CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 1 March 2024
Accepted 4 April 2024

Edited by S.-L. Zheng, Harvard University, USA

Keywords: molybdenum sulfide cluster; dithiocarbamate ligand; μ_{6}-sulfide ligand; crystal structure.

CCDC reference: 2345828

Supporting information: this article has supporting information at journals.iucr.org/e

Bis[tris(diisobutyldithiocarbamato)- μ_{3}-sulfido-tri-μ_{2}-disulfido-trimolybdenum(IV)] sulfide tetrahydrofuran monosolvate

Addison Fraker, James P. Donahue* and Alex McSkimming*

Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA. *Correspondence e-mail: donahue@tulane.edu, amcskimming@tulane.edu

The title compound, $\left[\mathrm{Mo}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NS}_{2}\right)_{3}\left(\mathrm{~S}_{2}\right)_{3} \mathrm{~S}\right]_{2} \mathrm{~S}$, crystallizes on a general position in the monoclinic space group $P 2_{1} / n$ (No. 14). The cationic $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{C}\right.\right.$ $\left.\left.\mathrm{N}^{i} \mathrm{Bu}_{2}\right)_{3}\right]^{+}$fragments are joined by a monosulfide dianion that forms close $\mathrm{S} \cdots \mathrm{S}$ contacts to each of the disulfide ligands on the side of the Mo_{3} plane opposite the $\mu_{3}{ }^{2-}$ ligand. The two Mo_{3} planes are inclined at an angle of $40.637(15)^{\circ}$, which gives the assembly an open clamshell-like appearance. One $\mu_{6}-\mathrm{S}^{2-} \ldots \mathrm{S}_{2}{ }^{2-}$ contact, at 2.4849 (14) \AA, is appreciably shorter than the remaining five, which are in the range 2.7252 (13)-2.8077 (14) \AA.

1. Chemical context

Triangular molybdenum sulfide clusters of the form $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN} R_{2}\right)_{3}\right]^{+} \mathrm{I}^{-}(R=$ alkyl group $)$ function as precatalysts for an H_{2} evolving system under both photolytic and electrolytic conditions with $\mathrm{H}_{2} \mathrm{O}$ serving as source of protons (Fontenot et al., 2019). In the photolysis system, rapid mass spectrometry assays in the first moments of irradiation reveal the loss of atomic sulfur from the bridging $\mathrm{S}_{2}{ }^{2-}$ ligands to form monosulfido bridges and an $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}\right]^{4+}$ core prior to the onset of H_{2} evolution. In a bulk electrolysis of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]$ ${ }^{+} . \mathrm{I}^{-}$in the presence of $\mathrm{H}_{2} \mathrm{O}$, the Faradaic efficiency is observed to be only about 37%. Because the same system and set of conditions reduced methyl viologen with much higher Faradaic efficiency, it is probable the the extruded elemental sulfur is competing for reducing equivalents.

As a means of developing further insight into this system, we undertook a preparative scale reduction of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2}-\right.\right.$
$\left.\left.\mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]^{+} \cdot \mathrm{I}^{-}$using the prototypical outer-sphere reductant $\mathrm{Cp}_{2} \mathrm{Co}$. While the initial reaction was marked by a darkening in color, the work-up and subsequent crystallization identified yellow $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$ as the dominant isolable species. The presence of the sulfido counter-anion, which forms close $\mathrm{S} \cdots \mathrm{S}$ contacts with the axial S atoms of the bridging disulfide ligands of two different $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{C}\right.\right.$ $\left.\left.\mathrm{N}^{i} \mathrm{Bu}_{2}\right)_{3}\right]^{+}$clusters, confirms the diversion of electrons to free S^{0} in competition with H^{+}reduction in the bulk electrolysis. In this article, we detail the structural features of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{C}\right.\right.$ $\left.\left.\mathrm{N}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right),(\mathrm{I})$.

2. Structural commentary

The $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$ structure comprises two $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]^{+}$cations between which is ensconced an S^{2-} counter-anion (S27). The asymmetric joining of the two Mo_{3} clusters, as if by a hinge at S 27 , produces a half-opened clamshell-like appearance to the compound (Fig. 1). The angle at which these two Mo_{3} planes are disposed is $40.637(15)^{\circ}$ with a distance of $6.88 \AA$ between the centroids of the two Mo_{3} triangles.

A general observation in the structures of $\left[\mathrm{Mo}_{3} E_{7}\left(\mathrm{~S}_{2} \mathrm{CN} R_{2}\right)_{3}\right]^{+}(E=\mathrm{S}$ or $\mathrm{Se} ; R=$ alkyl group $)$ complexes is that soft monoatomic counter-anions situate themselves at the 'underside' of the cluster cation opposite to the unique $\mu_{3^{-}}$ E ligand and in close proximity to the 'axial' chalcogen atom of the bridging dichalcogenide (Fig. 2) (Zimmermann et al., 1991; Fedin et al., 1992; Il'inchuk et al., 2002; Lu et al., 1993).

Figure 1
Displacement ellipsoid plot (50% probability level) of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right.\right.$) $\left.{ }_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$ with complete atom labeling. For greater clarity, all H atoms and one of the two disordered parts of each disordered isobutyl group are removed.

Figure 2

Illustration of the structural distinction between axial and equatorial sulfur atoms of the $\mu-\mathrm{S}_{2}{ }^{2-}$ ligands in $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN} R_{2}\right)_{3}\right]^{+}$structures, with anion position in proximity to the axial S atoms.

These anion $\cdots E_{\mathrm{ax}}$ contacts are typically less that the sum of the van der Waals radii, a fact attributed to an electrophilic character of the $E_{\text {ax }}$ atom and the felicitous nature of the 'softsoft' $E_{\text {ax }} \cdots$ anion interaction. In $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$, the $\mathrm{S} 27 \cdots \mathrm{~S}_{\mathrm{ax}}$ interatomic distances partition into two sets: the S27-S3 distance at 2.4849 (14) \AA and the remaining five, which are in the range 2.7252 (13) -2.8077 (14) \AA, all of which are substantially less than twice the crystallographic radius for sulfur ($3.6 \AA$; Batsanov, 2001) and therefore indicative of appreciable covalency to the interactions. The markedly stronger interaction of S27 with the S3-S4 disulfide ligand is

Figure 3
Packing arrangement for $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$ viewed down the a axis of the unit cell. Displacement ellipsoids are presented at the 50% probability level, and all H atoms are omitted for clarity.

Table 1
Experimental details.

Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}{ }^{\circ}{ }^{3}\right.$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and
observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Mo}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NS}_{2}\right)_{3}\left(\mathrm{~S}_{2}\right)_{3} \mathrm{~S}\right]_{2} \mathrm{~S}$
2282.72

Monoclinic, $P 2_{1} / n$
150
16.1699 (7), 21.1139 (10), 30.0046 (14)
91.576 (2)
10240.0 (8)

4
$\mathrm{Cu} K \alpha$
11.24
$0.36 \times 0.27 \times 0.12$

Bruker D8 QUEST PHOTON 3
Multi-scan (SADABS; Krause et al., 2015)
$0.120,0.355$
332865, 20942, 18768
0.054
0.627

Computer programs: APEX4 and SAINT (Bruker, 2021), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).
manifested in the S3-S4 distance being significantly longer [2.2414 (13) \AA] than the remaining $S-S$ distances in the $\mu-\mathrm{S}_{2}{ }^{2-}$ ligands, which range from 2.0671 (13)-2.1198 (13) \AA and average as 2.0857 (6) \AA. This comparative elongation of the $\mathrm{S} 3-\mathrm{S} 4$ bond length is consistent with the proposal, as advanced in a review of the structural chemistry of $\left[M_{3} X_{7}\right]^{4+}$ and $\left[M_{3} X_{4}\right]^{4+}(M=\mathrm{Mo}, \mathrm{W} ; X=\mathrm{O}, \mathrm{S}, \mathrm{Se})$ clusters (Virovets \& Podberezskaya, 1993), that the sulfide counter-anion (S27) infuses electron density into the $\mathrm{S} 3-\mathrm{S} 4 \sigma^{*}$ orbital by overlap with one of its electron lone pairs.

The packing arrangement for $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$ places the assembly into columnar stacks along the a axis of the cell (Fig. 3). The isobutyl substituents of the ${ }^{i} \mathrm{Bu}_{2} \mathrm{NCS}_{2}{ }^{-}$ ligands project into the spacings between these columns and likely play a decisive role in guiding the formation of this pattern by virtue of favorable dispersion-type attractive forces.

3. Database survey

The first reported observation of the $\left[\mathrm{Mo}_{3} E_{7}\left(\mathrm{~S}_{2} \mathrm{CN} R_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\right.$ $E)(E=\mathrm{S}$ or Se$)$ structure type was a serendipitous formation of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$ by substitution of the oxyquinolate (oxq) ligands in $\left.\left[\mathrm{Mo}_{3} \mathrm{~S}_{7} \text { (oxq) }\right)_{3}\right]^{+}$with a slight excess of $\mathrm{Na}^{+} \mathrm{Et}_{2} \mathrm{NCS}_{2}{ }^{-}$in wet DMSO, the presumed source of the bridging S^{2-} ligand being the excess $\mathrm{Et}_{2} \mathrm{NCS}_{2}{ }^{-}$anion via hydrolysis (Meienberger et al., 1993). Here, the assembly crystallized in $A b a 2$ (No. 41) upon a crystallographic C_{2} axis
that was coincident with the $\mu_{6}-\mathrm{S}^{2-}$ ligand. The angle formed by the two Mo_{3} planes was 33.37° in $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\right.$ S), somewhat smaller than the analogous value in $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$, but the $\mathrm{Mo}_{3} \cdots \mathrm{Mo}_{3}$ centroid-tocentroid distance was $7.00 \AA$, slightly greater than the $6.88 \AA$ assessed for $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$. Notably, the $\mu_{6}-$ $\mathrm{S}^{2-} \ldots \mathrm{S}_{\mathrm{ax}}$ distances spanned a much more narrow range of 2.70 (1)-2.72 (1) \AA than seen in $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$, possibly because the latter's more sterically encumbering isobutyl groups have hindered close, symmetric approach to the S^{2-} bridge.

Another structure of the type with an all selenium inorganic core, $\left[\mathrm{Mo}_{3} \mathrm{Se}_{7}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{Se}\right)$, was obtained by the oxidative addition of $\mathrm{Et}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{S}-\mathrm{SC}(\mathrm{S}) \mathrm{NEt}_{2}$ and Se^{0} to $\mathrm{Mo}(\mathrm{CO})_{6}$ and crystallized as an isomorph of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}-\right.$ $\left.\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$ with a similar unit cell in the same space group (Almond, et al., 2000). Although larger in magnitude than the corresponding values in $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$, the spread in $\mathrm{Se}_{\mathrm{ax}} \cdots \mu_{6}-\mathrm{Se}^{2-}$ interatomic distances was still narrow compared to the range of analogous values in $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$. A pseudopolymorph of $\left[\mathrm{Mo}_{3} \mathrm{Se}_{7^{-}}\right.$ $\left.\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{Se}\right)$ with interstitial 1,2-dichlorobenzene revealed a similar range in $\mathrm{Se}_{\mathrm{ax}} \cdots \mu_{6}$-Se distances as seen for the structure without solvent (Brakefield et al., 2020). The tungsten analogue, $\left[\mathrm{W}_{3} \mathrm{Se}_{7}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{Se}\right)$, prepared similarly from $\mathrm{W}(\mathrm{CO})_{6}$ (Almond et al., 2000), has also been described and is the only other example of the structure type.

4. Synthesis and crystallization

A solution of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right] \mathrm{I}(0.049 \mathrm{~g}, 0.0039 \mathrm{mmol})$ in tetrahydrofuran (THF) was cooled to 195 K in the cold well of a glove-box. Upon cooling, a solution of cobaltocene in THF $(0.0183 \mathrm{~g}, 0.0968 \mathrm{~mol})$ was added dropwise to the stirring solution. This reaction mixture was stirred at 243 K for 30 min and then was removed from the cold well and warmed to room temperature with continued stirring. Upon attaining room temperature, the solution was filtered through Celite, and the volatiles were removed under reduced pressure. The oily residue was then dissolved in 20% THF in hexanes and passed through a 3 cm pad of silica in a glass pipette. All volatiles were then removed under reduced pressure to yield a dark-orange-brown oil. Crystals suitable for X-ray diffraction were grown by layering a concentrated THF solution with hexanes and maintaining the layered mixture at 243 K . Yield: 70%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \delta$, ppm in CDCl_{3}): $3.59(d d, J=24 \mathrm{~Hz}, 7.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.22(m, 1 \mathrm{H}, \mathrm{CH}), 0.95\left(d, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. An initial solution for $\left[\mathrm{Mo}_{3} \mathrm{~S}_{7}\left(\mathrm{~S}_{2} \mathrm{CN}^{i} \mathrm{Bu}_{2}\right)_{3}\right]_{2}\left(\mu_{6}-\mathrm{S}\right)$ was obtained by direct methods and revealed the positions of most of the non-H atoms except for some peripheral C atoms of the isobutyl groups. Subsequent cycles of least-squares refinement revealed several isobutyl groups that suffered a static disorder over two posi-
tions. This disorder was treated with a split atom model that attained a best fit distribution in each case. All non-H atoms were refined anisotropically, but the disordered C atoms were treated with SIMU and RIGU restraints. All H atoms were refined isotropically as riding atoms with displacement parameters 1.2-1.5 times those of the C atoms to which they were attached. In the final difference maps, two positions occupied by disordered solvent molecules were identified. These severely disordered solvent molecules, which presented an electron density attributable to 367 electrons in a solventaccessible volume of $1692 \AA^{3}$ per unit cell, have been masked using the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020).

Acknowledgements

Tulane University is acknowledged for its ongoing assistance with operational costs for the X-ray diffraction facility. The US Department of Energy is acknowledged for support of this work (DE-SC0023409).

References

Almond, M. J., Drew, M. G. B., Redman, H. \& Rice, D. A. (2000). Polyhedron, 19, 2127-2133.
Batsanov, S. S. (2001). Inorg. Mater. 37, 871-885.

Brakefield, K., Barnes, J. B. \& Donahue, J. P. (2020). Z. Kristallogr. 235, 739-743.
Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
Fedin, V. P., Sokolov, M. N., Geras'ko, O. A., Virovets, A. V., Podberezskaya, N. V. \& Fedorov, V. (1992). Inorg. Chim. Acta, 192, 153-156.
Fontenot, P. R., Shan, B., Wang, B., Simpson, S., Ragunathan, G., Greene, A. F., Obanda, A., Hunt, L. A., Hammer, N. I., Webster, C. E., Mague, J. T., Schmehl, R. H. \& Donahue, J. P. (2019). Inorg. Chem. 58, 16458-16474.
Il'inchuk, E. A., Polyanskaya, T. M., Myakishev, K. G., Basova, T. V. \& Kolesov, B. A. (2002). Russ. J. Gen. Chem. 72, 1862-1866.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lu, S.-F., Huang, J.-Q., Chen, H.-B. \& Wu, Q.-J. (1993). Huaxue Xuebao 51, 885-896.
Meienberger, M. D., Hegetschweiler, K., Rüegger, H. \& Gramlich, V. (1993). Inorg. Chim. Acta, 213, 157-169.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2015). Acta Cryst. C71, 9-18.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Virovets, A. V. \& Podberezskaya, N. V. (1993). J. Struct. Chem. 34, 306-322.
Zimmermann, H., Hegetschweiler, K., Keller, T., Gramlich, V., Schmalle, H. W., Petter, W. \& Schneider, W. (1991). Inorg. Chem. 30, 4336-4341.

