C11	0.081 (6)	0.132 (8)	0.055 (6)	0.044 (5)	0.009 (5)	0.031 (5)
C11A	0.15 (2)	0.34 (4)	0.072 (10)	0.14 (2)	0.064 (12)	0.088 (17)
C12	0.109 (9)	0.113 (7)	0.062 (7)	0.046 (6)	0.022 (6)	0.030 (6)
C12A	0.189 (13)	0.204 (13)	0.081 (6)	0.146 (11)	0.082 (8)	0.073 (8)
C13A	0.100 (9)	0.124 (8)	0.065 (5)	0.073 (6)	0.044 (5)	0.044 (5)
C13	0.072 (6)	0.095 (5)	0.070 (5)	0.039 (4)	0.018 (4)	0.026 (4)
C14	0.0653 (12)	0.0400 (9)	0.0653 (13)	0.0267 (9)	0.0236 (10)	0.0117 (9)
C15	0.0540 (11)	0.0382 (9)	0.0546 (11)	0.0178 (8)	0.0226 (9)	0.0090 (8)
C16	0.0630 (12)	0.0462 (10)	0.0570 (12)	0.0187 (9)	0.0242 (10)	0.0049 (9)
C17	0.0747 (15)	0.0703 (14)	0.0475 (11)	0.0226 (12)	0.0216 (11)	0.0199 (10)
C18	0.0710 (14)	0.0577 (12)	0.0524 (12)	0.0266 (11)	0.0154 (10)	0.0228 (10)
C19	0.0873 (19)	0.0848 (18)	0.0636 (15)	0.0403 (15)	0.0070 (14)	0.0125 (13)
C20	0.102 (3)	0.093 (2)	0.085 (2)	0.035 (2)	-0.0170 (19)	0.0059 (17)
C21	0.0706 (19)	0.108 (3)	0.127 (3)	0.0287 (18)	0.007 (2)	0.058 (2)
C22	0.0790 (19)	0.110 (2)	0.110 (3)	0.0450 (18)	0.0376 (18)	0.066 (2)
C23	0.0803 (17)	0.0781 (16)	0.0683 (15)	0.0314 (14)	0.0283 (13)	0.0353 (13)
C24	0.0553 (11)	0.0446 (10)	0.0691 (13)	0.0233 (9)	0.0127 (10)	0.0208 (9)
C25	0.0518 (11)	0.0464 (10)	0.0634 (12)	0.0228 (9)	0.0154 (9)	0.0157 (9)
C26	0.0563 (12)	0.0568 (12)	0.0753 (15)	0.0293 (10)	0.0190 (11)	0.0150 (11)
C27	0.0567 (13)	0.0732 (15)	0.0786 (16)	0.0189 (11)	0.0335 (12)	0.0108 (12)
C28	0.0567 (12)	0.0491 (10)	0.0747 (14)	0.0266 (9)	0.0286 (11)	0.0149 (10)
C29	0.0623 (14)	0.0601 (13)	0.0910 (18)	0.0215 (11)	0.0356 (13)	0.0151 (12)
C30	0.0662 (16)	0.0694 (16)	0.104 (2)	0.0163 (13)	0.0202 (16)	0.0065 (15)
C31	0.096 (2)	0.089 (2)	0.086 (2)	0.0380 (18)	0.0155 (18)	-0.0062 (16)
C32	0.104 (2)	0.126 (3)	0.0771 (19)	0.057 (2)	0.0404 (18)	0.0040 (18)
C33	0.0671 (15)	0.0917 (19)	0.0836 (18)	0.0370 (14)	0.0372 (14)	0.0144 (15)
B1	0.0582 (15)	0.0537 (14)	0.0739 (17)	0.0254 (12)	0.0138 (13)	0.0067 (12)
B2	0.084 (2)	0.079 (2)	0.093 (2)	0.0376 (18)	0.047 (2)	0.0152 (18)

Geometric parameters (Å, °)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co1—N2	2.0188 (14)	C8—C13A	1.396 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
F2-B11.374 (8) $C10A-H10A$ 0.9300 $F2A-B1$ 1.332 (8) $C10-C11$ 1.408 (16) $F3-B1$ 1.360 (9) $C11-C12$ 1.32 (2) $F4-B1$ 1.380 (9) $C11-C12$ 1.32 (2) $F4-B1$ 1.344 (9) $C11A-C12A$ 1.31 (2) $F5-B2$ 1.286 (7) $C11A-C12A$ 1.31 (2) $F6-B2$ 1.303 (8) $C12-C13$ 1.366 (12) $F6-B2$ 1.374 (5) $C12-H12$ 0.9300 $F6A-B2$ 1.317 (7) $C12A-H12A$ 0.9300 $F7-B2$ 1.288 (5) $C12A-H12A$ 0.9300 $F7-B2$ 1.399 (6) $C13A-H13A$ 0.9300 $F8-B2$ 1.301 (7) $C13-H13$ 0.9300 $F8A-B2$ 1.301 (7) $C13-H13$ 0.9300 $F8A-B2$ 1.301 (7) $C14-H14A$ 0.9700 $NI-C1$ 1.329 (3) $C14-H14B$ 0.9700 $NI-C1$ 1.329 (3) $C14-H14B$ 0.9700 $N1-C2$ 1.338 (3) $C16-H16$ 0.9300 $N2-C1$ 1.308 (3) $C17-C18$ 1.495 (3) $N3-C14$ 1.474 (3) $C17-H17A$ 0.9700 $N3-C24$ 1.476 (3) $C17-H17A$ 0.9700 $N3-C24$ 1.475 (3) $C10-H19$ 0.9300 $N4-N5$ 1.318 (2) $C18-C19$ 1.381 (3) $N4-C5$ 1.355 (2) $C19-C20$ 1.393 (5) $N5-N6$ 1.327 (2) $C19-H19$ 0.9300 $N5-N6$ 1.322 (2) $C21-C22$ 1.367 (5) $N7-C15$ 1.360 (2) $C2-H21$ 0.9300 <td< td=""><td></td><td></td><td></td><td></td></td<>				
F2A-B1 1.332 (8)C10-C11 1.408 (16)F3-B1 1.362 (8)C10-H10 0.9300 F3A-B1 1.380 (9)C11-C12 1.32 (2)F4-B1 1.344 (9)C11A-C12A 1.31 (2)F5-B2 1.286 (7)C11A-H11A 0.9300 F6A-B2 1.303 (8)C12-C13 1.366 (12)F6-B2 1.374 (5)C12-H12 0.9300 F6A-B2 1.317 (7)C12A-C13A 1.392 (12)F7-B2 1.288 (5)C12A-H12A 0.9300 F7A-B2 1.309 (6)C13A-H13A 0.9300 F8A-B2 1.301 (7)C13-H13 0.9300 F8A-B2 1.301 (7)C13-H13 0.9300 F8A-B2 1.401 (6)C14-C15 1.493 (3)N1-C1 1.322 (3)C14-H14A 0.9700 N1-C2 1.330 (3)C16-H16 0.9300 N2-C3 1.360 (3)C17-C18 1.495 (3)N2-C4 1.474 (3)C17-H17A 0.9700 N3-C24 1.476 (3)C18-C19 1.381 (3)N4-C5 1.335 (2)C19-C20 1.339 (5)N5-N6 1.327 (2)C19-C20 1.396 (5)N6-C7 1.475 (3)C20-C21 1.369 (5)N6-C7 1.475 (3)C20-C21 1.369 (5)N6-C6 1.349 (3)C20-C21 1.369 (5)N6-C6 1.348 (3)C22-C23 1.374 (4)N9-C16 1.348 (3)C22-C23 1.374 (4)N9-C16 1.348 (3)C22-C24 1.476 (5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
F4-B11.344 (9)C11-H110.9300F4A-B11.414 (9)C11A-C12A1.31 (2)F5-B21.286 (7)C11A-H11A0.9300F5A-B21.303 (8)C12-C131.366 (12)F6-B21.374 (5)C12-H120.9300F6A-B21.317 (7)C12A-C13A1.392 (12)F7-B21.288 (5)C12A-H12A0.9300F7A-B21.309 (6)C13A-H13A0.9300F8A-B21.301 (7)C13-H130.9300F8A-B21.401 (6)C14-C151.493 (3)N1-C11.329 (3)C14-H14A0.9700N1-C21.332 (3)C14-H14B0.9700N1-C11.329 (3)C16-H160.9300N2-C31.360 (3)C17-C181.495 (3)N2-C41.474 (3)C17-H17A0.9700N3-C141.474 (3)C17-H17B0.9700N3-C241.476 (3)C18-C231.379 (4)N4-N51.318 (2)C18-C191.381 (3)N4-C51.352 (2)C19-C201.393 (5)N5-N61.327 (2)C19-H190.9300N6-C61.349 (3)C20-C211.369 (5)N7-N81.328 (2)C21-C221.367 (5)N7-N81.328 (2)C21-C221.374 (4)N9-C161.348 (3)C22-H220.9300N7-N81.328 (2)C23-H230.9300N6-C51.348 (3)C22-H230.9300N7-N81.328 (2)C23-H230.9300N10-N111.318 (2) <td></td> <td></td> <td></td> <td></td>				
F4A—B1 $1.414 (9)$ $C11A$ —C12A $1.31 (2)$ F5—B2 $1.286 (7)$ $C11A$ —H11A 0.9300 F5A—B2 $1.303 (8)$ $C12$ —C13 $1.366 (12)$ F6—B2 $1.374 (5)$ $C12$ —H12 0.9300 F6A—B2 $1.317 (7)$ $C12A$ —C13A $1.392 (12)$ F7—B2 $1.288 (5)$ $C12A$ —H12A 0.9300 F7A—B2 $1.309 (6)$ $C13A$ —H13A 0.9300 F8—B2 $1.301 (7)$ $C13$ —H13 0.9300 F8A—B2 $1.401 (6)$ $C14$ —C15 $1.493 (3)$ N1—C1 $1.329 (3)$ $C14$ —H14A 0.9700 N1—C2 $1.332 (3)$ $C14$ —H14B 0.9700 N1—H1 0.8600 $C15$ —C16 $1.349 (3)$ N2—C1 $1.308 (3)$ $C16$ —H16 0.9300 N2—C3 $1.360 (3)$ $C17$ —H17A 0.9700 N3—C4 $1.475 (3)$ $C17$ —H17A 0.9700 N3—C4 $1.476 (3)$ $C18$ —C23 $1.379 (4)$ N4—N5 $1.318 (2)$ $C18$ —C19 $1.381 (3)$ N4—C5 $1.355 (2)$ $C19$ —C19 $1.381 (3)$ N4—C5 $1.327 (2)$ $C19$ —H19 0.9300 N6—C6 $1.349 (3)$ $C20$ —C21 $1.369 (5)$ N6—C7 $1.475 (3)$ $C20$ —C12 $1.367 (5)$ N7—N8 $1.322 (2)$ $C21$ —H22 0.9300 N8=N9 $1.328 (2)$ $C22$ —H22 0.9300 N8=N9 $1.328 (2)$ $C22$ —H23 0.9300 N10—N11 $1.318 (2)$ $C24$ —H24A 0.9700 N10—N11 $1.318 (2)$ </td <td></td> <td></td> <td></td> <td></td>				
F5-B21.286 (7)C11A-H11A0.9300F5A-B21.303 (8)C12-C131.366 (12)F6A-B21.374 (5)C12-H120.9300F6A-B21.317 (7)C12A-C13A1.392 (12)F7-B21.288 (5)C12A-H12A0.9300F7A-B21.309 (6)C13A-H13A0.9300F8A-B21.301 (7)C13-H13A0.9300F8A-B21.401 (6)C14-C151.493 (3)N1-C11.329 (3)C14-H14A0.9700N1-C21.332 (3)C14-H14B0.9700N1-C11.329 (3)C16-H160.9300N2-C11.308 (3)C16-H160.9300N2-C31.360 (3)C17-C181.495 (3)N3-C141.474 (3)C17-H17A0.9700N3-C41.475 (3)C17-H17B0.9700N3-C241.476 (3)C18-C231.379 (4)N4-N51.318 (2)C18-C191.381 (3)N4-C51.355 (2)C19-C201.393 (5)N5-N61.327 (2)C19-H190.9300N6-C61.349 (3)C20-C211.369 (5)N6-C71.475 (3)C20-H200.9300N7-N81.322 (2)C21-C221.367 (5)N7-C151.360 (2)C21-H210.9300N8-N91.328 (2)C22-H220.9300N9-C161.348 (3)C22-H230.9300N10-N111.318 (2)C24-H24A0.9700N10-N111.318 (2)C24-H24A0.9700 <tr <td="">N140 (3)C25-C2</tr>		1.344 (9)		0.9300
F5A-B21.303 (8)C12-C131.366 (12)F6-B21.374 (5)C12-H120.9300F6A-B21.317 (7)C12A-C13A1.392 (12)F7-B21.288 (5)C12A-H12A0.9300F7A-B21.309 (6)C13A-H13A0.9300F8-B21.301 (7)C13-H130.9300F8A-B21.401 (6)C14-C151.493 (3)N1-C11.329 (3)C14-H14A0.9700N1-C21.332 (3)C14-H14B0.9700N1-H10.8600C15-C161.349 (3)N2-C11.308 (3)C16-H160.9300N2-C31.360 (3)C17-H17A0.9700N3-C41.474 (3)C17-H17B0.9700N3-C41.475 (3)C18-C231.379 (4)N4-N51.318 (2)C18-C191.381 (3)N4-C51.355 (2)C19-C201.393 (5)N5-N61.327 (2)C19-H190.9300N6-C61.349 (3)C20-C211.369 (5)N6-C71.475 (3)C20-H200.9300N7-N81.322 (2)C21-C221.367 (5)N7-C151.360 (2)C21-H210.9300N8-N91.328 (2)C22-C231.374 (4)N9-C161.348 (3)C22-H220.9300N9-C171.470 (3)C23-H230.9300N10-N111.318 (2)C24-H24B0.9700N10-N111.318 (2)C24-H24B0.9700N10-N111.333 (3)C24-H24B0.9700N10-C251.362 (2)	F4A—B1	1.414 (9)	C11A—C12A	
F6-B2 1.374 (5) $C12-H12$ 0.9300 $F6A-B2$ 1.317 (7) $C12A-C13A$ 1.392 (12) $F7-B2$ 1.288 (5) $C12A-H12A$ 0.9300 $F7A-B2$ 1.309 (6) $C13A-H13A$ 0.9300 $F8-B2$ 1.301 (7) $C13-H13$ 0.9300 $F8-B2$ 1.301 (6) $C14-C15$ 1.493 (3) $N1-C1$ 1.329 (3) $C14-H14A$ 0.9700 $N1-C2$ 1.332 (3) $C14-H14B$ 0.9700 $N1-C2$ 1.332 (3) $C16-H16$ 0.9300 $N2-C1$ 1.308 (3) $C16-H16$ 0.9300 $N2-C3$ 1.360 (3) $C17-C18$ 1.495 (3) $N3-C14$ 1.474 (3) $C17-H17A$ 0.9700 $N3-C4$ 1.476 (3) $C18-C23$ 1.379 (4) $N4-N5$ 1.318 (2) $C18-C19$ 1.381 (3) $N4-C5$ 1.352 (2) $C19-C20$ 1.393 (5) $N5-N6$ 1.327 (2) $C19-H19$ 0.9300 $N6-C6$ 1.349 (3) $C20-C21$ 1.369 (5) $N5-N6$ 1.322 (2) $C21-H21$ 0.9300 $N7-N8$ 1.322 (2) $C22-C23$ 1.374 (4) $N9-C16$ 1.348 (3) $C22-H22$ 0.9300 $N8-N9$ 1.328 (2) $C22-H22$ 0.9300 $N9-C17$ 1.470 (3) $C23-H23$ 0.9300 $N9-C16$ 1.348 (3) $C22-H24$ 0.9700 $N10-N11$ 1.318 (2) $C24-H24B$ 0.9700 $N10-C25$ 1.362 (2) $C24-H24B$ 0.9700 <	F5—B2	1.286 (7)	C11A—H11A	0.9300
F6A-B2 $1.317(7)$ $C12A-C13A$ $1.392(12)$ $F7-B2$ $1.288(5)$ $C12A-H12A$ 0.9300 $F7A-B2$ $1.309(6)$ $C13A-H13A$ 0.9300 $F8-B2$ $1.301(7)$ $C13-H13$ 0.9300 $F8-B2$ $1.301(7)$ $C13-H13$ 0.9300 $N1-C1$ $1.329(3)$ $C14-H14A$ 0.9700 $N1-C2$ $1.332(3)$ $C14-H14B$ 0.9700 $N1-C2$ $1.332(3)$ $C14-H14B$ 0.9700 $N1-C1$ $1.308(3)$ $C16-H16$ 0.9300 $N2-C3$ $1.360(3)$ $C17-C18$ $1.495(3)$ $N2-C3$ $1.360(3)$ $C17-H17A$ 0.9700 $N3-C4$ $1.475(3)$ $C18-C23$ $1.379(4)$ $N4-N5$ $1.318(2)$ $C18-C19$ $1.381(3)$ $N4-C5$ $1.355(2)$ $C19-H19$ 0.9300 $N5-N6$ $1.327(2)$ $C19-H19$ 0.9300 $N6-C6$ $1.349(3)$ $C20-C21$ $1.369(5)$ $N5-N6$ $1.322(2)$ $C21-C22$ $1.377(5)$ $N7-C15$ $1.360(2)$ $C21-H21$ 0.9300 $N7-N8$ $1.322(2)$ $C22-C23$ $1.374(4)$ $N9-C16$ $1.348(3)$ $C22-H22$ 0.9300 $N9-C17$ $1.470(3)$ $C23-H23$ 0.9300 $N10-N11$ $1.318(2)$ $C24-H24A$ 0.9700 $N10-N11$ $1.318(3)$ $C22-C26$ $1.355(3)$ $N10-C25$ $1.362(2)$ $C24-H24B$ 0.9700 $N11-N12$ $1.333(3)$ $C24-H24B$ 0.9700 $N11-N12$ </td <td>F5A—B2</td> <td>1.303 (8)</td> <td>C12—C13</td> <td>1.366 (12)</td>	F5A—B2	1.303 (8)	C12—C13	1.366 (12)
F7-B21.288 (5)C12A-H12A0.9300F7A-B21.309 (6)C13A-H13A0.9300F8-B21.301 (7)C13-H130.9300F8A-B21.401 (6)C14-C151.493 (3)N1-C11.329 (3)C14-H14A0.9700N1-C21.332 (3)C14-H14B0.9700N1-C11.329 (3)C14-H14B0.9700N1-C11.308 (3)C16-H160.9300N2-C11.308 (3)C16-H160.9300N2-C31.360 (3)C17-C181.495 (3)N3-C41.475 (3)C17-H17A0.9700N3-C41.476 (3)C18-C231.379 (4)N4-N51.318 (2)C18-C191.381 (3)N4-C51.355 (2)C19-C201.393 (5)N5-N61.327 (2)C19-H190.9300N6-C61.349 (3)C20-C211.369 (5)N7-C151.356 (2)C21-H210.9300N7-N81.322 (2)C21-H210.9300N8-N91.328 (2)C22-C231.374 (4)N9-C161.348 (3)C22-H220.9300N8-N91.328 (2)C24-C251.495 (3)N10-C251.362 (2)C24-H24A0.9700N11-N121.333 (3)C24-H24B0.9700N12-C261.345 (3)C25-C261.355 (3)N12-C271.461 (3)C26-H260.9300		1.374 (5)	C12—H12	
F7A-B21.309 (6) $C13A-H13A$ 0.9300 $F8-B2$ 1.301 (7) $C13-H13$ 0.9300 $F8A-B2$ 1.401 (6) $C14-C15$ 1.493 (3) $NI-C1$ 1.329 (3) $C14-H14A$ 0.9700 $NI-C2$ 1.332 (3) $C14-H14B$ 0.9700 $NI-C1$ 1.329 (3) $C14-H14B$ 0.9700 $NI-C1$ 1.329 (3) $C16-H16$ 0.9300 $N2-C2$ 1.336 (3) $C16-H16$ 0.9300 $N2-C1$ 1.308 (3) $C16-H16$ 0.9700 $N3-C14$ 1.474 (3) $C17-H17A$ 0.9700 $N3-C24$ 1.476 (3) $C18-C23$ 1.379 (4) $N4-N5$ 1.318 (2) $C18-C19$ 1.381 (3) $N4-C5$ 1.355 (2) $C19-C20$ 1.393 (5) $N5-N6$ 1.327 (2) $C19-H19$ 0.9300 $N6-C6$ 1.349 (3) $C20-C21$ 1.369 (5) $N6-C7$ 1.475 (3) $C20-H20$ 0.9300 $N7-N8$ 1.322 (2) $C21-H21$ 0.9300 $N8-N9$ 1.322 (2) $C22-H22$ 0.9300 $N8-N9$ 1.328 (2) $C22-H22$ 0.9300 $N8-N9$ 1.328 (2) $C22-H22$ 0.9300 $N9-C16$ 1.348 (3) $C22-H22$ 0.9300 $N9-C16$ 1.348 (3) $C22-H22$ 0.9300 $N0-C25$ 1.362 (2) $C24-H24A$ 0.9700 $N10-N11$ 1.318 (2) $C24-H24B$ 0.9700 $N10-C25$ 1.362 (3) $C25-C26$ 1.355 (3) $N12-C26$ 1.345 (3) $C25-C26$ 1.355 (3) $N12-C27$ </td <td>F6A—B2</td> <td>1.317 (7)</td> <td>C12A—C13A</td> <td>1.392 (12)</td>	F6A—B2	1.317 (7)	C12A—C13A	1.392 (12)
F8-B21.301 (7)C13-H130.9300F8A-B21.401 (6)C14-C151.493 (3)N1-C11.329 (3)C14-H14A0.9700N1-C21.332 (3)C14-H14B0.9700N1-H10.8600C15-C161.349 (3)N2-C11.308 (3)C16-H160.9300N2-C31.360 (3)C17-C181.495 (3)N3-C141.474 (3)C17-H17A0.9700N3-C41.475 (3)C18-C231.379 (4)N4-N51.318 (2)C18-C191.381 (3)N4-C51.355 (2)C19-C201.393 (5)N5-N61.327 (2)C19-H190.9300N6-C61.349 (3)C20-C211.369 (5)N7-C151.360 (2)C21-H210.9300N7-N81.322 (2)C22-C231.374 (4)N9-C161.348 (3)C22-H220.9300N8-N91.328 (2)C22-C231.374 (4)N9-C161.348 (3)C24-H240.9700N10-N111.318 (2)C24-H240.9700N10-N111.318 (2)C24-H24A0.9700N10-N111.333 (3)C24-H24A0.9700N12-C261.345 (3)C25-C261.355 (3)N12-C271.461 (3)C26-H260.9300	F7—B2	1.288 (5)	C12A—H12A	0.9300
F8A—B21.401 (6)C14—C151.493 (3)N1—C11.329 (3)C14—H14A0.9700N1—C21.332 (3)C14—H14B0.9700N1—H10.8600C15—C161.349 (3)N2—C11.308 (3)C16—H160.9300N2—C31.360 (3)C17—C181.495 (3)N3—C141.474 (3)C17—H17A0.9700N3—C41.475 (3)C17—H17B0.9700N3—C241.476 (3)C18—C231.379 (4)N4—N51.318 (2)C18—C191.381 (3)N4—C51.355 (2)C19—C201.393 (5)N5—N61.327 (2)C19—H190.9300N6—C61.349 (3)C20—C211.369 (5)N6—C71.475 (3)C20—H200.9300N7—N81.322 (2)C21—C221.367 (5)N7—C151.360 (2)C21—H210.9300N8—N91.328 (2)C22—C231.374 (4)N9—C161.348 (3)C22—H220.9300N10—N111.318 (2)C24—C251.495 (3)N10—C251.362 (2)C24—C251.495 (3)N10—C251.362 (2)C24—H24A0.9700N11—N121.333 (3)C24—H24B0.9700N11—N121.333 (3)C24—H24B0.9700N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	F7A—B2	1.309 (6)	C13A—H13A	0.9300
N1C1 $1.329 (3)$ C14H14A 0.9700 N1C2 $1.332 (3)$ C14H14B 0.9700 N1H1 0.8600 C15C16 $1.349 (3)$ N2C1 $1.308 (3)$ C16H16 0.9300 N2C3 $1.360 (3)$ C17C18 $1.495 (3)$ N3C14 $1.474 (3)$ C17H17A 0.9700 N3C24 $1.476 (3)$ C18C23 $1.379 (4)$ N4N5 $1.318 (2)$ C18C19 $1.381 (3)$ N4C5 $1.355 (2)$ C19C20 $1.393 (5)$ N5N6 $1.327 (2)$ C19H19 0.9300 N6C6 $1.349 (3)$ C20C21 $1.369 (5)$ N6C7 $1.475 (3)$ C20H20 0.9300 N7N8 $1.322 (2)$ C21H21 0.9300 N8N9 $1.328 (2)$ C22C23 $1.374 (4)$ N9C16 $1.348 (3)$ C22H22 0.9300 N10N11 $1.318 (2)$ C24H24A 0.9700 N11N12 $1.333 (3)$ C24H24A 0.9700 N12C26 $1.345 (3)$ C25C26 $1.355 (3)$ N12C27 $1.461 (3)$ C26H26 0.9300	F8—B2	1.301 (7)	C13—H13	0.9300
N1C2 $1.332 (3)$ C14H14B 0.9700 N1H1 0.8600 C15C16 $1.349 (3)$ N2C1 $1.308 (3)$ C16H16 0.9300 N2C3 $1.360 (3)$ C17C18 $1.495 (3)$ N3C14 $1.474 (3)$ C17H17A 0.9700 N3C4 $1.475 (3)$ C18C23 $1.379 (4)$ N4N5 $1.318 (2)$ C18C19 $1.381 (3)$ N4C5 $1.355 (2)$ C19C20 $1.393 (5)$ N5N6 $1.327 (2)$ C19H19 0.9300 N6C6 $1.349 (3)$ C20C21 $1.369 (5)$ N6C7 $1.475 (3)$ C20H20 0.9300 N7N8 $1.322 (2)$ C21C22 $1.367 (5)$ N7C15 $1.360 (2)$ C21H21 0.9300 N8N9 $1.328 (2)$ C22C23 $1.374 (4)$ N9C16 $1.348 (3)$ C22H22 0.9300 N10N11 $1.318 (2)$ C24C25 $1.495 (3)$ N10C25 $1.362 (2)$ C24C25 $1.495 (3)$ N10C26 $1.345 (3)$ C25C26 $1.355 (3)$ N12C27 $1.461 (3)$ C26H26 0.9300	F8A—B2	1.401 (6)	C14—C15	1.493 (3)
N1—H1 0.8600 C15—C16 $1.349(3)$ N2—C1 $1.308(3)$ C16—H16 0.9300 N2—C3 $1.360(3)$ C17—C18 $1.495(3)$ N3—C14 $1.474(3)$ C17—H17A 0.9700 N3—C4 $1.475(3)$ C17—H17B 0.9700 N3—C24 $1.476(3)$ C18—C23 $1.379(4)$ N4—N5 $1.318(2)$ C18—C19 $1.381(3)$ N4—C5 $1.355(2)$ C19—C20 $1.393(5)$ N5—N6 $1.327(2)$ C19—H19 0.9300 N6—C6 $1.349(3)$ C20—C21 $1.369(5)$ N6—C7 $1.475(3)$ C20—H20 0.9300 N7—N8 $1.322(2)$ C21—H21 0.9300 N7—N8 $1.328(2)$ C22—C23 $1.374(4)$ N9—C16 $1.348(3)$ C22—H22 0.9300 N9—C17 $1.470(3)$ C23—H23 0.9300 N10—N11 $1.318(2)$ C24—C25 $1.495(3)$ N10—C25 $1.362(2)$ C24—C25 $1.495(3)$ N10—C25 $1.362(3)$ C24—H24B 0.9700 N11—N12 $1.333(3)$ C24—H24B 0.9700 N12—C26 $1.345(3)$ C25—C26 $1.355(3)$ N12—C27 $1.461(3)$ C26—H26 0.9300	N1-C1	1.329 (3)	C14—H14A	0.9700
N2—C1 $1.308 (3)$ C16—H16 0.9300 N2—C3 $1.360 (3)$ C17—C18 $1.495 (3)$ N3—C14 $1.474 (3)$ C17—H17A 0.9700 N3—C4 $1.475 (3)$ C17—H17B 0.9700 N3—C24 $1.476 (3)$ C18—C23 $1.379 (4)$ N4—N5 $1.318 (2)$ C18—C19 $1.381 (3)$ N4—C5 $1.355 (2)$ C19—C20 $1.393 (5)$ N5—N6 $1.327 (2)$ C19—H19 0.9300 N6—C6 $1.349 (3)$ C20—C21 $1.369 (5)$ N6—C7 $1.475 (3)$ C20—H20 0.9300 N7—N8 $1.322 (2)$ C21—C22 $1.367 (5)$ N7—C15 $1.360 (2)$ C21—H21 0.9300 N8—N9 $1.328 (2)$ C22—C23 $1.374 (4)$ N9—C16 $1.348 (3)$ C22—H22 0.9300 N10—N11 $1.318 (2)$ C24—C25 $1.495 (3)$ N10—C25 $1.362 (2)$ C24—C25 $1.495 (3)$ N10—C26 $1.345 (3)$ C25—C26 $1.355 (3)$ N12—C26 $1.345 (3)$ C25—C26 $1.355 (3)$ N12—C27 $1.461 (3)$ C26—H26 0.9300	N1—C2	1.332 (3)	C14—H14B	0.9700
N2—C3 1.360 (3)C17—C18 1.495 (3)N3—C14 1.474 (3)C17—H17A0.9700N3—C4 1.475 (3)C17—H17B0.9700N3—C24 1.476 (3)C18—C23 1.379 (4)N4—N5 1.318 (2)C18—C19 1.381 (3)N4—C5 1.355 (2)C19—C20 1.393 (5)N5—N6 1.327 (2)C19—H190.9300N6—C6 1.349 (3)C20—C21 1.369 (5)N6—C7 1.475 (3)C20—H200.9300N7—N8 1.322 (2)C21—C22 1.367 (5)N7—C15 1.360 (2)C21—H210.9300N8—N9 1.328 (2)C22—C23 1.374 (4)N9—C16 1.348 (3)C22—H220.9300N10—N11 1.318 (2)C24—C25 1.495 (3)N10—C25 1.362 (2)C24—C25 1.495 (3)N11—N12 1.333 (3)C24—H24B0.9700N11—N12 1.333 (3)C24—H24B0.9700N12—C26 1.345 (3)C25—C26 1.355 (3)N12—C27 1.461 (3)C26—H260.9300	N1—H1	0.8600	C15—C16	1.349 (3)
N3—C14 $1.474 (3)$ $C17$ —H17A 0.9700 N3—C4 $1.475 (3)$ $C17$ —H17B 0.9700 N3—C24 $1.476 (3)$ $C18$ —C23 $1.379 (4)$ N4—N5 $1.318 (2)$ $C18$ —C19 $1.381 (3)$ N4—C5 $1.355 (2)$ $C19$ —C20 $1.393 (5)$ N5—N6 $1.327 (2)$ $C19$ —H19 0.9300 N6—C6 $1.349 (3)$ $C20$ —C21 $1.369 (5)$ N6—C7 $1.475 (3)$ $C20$ —H20 0.9300 N7—N8 $1.322 (2)$ $C21$ —C22 $1.367 (5)$ N7—C15 $1.360 (2)$ $C22$ —C23 $1.374 (4)$ N9—C16 $1.348 (3)$ $C22$ —H22 0.9300 N9—C17 $1.470 (3)$ $C23$ —H23 0.9300 N10—N11 $1.318 (2)$ $C24$ —H24A 0.9700 N11—N12 $1.333 (3)$ $C24$ —H24B 0.9700 N12—C26 $1.345 (3)$ $C25$ —C26 $1.355 (3)$ N12—C27 $1.461 (3)$ $C26$ —H26 0.9300	N2C1	1.308 (3)	C16—H16	0.9300
N3—C4 1.475 (3) $C17$ —H17B 0.9700 N3—C24 1.476 (3) $C18$ —C23 1.379 (4)N4—N5 1.318 (2) $C18$ —C19 1.381 (3)N4—C5 1.355 (2) $C19$ —C20 1.393 (5)N5—N6 1.327 (2) $C19$ —H19 0.9300 N6—C6 1.349 (3) $C20$ —C21 1.369 (5)N6—C7 1.475 (3) $C20$ —H20 0.9300 N7—N8 1.322 (2) $C21$ —C22 1.367 (5)N7—C15 1.360 (2) $C21$ —H21 0.9300 N8—N9 1.328 (2) $C22$ —C23 1.374 (4)N9—C16 1.348 (3) $C22$ —H22 0.9300 N10—N11 1.318 (2) $C24$ —C25 1.495 (3)N10—C25 1.362 (2) $C24$ —H24A 0.9700 N11—N12 1.333 (3) $C24$ —H24B 0.9700 N12—C26 1.345 (3) $C25$ —C26 1.355 (3)N12—C27 1.461 (3) $C26$ —H26 0.9300	N2—C3	1.360 (3)	C17—C18	1.495 (3)
N3—C241.476 (3)C18—C231.379 (4)N4—N51.318 (2)C18—C191.381 (3)N4—C51.355 (2)C19—C201.393 (5)N5—N61.327 (2)C19—H190.9300N6—C61.349 (3)C20—C211.369 (5)N6—C71.475 (3)C20—H200.9300N7—N81.322 (2)C21—C221.367 (5)N7—C151.360 (2)C21—H210.9300N8—N91.328 (2)C22—C231.374 (4)N9—C161.348 (3)C22—H220.9300N10—N111.318 (2)C24—C251.495 (3)N10—C251.362 (2)C24—H24A0.9700N11—N121.333 (3)C24—H24B0.9700N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	N3—C14	1.474 (3)	C17—H17A	0.9700
N4—N51.318 (2)C18—C191.381 (3)N4—C51.355 (2)C19—C201.393 (5)N5—N61.327 (2)C19—H190.9300N6—C61.349 (3)C20—C211.369 (5)N6—C71.475 (3)C20—H200.9300N7—N81.322 (2)C21—C221.367 (5)N7—C151.360 (2)C21—H210.9300N8—N91.328 (2)C22—C231.374 (4)N9—C161.348 (3)C22—H220.9300N10—N111.318 (2)C24—C251.495 (3)N10—C251.362 (2)C24—H24A0.9700N11—N121.333 (3)C24—H24B0.9700N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	N3—C4	1.475 (3)	C17—H17B	0.9700
N4—C5 $1.355 (2)$ C19—C20 $1.393 (5)$ N5—N6 $1.327 (2)$ C19—H19 0.9300 N6—C6 $1.349 (3)$ C20—C21 $1.369 (5)$ N6—C7 $1.475 (3)$ C20—H20 0.9300 N7—N8 $1.322 (2)$ C21—C22 $1.367 (5)$ N7—C15 $1.360 (2)$ C21—H21 0.9300 N8—N9 $1.328 (2)$ C22—C23 $1.374 (4)$ N9—C16 $1.348 (3)$ C22—H22 0.9300 N10—N11 $1.318 (2)$ C24—C25 $1.495 (3)$ N10—C25 $1.362 (2)$ C24—H24A 0.9700 N11—N12 $1.333 (3)$ C24—H24B 0.9700 N12—C26 $1.345 (3)$ C25—C26 $1.355 (3)$ N12—C27 $1.461 (3)$ C26—H26 0.9300	N3—C24	1.476 (3)	C18—C23	1.379 (4)
N5N6 $1.327 (2)$ $C19$ H19 0.9300 N6C6 $1.349 (3)$ $C20$ C21 $1.369 (5)$ N6C7 $1.475 (3)$ $C20$ H20 0.9300 N7N8 $1.322 (2)$ $C21$ C22 $1.367 (5)$ N7C15 $1.360 (2)$ $C21$ H21 0.9300 N8N9 $1.328 (2)$ $C22$ C23 $1.374 (4)$ N9C16 $1.348 (3)$ $C22$ H22 0.9300 N9C17 $1.470 (3)$ $C23$ H23 0.9300 N10N11 $1.318 (2)$ $C24$ C25 $1.495 (3)$ N10C25 $1.362 (2)$ $C24$ H24A 0.9700 N11N12 $1.333 (3)$ $C24$ H24B 0.9700 N12C26 $1.345 (3)$ $C25$ C26 $1.355 (3)$ N12C27 $1.461 (3)$ $C26$ H26 0.9300	N4—N5	1.318 (2)	C18—C19	1.381 (3)
N6—C6 $1.349 (3)$ C20—C21 $1.369 (5)$ N6—C7 $1.475 (3)$ C20—H20 0.9300 N7—N8 $1.322 (2)$ C21—C22 $1.367 (5)$ N7—C15 $1.360 (2)$ C21—H21 0.9300 N8—N9 $1.328 (2)$ C22—C23 $1.374 (4)$ N9—C16 $1.348 (3)$ C22—H22 0.9300 N10—N11 $1.318 (2)$ C24—C25 $1.495 (3)$ N10—C25 $1.362 (2)$ C24—H24A 0.9700 N11—N12 $1.333 (3)$ C24—H24B 0.9700 N12—C26 $1.345 (3)$ C25—C26 $1.355 (3)$ N12—C27 $1.461 (3)$ C26—H26 0.9300	N4—C5	1.355 (2)	C19—C20	1.393 (5)
N6—C71.475 (3)C20—H200.9300N7—N81.322 (2)C21—C221.367 (5)N7—C151.360 (2)C21—H210.9300N8—N91.328 (2)C22—C231.374 (4)N9—C161.348 (3)C22—H220.9300N10—N111.318 (2)C24—C251.495 (3)N10—C251.362 (2)C24—H24A0.9700N11—N121.333 (3)C24—H24B0.9700N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	N5—N6	1.327 (2)	С19—Н19	0.9300
N7N8 1.322 (2)C21C22 1.367 (5)N7C15 1.360 (2)C21H21 0.9300 N8N9 1.328 (2)C22C23 1.374 (4)N9C16 1.348 (3)C22H22 0.9300 N9C17 1.470 (3)C23H23 0.9300 N10N11 1.318 (2)C24C25 1.495 (3)N10C25 1.362 (2)C24H24A 0.9700 N11N12 1.333 (3)C24H24B 0.9700 N12C26 1.345 (3)C25C26 1.355 (3)N12C27 1.461 (3)C26H26 0.9300	N6—C6	1.349 (3)	C20—C21	1.369 (5)
N7—C151.360 (2)C21—H210.9300N8—N91.328 (2)C22—C231.374 (4)N9—C161.348 (3)C22—H220.9300N9—C171.470 (3)C23—H230.9300N10—N111.318 (2)C24—C251.495 (3)N10—C251.362 (2)C24—H24A0.9700N11—N121.333 (3)C24—H24B0.9700N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	N6—C7	1.475 (3)	С20—Н20	0.9300
N8—N9 1.328 (2) C22—C23 1.374 (4) N9—C16 1.348 (3) C22—H22 0.9300 N9—C17 1.470 (3) C23—H23 0.9300 N10—N11 1.318 (2) C24—C25 1.495 (3) N10—C25 1.362 (2) C24—H24A 0.9700 N11—N12 1.333 (3) C24—H24B 0.9700 N12—C26 1.345 (3) C25—C26 1.355 (3) N12—C27 1.461 (3) C26—H26 0.9300	N7—N8	1.322 (2)	C21—C22	1.367 (5)
N9—C16 1.348 (3) C22—H22 0.9300 N9—C17 1.470 (3) C23—H23 0.9300 N10—N11 1.318 (2) C24—C25 1.495 (3) N10—C25 1.362 (2) C24—H24A 0.9700 N11—N12 1.333 (3) C24—H24B 0.9700 N12—C26 1.345 (3) C25—C26 1.355 (3) N12—C27 1.461 (3) C26—H26 0.9300	N7—C15	1.360 (2)	C21—H21	0.9300
N9—C171.470 (3)C23—H230.9300N10—N111.318 (2)C24—C251.495 (3)N10—C251.362 (2)C24—H24A0.9700N11—N121.333 (3)C24—H24B0.9700N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	N8—N9	1.328 (2)	C22—C23	1.374 (4)
N10—N111.318 (2)C24—C251.495 (3)N10—C251.362 (2)C24—H24A0.9700N11—N121.333 (3)C24—H24B0.9700N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	N9—C16	1.348 (3)	C22—H22	0.9300
N10—C251.362 (2)C24—H24A0.9700N11—N121.333 (3)C24—H24B0.9700N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	N9—C17	1.470 (3)	C23—H23	0.9300
N11—N121.333 (3)C24—H24B0.9700N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	N10—N11	1.318 (2)	C24—C25	1.495 (3)
N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	N10-C25	1.362 (2)	C24—H24A	0.9700
N12—C261.345 (3)C25—C261.355 (3)N12—C271.461 (3)C26—H260.9300	N11—N12			0.9700
N12—C27 1.461 (3) C26—H26 0.9300	N12—C26		C25—C26	1.355 (3)
	N12—C27		C26—H26	0.9300
$C_1 - M_1 = 0.9500$ $C_2 - C_2 = 0.000 (3)$	C1—H1A	0.9300	C27—C28	1.505 (3)
C2—C3 1.340 (3) C27—H27A 0.9700	C2—C3	1.340 (3)	C27—H27A	0.9700

supporting information

	0.0200	C27 1127D	0.0700
C2—H2	0.9300	C27—H27B	0.9700
C3—H3	0.9300	C28—C33	1.377 (3)
C4—C5	1.489 (3)	C28—C29	1.381 (3)
C4—H4A	0.9700	C29—C30	1.373 (4)
C4—H4B	0.9700	C29—H29	0.9300
C5—C6	1.356 (3)	C30—C31	1.353 (4)
С6—Н6	0.9300	С30—Н30	0.9300
C7—C8	1.498 (3)	C31—C32	1.369 (5)
C7—H7A	0.9700	C31—H31	0.9300
С7—Н7В	0.9700	C32—C33	1.378 (4)
C8—C9A	1.343 (10)	C32—H32	0.9300
C8—C13	1.349 (10)	С33—Н33	0.9300
N2—Co1—N7	103.73 (6)	C12A—C13A—H13A	119.0
N2—Co1—N4	105.56 (6)	C8—C13A—H13A	119.0
N7—Co1—N4	117.04 (6)	C8—C13—C12	119.4 (11)
N2—Co1—N10	104.25 (6)	C8—C13—H13	120.3
N7—Co1—N10	112.12 (7)	C12—C13—H13	120.3
N4—Co1—N10	112.62 (7)	N3—C14—C15	108.47 (15)
N2—Co1—N3	178.95 (6)	N3—C14—H14A	110.0
N7—Co1—N3	75.67 (6)	C15—C14—H14A	110.0
N4—Co1—N3	75.50 (6)	N3—C14—H14B	110.0
N10—Co1—N3	75.26 (6)	C15—C14—H14B	110.0
C1—N1—C2	108.14 (19)	H14A—C14—H14B	108.4
C1—N1—H1	125.9	C16—C15—N7	107.32 (18)
C1	125.9	C16—C15—C14	133.89 (18)
C_2 — N_1 — M_1 C_1 — N_2 — C_3	105.12 (17)	N7—C15—C14	118.49 (17)
C1—N2—Co1	105.12 (17) 125.60 (14)	N9—C16—C15	105.28 (18)
C1-N2-C01 C3-N2-C01	129.24 (14)	N9—C16—H16	103.28 (18)
C3—N2—C01 C14—N3—C4		C15—C16—H16	127.4
C14—N3—C4 C14—N3—C24	111.60 (16)	N9—C17—C18	
C14—N3—C24 C4—N3—C24	111.48 (16) 112.17 (16)	N9—C17—C18 N9—C17—H17A	113.59 (18) 108.8
C4—N3—C01			108.8
C14—N3—C01 C4—N3—C01	107.63 (11)	C18—C17—H17A	
	106.16 (11)	N9—C17—H17B	108.8
C24—N3—Co1	107.45 (11)	C18—C17—H17B	108.8
N5—N4—C5	110.35 (16)	H17A—C17—H17B	107.7
N5—N4—Co1	130.65 (12)	C23—C18—C19	119.0 (3)
C5—N4—Co1	118.96 (13)	C23-C18-C17	121.5 (2)
N4—N5—N6	105.52 (15)	C19—C18—C17	119.5 (2)
N5—N6—C6	111.96 (17)	C18—C19—C20	120.0 (3)
N5—N6—C7	120.22 (18)	C18—C19—H19	120.0
C6—N6—C7	127.82 (19)	C20—C19—H19	120.0
N8—N7—C15	110.09 (16)	C21—C20—C19	119.9 (3)
N8—N7—Co1	129.88 (12)	C21—C20—H20	120.0
C15—N7—Co1	120.03 (13)	C19—C20—H20	120.0
N7—N8—N9	105.51 (15)	C22—C21—C20	120.2 (3)
N8—N9—C16	111.80 (17)	C22—C21—H21	119.9
N8—N9—C17	119.83 (18)	C20—C21—H21	119.9

C16—N9—C17	128.28 (19)	C21—C22—C23	120.1 (3)
N11—N10—C25	110.20 (17)	C21—C22—H22	119.9
N11—N10—Co1	129.57 (13)	C23—C22—H22	119.9
C25—N10—Co1	119.47 (13)	C22—C23—C18	120.9 (3)
N10-N11-N12	105.55 (16)	С22—С23—Н23	119.6
N11—N12—C26	111.82 (18)	C18—C23—H23	119.6
N11—N12—C27	119.04 (19)	N3—C24—C25	107.29 (16)
C26—N12—C27	129.1 (2)	N3—C24—H24A	110.3
N2—C1—N1	110.8 (2)	C25—C24—H24A	110.3
N2—C1—H1A	124.6	N3—C24—H24B	110.3
N1—C1—H1A	124.6	C25—C24—H24B	110.3
N1—C2—C3	106.2 (2)	H24A—C24—H24B	108.5
N1—C2—H2	126.9	C26—C25—N10	107.14 (18)
С3—С2—Н2	126.9	C26—C25—C24	134.62 (19)
C2—C3—N2	109.7 (2)	N10-C25-C24	118.23 (18)
С2—С3—Н3	125.1	N12—C26—C25	105.27 (19)
N2—C3—H3	125.1	N12—C26—H26	127.4
N3—C4—C5	107.84 (15)	С25—С26—Н26	127.4
N3—C4—H4A	110.1	N12—C27—C28	113.7 (2)
C5—C4—H4A	110.1	N12—C27—H27A	108.8
N3—C4—H4B	110.1	C28—C27—H27A	108.8
C5—C4—H4B	110.1	N12—C27—H27B	108.8
H4A—C4—H4B	108.5	C28—C27—H27B	108.8
N4—C5—C6	107.33 (17)	H27A—C27—H27B	107.7
N4—C5—C4	118.52 (17)	C33—C28—C29	118.2 (2)
C6—C5—C4	134.04 (17)	C33—C28—C27	123.7 (2)
N6—C6—C5	104.85 (17)	C29—C28—C27	118.1 (2)
N6—C6—H6	127.6	C30—C29—C28	120.9 (3)
C5—C6—H6	127.6	C30—C29—H29	119.6
N6—C7—C8	111.97 (18)	C28—C29—H29	119.6
N6—C7—H7A	109.2	C31—C30—C29	120.6 (3)
C8—C7—H7A	109.2	C31—C30—H30	119.7
N6—C7—H7B	109.2	C29—C30—H30	119.7
C8—C7—H7B	109.2	C30—C31—C32	119.4 (3)
H7A—C7—H7B	107.9	C30—C31—H31	120.3
C9A—C8—C13A	117.8 (7)	C32—C31—H31	120.3
C13—C8—C9	120.3 (7)	C31—C32—C33	120.7 (3)
C9A—C8—C7	129.9 (5)	C31—C32—C35 C31—C32—H32	120.7 (3)
C13—C8—C7	130.2 (5)	C33—C32—H32	119.7
C13A—C8—C7	112.3 (5)	C28—C33—C32	120.3 (3)
C9—C8—C7	109.4 (4)	C28—C33—H33	120.5 (5)
C10—C9—C8	118.3 (8)	C32—C33—H33	119.9
С10—С9—Н9	120.8	F4—B1—F3	113.0 (8)
С10—С9—Н9 С8—С9—Н9	120.8	F4-B1-F3 $F2A-B1-F1A$	113.0 (8)
С8—С9—П9 С8—С9А—С10А	120.8	F4 - B1 - F1	109.2 (11)
C8—C9A—C10A C8—C9A—H9A	120.9 (11) 119.5	F4 - B1 - F1 F3 - B1 - F1	. ,
Съ-С9А-н9А С10А-С9А-Н9А	119.5	F3 - B1 - F1 F4 - B1 - F2	111.1(10) 100.3(7)
			109.3 (7)
C9A—C10A—C11A	119.3 (13)	F3—B1—F2	104.8 (7)

C9A—C10A—H10A	120.3	F1—B1—F2	109.4 (9)
C11A—C10A—H10A	120.3	F2A—B1—F3A	113.4 (8)
C9—C10—C11	119.0 (9)	F1A—B1—F3A	107.4 (10)
C9—C10—H10	120.5	F2A—B1—F4A	111.2 (7)
C11—C10—H10	120.5	F1A—B1—F4A	104.8 (11)
C12—C11—C10	119.5 (9)	F3A—B1—F4A	106.1 (7)
C12—C11—H11	120.3	F5—B2—F7	119.7 (8)
C10-C11-H11	120.3	F5—B2—F8	112.7 (8)
C12AC11AC10A	120.6 (12)	F7—B2—F8	104.0 (6)
C12A—C11A—H11A	119.7	F5A—B2—F7A	117.1 (7)
C10A—C11A—H11A	119.7	F5A—B2—F6A	104.7 (8)
C11—C12—C13	123.3 (11)	F7A—B2—F6A	106.6 (7)
C11—C12—H12	118.4	F5—B2—F6	108.3 (7)
C13—C12—H12	118.4	F7—B2—F6	111.3 (5)
C11A—C12A—C13A	119.1 (14)	F8—B2—F6	98.9 (6)
C11A—C12A—H12A	120.5	F5A—B2—F8A	103.5 (6)
C13A—C12A—H12A	120.5	F7A—B2—F8A	114.9 (4)
C12A—C13A—C8	121.9 (11)	F6A—B2—F8A	109.5 (8)
C5—N4—N5—N6	0.3 (2)	C7—C8—C13—C12	179.6 (11)
Co1—N4—N5—N6	-177.23 (13)	C11—C12—C13—C8	-4 (3)
N4—N5—N6—C6	0.1 (2)	C4—N3—C14—C15	83.60 (19)
N4—N5—N6—C7	179.15 (17)	C24—N3—C14—C15	-150.10 (16)
C15—N7—N8—N9	-0.1 (2)	Co1—N3—C14—C15	-32.50 (18)
Co1—N7—N8—N9	179.89 (13)	N8—N7—C15—C16	-0.4 (2)
N7—N8—N9—C16	0.6 (2)	Co1—N7—C15—C16	179.60 (13)
N7—N8—N9—C17	-176.26 (17)	N8—N7—C15—C14	174.10 (17)
C25—N10—N11—N12	0.2 (2)	Co1—N7—C15—C14	-5.9 (2)
Co1—N10—N11—N12	-169.60(15)	N3—C14—C15—C16	-159.6 (2)
N10—N11—N12—C26	0.2 (3)	N3-C14-C15-C10 N3-C14-C15-N7	27.7 (2)
N10—N11—N12—C27	-178.79(19)	N8—N9—C16—C15	-0.8(2)
C3—N2—C1—N1	-0.6 (3)	C17—N9—C16—C15	175.7 (2)
C_{01} N_{2} C_{1} N_{1} C_{01} N_{2} C_{1} N_{1}	177.42 (15)	N7—C15—C16—N9	0.7 (2)
C01-N2-C1-N1 C2-N1-C1-N2	0.0 (3)	C14—C15—C16—N9	-172.6(2)
	0.5 (3)		-172.0(2) -104.8(2)
C1 - N1 - C2 - C3	. ,	N8—N9—C17—C18 C16—N9—C17—C18	
N1—C2—C3—N2 C1—N2—C3—C2	-0.9(3)		78.9 (3)
	0.9 (3)	N9—C17—C18—C23	48.4 (3)
Co1-N2-C3-C2	-176.99(18)	N9—C17—C18—C19	-135.3(2)
C14—N3—C4—C5	-154.37 (15)	C23—C18—C19—C20	-0.5(4)
C24—N3—C4—C5	79.71 (19)	C17—C18—C19—C20	-176.9(3)
Co1—N3—C4—C5	-37.37 (17)	C18—C19—C20—C21	0.7 (5)
N5—N4—C5—C6	-0.7 (2)	C19—C20—C21—C22	-0.4 (5)
Co1—N4—C5—C6	177.21 (13)	C20—C21—C22—C23	-0.2 (5)
N5—N4—C5—C4	175.96 (17)	C21—C22—C23—C18	0.4 (4)
Co1—N4—C5—C4	-6.2 (2)	C19—C18—C23—C22	0.0 (4)
N3—C4—C5—N4	31.7 (2)	C17—C18—C23—C22	176.3 (2)
N3—C4—C5—C6	-152.8 (2)	C14—N3—C24—C25	81.2 (2)
N5—N6—C6—C5	-0.5 (2)	C4—N3—C24—C25	-152.77 (17)

	170 46 (10)	G 1 N2 C24 C25	2(10)
C7—N6—C6—C5	-179.46 (19)	Co1—N3—C24—C25	-36.46 (19)
N4—C5—C6—N6	0.7 (2)	N11—N10—C25—C26	-0.5(3)
C4—C5—C6—N6	-175.2 (2)	Co1—N10—C25—C26	170.49 (15)
N5—N6—C7—C8	-101.6 (2)	N11-N10-C25-C24	-179.90 (19)
C6—N6—C7—C8	77.3 (3)	Co1—N10—C25—C24	-8.9 (3)
N6—C7—C8—C9A	91.3 (10)	N3—C24—C25—C26	-146.9 (3)
N6—C7—C8—C13	-74.8 (9)	N3-C24-C25-N10	32.3 (3)
N6—C7—C8—C13A	-87.2 (7)	N11—N12—C26—C25	-0.5 (3)
N6—C7—C8—C9	103.9 (7)	C27—N12—C26—C25	178.4 (2)
C13—C8—C9—C10	1.4 (18)	N10-C25-C26-N12	0.6 (3)
C7—C8—C9—C10	-177.5 (11)	C24—C25—C26—N12	179.8 (2)
C13A—C8—C9A—C10A	-1 (2)	N11—N12—C27—C28	95.8 (3)
C7—C8—C9A—C10A	-179.5 (12)	C26—N12—C27—C28	-83.0 (3)
C8—C9A—C10A—C11A	5 (3)	N12—C27—C28—C33	-14.0 (3)
C8—C9—C10—C11	-1 (2)	N12—C27—C28—C29	168.4 (2)
C9-C10-C11-C12	-3 (2)	C33—C28—C29—C30	-1.1 (4)
C9A—C10A—C11A—C12A	-3 (3)	C27—C28—C29—C30	176.7 (2)
C10-C11-C12-C13	5 (3)	C28—C29—C30—C31	0.6 (4)
C10A—C11A—C12A—C13A	-3 (3)	C29—C30—C31—C32	0.1 (5)
C11A—C12A—C13A—C8	6 (2)	C30—C31—C32—C33	-0.3 (5)
C9A—C8—C13A—C12A	-4.6 (17)	C29—C28—C33—C32	0.9 (4)
C7—C8—C13A—C12A	174.2 (10)	C27—C28—C33—C32	-176.7 (3)
C9—C8—C13—C12	1 (2)	C31—C32—C33—C28	-0.2 (5)