CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 25 March 2024
Accepted 29 March 2024

Edited by S. Parkin, University of Kentucky, USA
Gold complexes with amine ligands, Part 15. Part 14: Döring \& Jones (2023b).

Keywords: crystal structure; gold; methylpiperidine; hydrogen bonds; polymorph.

CCDC references: 2113947; 2113948; 2113946

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} & \text { ACCESS }\end{aligned}$
Published under a CC BY 4.0 licence

Crystal structures of trichlorido(4-methylpiperidine)gold(III) and two polymorphs of tribromido-(4-methylpiperidine)gold(III)

Cindy Döring and Peter G. Jones*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany. *Correspondence e-mail: p.jones@tu-braunschweig.de

Trichlorido(4-methylpiperidine)gold(III), $\left[\mathrm{AuCl}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)\right]$, 1, crystallizes in Pbca with $Z=8$. Tribromido(4-methylpiperidine)gold(III), $\left[\mathrm{AuBr}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)\right], \mathbf{2}$, crystallizes as two polymorphs, 2a in Pnma with $Z=4$ (imposed mirror symmetry) and $\mathbf{2 b}$, which is isotypic to $\mathbf{1}$. The $\mathrm{Au}-\mathrm{N}$ bonds trans to Cl are somewhat shorter than those trans to Br , and the $\mathrm{Au}-\mathrm{Cl}$ bonds trans to N are longer than those cis to N , whereas the $\mathrm{Au}-\mathrm{Br}$ bonds trans to N are slightly shorter than the cis bonds. The methyl and $\mathrm{Au} X_{3}$ groups ($X=$ halogen) occupy equatorial positions at the six-membered ring. The packing of all three structures involves chains of molecules with offset stacking of the $\mathrm{Au} X_{3}$ moieties associated with short $\mathrm{Au} \cdots X$ contacts; for $\mathbf{1}$ and $\mathbf{2 b}$ these are reinforced by $\mathrm{N}-\mathrm{H} \cdots X$ hydrogen bonds, whereas for 2a there are no classical hydrogen bonds and the chains are interconnected by $\mathrm{Br} \cdots \mathrm{Br}$ contacts.

1. Chemical context

We have published a series of articles describing the structures of amine complexes of gold. The three most recent, Parts $12-$ 14 in the series, concerned gold(I) and gold(III) derivatives of piperidine and pyrrolidine (Döring \& Jones, 2023a), gold(I) complexes of morpholine (Döring \& Jones, 2023b) and gold(I) complexes of methylpiperidine (Döring \& Jones, 2024). An extensive introduction, with details of previous results, may be found in Part 12 and will not be repeated here. Here we present the structures of the two 4-methylpiperidine complexes of gold(III) trihalides, namely trichlorido(4methylpiperidine)gold(III) $\mathbf{1}$ and tribromido(4-methylpiperidine) gold(III) 2. The ligands piperidine and 4-methylpiperidine are henceforth abbreviated to 'pip' and '4-Me-pip'.

2. Structural commentary

The molecular structures of $\mathbf{1}, \mathbf{2 a}$ and $\mathbf{2 b}$ are shown in Figs. 1-3. Compound 2 crystallized as two polymorphs in the space groups Pnma (2a) and Pbca (2b); the former displays crystallographic mirror symmetry, whereby the mirror plane contains the gold and bromine atoms, the NH group, the

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for $\mathbf{1}$.

$\mathrm{Au} 1-\mathrm{N} 11$	$2.070(3)$	$\mathrm{Au} 1-\mathrm{Cl} 2$	$2.2832(10)$
$\mathrm{Au} 1-\mathrm{Cl} 3$	$2.2826(10)$	$\mathrm{Au} 1-\mathrm{Cl} 1$	$2.3006(10)$
$\mathrm{N} 11-\mathrm{Au} 1-\mathrm{Cl} 3$	$93.13(11)$	$\mathrm{Cl} 2-\mathrm{Au} 1-\mathrm{Cl} 1$	$91.18(4)$
$\mathrm{N} 11-\mathrm{Au} 1-\mathrm{Cl} 2$	$85.80(11)$	$\mathrm{C} 16-\mathrm{N} 11-\mathrm{C} 12$	$110.6(3)$
$\mathrm{Cl3}-\mathrm{Au} 1-\mathrm{Cl} 2$	$178.07(4)$	$\mathrm{C} 16-\mathrm{N} 11-\mathrm{Au} 1$	$117.8(3)$
$\mathrm{N} 11-\mathrm{Au} 1-\mathrm{Cl} 1$	$176.94(11)$	$\mathrm{C} 12-\mathrm{N} 11-\mathrm{Au} 1$	$111.0(3)$
$\mathrm{Cl} 3-\mathrm{Au} 1-\mathrm{Cl} 1$	$89.90(4)$		
$\mathrm{Cl} 3-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 16$	$-30.0(3)$	$\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13$	$169.1(3)$
$\mathrm{Cl} 2-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 16$	$151.6(3)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 17$	$179.8(4)$
$\mathrm{Cl} 3-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 12$	$98.8(3)$	$\mathrm{C} 17-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$179.4(4)$
$\mathrm{Cl} 2-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 12$	$-79.6(3)$	$\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 16-\mathrm{C} 15$	$-172.6(3)$

Table 2
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for $\mathbf{2 a}$.

$\mathrm{Au} 1-\mathrm{N} 11$	$2.096(5)$	$\mathrm{Au} 1-\mathrm{Br} 3$	$2.4110(7)$
$\mathrm{Au} 1-\mathrm{Br} 1$	$2.4066(7)$	$\mathrm{Au} 1-\mathrm{Br} 2$	$2.4273(6)$
$\mathrm{N} 11-\mathrm{Au} 1-\mathrm{Br} 1$	$179.50(15)$	$\mathrm{Br} 1-\mathrm{Au} 1-\mathrm{Br} 2$	$91.68(2)$
$\mathrm{N} 11-\mathrm{Au} 1-\mathrm{Br} 3$	$91.78(15)$	$\mathrm{Br} 3-\mathrm{Au} 1-\mathrm{Br} 2$	$179.60(2)$
$\mathrm{Br} 1-\mathrm{Au} 1-\mathrm{Br} 3$	$88.72(2)$	$\mathrm{C} 12^{\mathrm{i}}-\mathrm{N} 11-\mathrm{C} 12$	$111.2(5)$
$\mathrm{N} 11-\mathrm{Au} 1-\mathrm{Br} 2$	$87.82(15)$	$\mathrm{C} 12^{\mathrm{i}}-\mathrm{N} 11-\mathrm{Au} 1$	$113.4(3)$
$\mathrm{Br} 3-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 12$	$-64.1(3)$	$\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13$	$-174.4(3)$
$\mathrm{Br} 2-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 12$	$115.9(3)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-179.7(4)$

Symmetry code: (i) $x,-y+\frac{3}{2}, z$
Table 3
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right.$) for $\mathbf{2 b}$.

$\mathrm{Au} 1-\mathrm{N} 11$	$2.094(4)$	$\mathrm{Au} 1-\mathrm{Br} 2$	$2.4244(5)$
$\mathrm{Au} 1-\mathrm{Br} 1$	$2.4187(5)$	$\mathrm{Au} 1-\mathrm{Br} 3$	2.4246 (5)
$\mathrm{N} 11-\mathrm{Au} 1-\mathrm{Br} 1$	$176.50(11)$	$\mathrm{Br} 2-\mathrm{Au} 1-\mathrm{Br} 3$	$177.736(17)$
$\mathrm{N} 11-\mathrm{Au} 1-\mathrm{Br} 2$	$86.00(11)$	$\mathrm{C} 12-\mathrm{N} 11-\mathrm{C} 16$	$110.9(4)$
$\mathrm{Br} 1-\mathrm{Au} 1-\mathrm{Br} 2$	$90.665(18)$	$\mathrm{C} 12-\mathrm{N} 11-\mathrm{Au} 1$	$111.6(3)$
$\mathrm{N} 11-\mathrm{Au} 1-\mathrm{Br} 3$	$93.62(11)$	$\mathrm{C} 16-\mathrm{N} 11-\mathrm{Au} 1$	$117.8(3)$
$\mathrm{Br} 1-\mathrm{Au} 1-\mathrm{Br} 3$	$89.751(18)$		
$\mathrm{Br} 2-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 12$	$-78.0(3)$	$\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13$	$168.1(3)$
$\mathrm{Br} 3-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 12$	$99.8(3)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 17$	$-179.2(4)$
$\mathrm{Br} 2-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 16$	$152.0(3)$	$\mathrm{C} 17-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$178.9(4)$
$\mathrm{Br} 3-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 16$	$-30.2(3)$	$\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C} 16-\mathrm{C} 15$	$-171.6(3)$

carbon at C-4 and the methyl carbon (these atoms are numbered for 2a as C14 and C15). For all three structures, the halogen atoms are numbered such that $X 1(X=$ halogen $)$ is

Figure 1
The structure of compound $\mathbf{1}$ in the crystal. Ellipsoids correspond to 50% probability levels.

Figure 2
The structure of compound 2a in the crystal. Ellipsoids correspond to 50% probability levels. Only the asymmetric unit is numbered.
trans to the ligand nitrogen atom N11. Structures $\mathbf{1}$ and $\mathbf{2 b}$ are isotypic. The geometry at the gold atoms is as expected square planar. Bond lengths and angles (Tables 1-3) may be considered normal. The $\mathrm{Au}-\mathrm{N}$ bonds trans to Cl are somewhat shorter than those trans to Br , and the $\mathrm{Au}-\mathrm{Cl}$ bonds trans to N are longer than those cis to N , whereas the $\mathrm{Au}-\mathrm{Br}$ bonds trans to N are slightly shorter than the cis bonds. Similar trends were observed for (pip) AuCl_{3} and (pip) AuBr_{3} (Döring \& Jones, 2023a).

The relative orientation of the ligand and the $\operatorname{Au} X_{3}$ unit is described by the torsion angles $\mathrm{Xn}-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{H} 01$ and $X n-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C}$, where $n=2$ or 3 (torsion angles for $n=1$ are meaningless because the sequence $X 1-\mathrm{Au} 1-\mathrm{N} 1$ is linear). We observe two distinct types: either one angle $\mathrm{Xn}-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{H} 01$ is approximately zero, corresponding to a short $\mathrm{H} 01 \cdots X n$ contact that might be considered an intramolecular hydrogen bond, and the smallest absolute $X n-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C}$ angle is around 60°, or the angle $\mathrm{X} n-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{H} 01$ is approximately $30-40^{\circ}$ and the smallest absolute $\mathrm{X} n-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{C}$ angle is around 30°. The former type applies to (pip) AuCl_{3} and $\mathbf{2 a}$ [where $\mathrm{Br} 2-\mathrm{Au} 1-\mathrm{N} 11-\mathrm{H} 01$ is exactly zero by symmetry and $\mathrm{H} 01 \cdots \mathrm{Br} 2$ is 2.71 (6) \AA], and the latter to (pip) $\mathrm{AuBr}_{3}, \mathbf{1}$ and 2b.

As would be expected for bulky substituents attached to cyclohexane-type rings, the methyl groups and the $\mathrm{Au} X_{3}$ moieties occupy equatorial positions, with torsion angles $\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{Au}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}_{\text {methyl }}$ around $\pm 180^{\circ}$. Our previous two papers however include several structures where

Figure 3
The structure of compound $\mathbf{2 b}$ in the crystal. Ellipsoids correspond to 50% probability levels.

Table 4
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$ for $\mathbf{1}$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 01 \cdots \mathrm{Cl1}{ }^{\mathrm{i}}$	$0.93(4)$	$2.64(4)$	$3.535(4)$	$163(4)$
${\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{Cl}^{\mathrm{i}}}^{\mathrm{i}}$	0.99	2.97	$3.804(4)$	143
$\mathrm{C} 13-\mathrm{H} 13 B \cdots \mathrm{Cl}^{\text {ii }}$	0.99	2.82	$3.798(4)$	171
${\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{Cl}^{\text {iii }}}^{\text {iv }}$	0.99	2.95	$3.610(4)$	125
${\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{Cl}^{\mathrm{iv}}}^{\mathrm{C} 16-\mathrm{H} 16 B \cdots \mathrm{Cl}^{\mathrm{i}}}$	0.99	0.99	2.99	$3.728(4)$

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $x+\frac{1}{2}, y,-z+\frac{1}{2}$.

Table 5
Hydrogen-bond geometry ($\AA,^{\circ}$) for 2a.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 01 \cdots \mathrm{Br} 2$	$0.89(6)$	$2.71(6)$	$3.146(5)$	$111(5)$
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{Br}^{\mathrm{ii}}$	0.99	2.94	$3.786(5)$	145
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{Br}^{\text {ii }}$	0.99	2.99	$3.798(4)$	139
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{Br}^{\mathrm{iii}}$	0.97	2.98	$3.936(7)$	169
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{Br}^{\mathrm{i}}$	0.99	2.96	$3.526(4)$	118
${\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{Br}^{\text {iv }}}^{\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{Br}^{\text {iv }}}{ }^{2}$	0.99	3.09	$4.002(4)$	154

Symmetry codes: (ii) $-x,-y+2,-z$; (iii) $x+\frac{1}{2}, y,-z-\frac{1}{2}$; (iv) $-x+1,-y+2,-z$.
Table 6
Hydrogen-bond geometry ($\AA,^{\circ}$) for $\mathbf{2 b}$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 01 \cdots \mathrm{Br} 1^{\mathrm{i}}$	$0.97(4)$	$2.81(4)$	$3.759(4)$	$164(4)$
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{Br} 2$	0.99	2.99	$3.542(5)$	116
$\mathrm{C} 13-\mathrm{H} 13 B \cdots \mathrm{Br}^{\mathrm{ii}}$	0.99	2.93	$3.903(5)$	169
${\mathrm{C} 16-\mathrm{H} 16 B \cdots \mathrm{Br}^{\mathrm{i}}}^{2}$	0.99	2.99	$3.750(5)$	135

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z$.

Figure 4
Packing diagram of compound $\mathbf{1}$ viewed approximately parallel to the c axis (but rotated by ca 15° around the horizontal axis for clarity) in the region $z \simeq 0.125$, showing two chains of molecules parallel to the b axis. Dashed lines indicate $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (thick) or $\mathrm{Au} \cdots \mathrm{Cl}$ contacts (thin). Hydrogen atoms not involved in hydrogen bonding are omitted. Atom labels indicate the asymmetric unit. Similar chains are formed in the regions $z \simeq 0.375,0.625$ and 0.875 .

Figure 5
Packing diagram of compound $\mathbf{2 a}$ viewed aproximately parallel to the c axis (but rotated by ca 10° about the vertical axis for clarity), showing three chains of molecules parallel to the b axis. The chains are centred on the regions $(x, z)=(0,0),(1,0)$ and $(1 / 2,1 / 2)$. Dashed lines indicated $\mathrm{Au} \cdots \mathrm{Br}$ contacts (thick) or $\mathrm{Br} \cdots \mathrm{Br}$ contacts (thin); the latter are shown more clearly in Fig. 6. Atom labels indicate the asymmetric unit.
a gold(I) atom occupies an axial position in similar molecules. The 'normal' equatorial positions observed for $\mathbf{1 , 2 a}$ and $\mathbf{2 b}$ may be associated with steric effects, which should be greater for the larger $\mathrm{Au} X_{3}$ moieties compared to the linear gold(I) centres.

3. Supramolecular features

For compound 1, the main intermolecular contacts are the hydrogen bond $\mathrm{N} 1-\mathrm{H} 01 \cdots \mathrm{Cl} 1\left(\frac{1}{2}-x, \frac{1}{2}+y, z\right.$, the b glide operator) and the two $\mathrm{Au} \cdots \mathrm{Cl}$ contacts $\mathrm{Au} 1 \cdots \mathrm{Cl} 3$ (same operator) $=3.2980(10) \AA$ and $\mathrm{Au} 1 \cdots \mathrm{Cl} 2\left(\frac{1}{2}-x,-\frac{1}{2}+y, z\right)=$ 3.3604 (10) \AA that correspond to an offset stacking of the AuCl_{3} moieties. These combine to form chains of molecules parallel to the b axis (Fig. 4). In the isotypic $\mathbf{2 b}$, the corresponding $\mathrm{Au} \cdots \mathrm{Br}$ distances are 3.4060 (5) and 3.5018 (5) \AA.

Compound $\mathbf{2 a}$ forms chains analogous to those of $\mathbf{1}$, with $\operatorname{Au} 1 \cdots \operatorname{Br} 2(-x, 1-y,-z$ and $-x, 2-y,-z)=3.5847$ (2) \AA; these run parallel to the b axis (Fig. 5). The chains are crosslinked by short $\mathrm{Br} \cdots \mathrm{Br}$ contacts involving one cis (to N) and the trans Br atom, with $\mathrm{Br} 1 \cdots \operatorname{Br} 3\left(-\frac{1}{2}+x, y, \frac{1}{2}-z\right.$, the a glide operator) $=3.3686(6) \AA$ and angles $\mathrm{Au} 1-\mathrm{Br} 1 \cdots \mathrm{Br}^{\prime}=$ 166.26 (3) and $\mathrm{Au} 1-\mathrm{Br} 3 \cdots \mathrm{Br}^{\prime}=162.77$ (3) ${ }^{\circ}$. These contacts are indicated in Fig. 5 but are shown more clearly in Fig. 6; they link the molecules to form chains parallel to the b axis. The NH group is not involved in intermolecular hydrogen bonding.

All three structures also display $\mathrm{C}-\mathrm{H} \cdots X$ contacts that might be interpreted as 'weak' hydrogen bonds (Tables 4-6),

Table 7
Experimental details.

	1	2a	2b
Crystal data			
Chemical formula	$\left[\mathrm{AuCl}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)\right]$	$\left[\mathrm{AuBr}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)\right]$	[$\mathrm{AuBr}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)$]
$M_{\text {r }}$	402.49	535.87	535.87
Crystal system, space group	Orthorhombic, Pbca	Orthorhombic, Pnma	Orthorhombic, Pbca
Temperature (K)	100	100	100
$a, b, c(\AA)$	12.5716 (6), 8.3940 (3), 20.3319 (7)	9.9871 (5), 7.1505 (4), 15.7160 (8)	12.6471 (5), 8.7247 (3), 21.0262 (7)
$V\left(\AA^{3}\right)$	2145.53 (14)	1122.32 (10)	2320.07 (15)
Z	8	4	8
Radiation type	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	14.40	23.74	22.96
Crystal size (mm)	$0.22 \times 0.03 \times 0.01$	$0.27 \times 0.06 \times 0.03$	$0.14 \times 0.04 \times 0.03$
Data collection			
Diffractometer	Oxford Diffraction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos	Oxford Diffraction Xcalibur, Eos
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)	Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
$T_{\text {min }}, T_{\text {max }}$	0.702, 1.000	0.240, 1.000	0.380, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	53277, 2887, 2134	28605, 1864, 1581	38297, 3371, 2495
$R_{\text {int }}$	0.080	0.070	0.074
θ values (${ }^{\circ}$)	$\theta_{\text {max }}=29.1, \theta_{\text {min }}=2.6$	$\theta_{\text {max }}=31.1, \theta_{\text {min }}=2.4$	$\theta_{\text {max }}=30.0, \theta_{\text {min }}=2.5$
Refinement			
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.024, 0.042, 1.05	0.030, 0.050, 1.11	0.029, 0.043, 1.04
No. of reflections	2887	1864	3371
No. of parameters	105	65	105
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.86, -0.86	1.56, -1.19	0.99, -0.99

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2019/3 (Sheldrick, 2015) and XP, (Bruker, 1998).
but none of these is strikingly short. These (and other) weak interactions might well contribute significantly to the packing energy, but it is difficult to incorporate them in easily interpretable packing diagrams.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002), part of Version 2023.3.0 of the Cambridge Database (Groom et al., 2016). A search for short $\mathrm{Cl} \cdots \mathrm{Cl}$ contacts between molecules $L \mathrm{AuCl}_{3}$ ($L=$ any atom) gave 51 hits (59 independent molecules) with contact distances from 3.086 to $3.37 \AA$ and an average $\mathrm{Au}-\mathrm{Cl} \cdots \mathrm{Cl}$ angle of 152.9°. A similar search for $L \mathrm{AuBr}_{3}$ ($L=$ any atom) gave 28 hits (36 independent molecules) with contact distances from 3.26 to $3.67 \AA$ and an average $\mathrm{Au}-\mathrm{Br} \cdots \mathrm{Br}$ angle of 150.7°. The upper bounds for the contact distances in both cases correspond to the double van der Waals radii as stored in the CCDC. For both sets of results, the cis (to L) halogen atoms were more often involved than the trans halogen atoms (the latter corresponding to $X 1$ in the structures presented here); for $X=\mathrm{Cl}$ there were 9 contacts of the form trans/trans, 5 cis/trans and 37 cis/cis, and the corresponding values for $X=\mathrm{Br}$ were 4,7 and 25. In many cases, the $\mathrm{Au}-X \cdots X$ angles were equal by symmetry, and both values were used to calculate the average values.

5. Synthesis and crystallization

The starting materials of choice would be the $\operatorname{gold}(\mathrm{I})$ complexes (4-Me-pip)Au X, but these exist in the ionic form $\left[(4-\mathrm{Me}-\mathrm{pip})_{2} \mathrm{Au}\right]\left[\mathrm{Au} X_{2}\right]$ rather than as neutral molecules (Döring \& Jones, 2024).

Figure 6
Packing diagram of compound 2a showing two zigzag chains of molecules parallel to the b axis; the lower chain is centred in the mirror plane at $y=$ 0.75 and the upper chain in the plane at $y=0.25$. Dashed lines indicated $\mathrm{Br} \cdots \mathrm{Br}$ contacts (or, just visible, $\mathrm{Au} \cdots \mathrm{Br}$ contacts linking the two chains in the direction into the paper). Atom labels indicate the asymmetric unit.

Trichlorido(4-methylpiperidine)gold(III) (1)

A solution of bis(4-methylpiperidine)gold(I) dichloridoaurate(I) ($310 \mathrm{mg}, 0.454 \mathrm{mmol}$) in 4 mL of dichloromethane was added to a solution of $\mathrm{PhICl}_{2}(125 \mathrm{mg}, 0.454 \mathrm{mmol})$ in 3 mL of dichloromethane. 2 mL of the mixed solution were divided amongst five small test-tubes and overlayered with various precipitants. The tubes were then stoppered and stored in a refrigerator at 276 K . The measured crystal was obtained using diisopropyl ether as precipitant. Elemental analysis [\%]: calc. C 17.91, H 3.26, N 3.48; found C 17.64, H 3.30, N 3.65.

Tribromido(4-methylpiperidine)gold(III) (2)

Polymorph 2a: $\operatorname{Bis}(4-m e t h y l p i p e r i d i n i u m) ~ b r o m i d e ~ t e t r a-~$ bromidoaurate(III), $\{(4-\mathrm{Me}-\mathrm{pip}) \mathrm{H}\}_{2} \cdot \mathrm{Br} \cdot\left[\mathrm{AuBr}_{4}\right]$ (Döring, 2016) ($26 \mathrm{mg}, 0.0327 \mathrm{mmol}$) was dissolved in 1.5 mL of dichloromethane. The solution was divided amongst three small test tubes and overlayered with various precipitants. The tubes were then stoppered and stored in a refrigerator at 276 K . Using diisopropyl ether as precipitant, a mixture of crystals of the starting material (structure to be reported elsewhere) and of $\mathbf{2 a}$ was obtained.

Polymorph 2b: Bis(4-methylpiperidine)gold(I) dibromidoaurate(I), [(4-Me-pip) $\left.{ }_{2} \mathrm{Au}\right]\left[\mathrm{AuBr}_{2}\right],(90 \mathrm{mg}, 0.239 \mathrm{mmol})$ was dissolved in 2 mL of dichloromethane and two drops of elemental bromine were added. The solution was overlayered with diisopropyl ether and stored in a refrigerator at 276 K , whereby crystals of $\mathbf{2 b}$ formed.

6. Refinement

Details of the measurements and refinements are given in Table 7. Structures were refined anisotropically on F^{2}. For all compounds, the NH hydrogen atoms were refined freely. Methylene hydrogens were included at calculated positions and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.99 \AA$ and
$\mathrm{H}-\mathrm{C}-\mathrm{H}=109.5^{\circ}$. Methine hydrogens were included similarly, but with $\mathrm{C}-\mathrm{H}=0.99 \AA$. Methyl groups were included as idealized rigid groups with $\mathrm{C}-\mathrm{H} 0.98 \AA$ and $\mathrm{H}-\mathrm{C}-\mathrm{H} 109.5^{\circ}$, and were allowed to rotate but not to tip (command 'AFIX 137 '). U values of the hydrogen atoms were fixed at $1.5 \times U_{\text {eq }}$ of the parent carbon atoms for methyl groups and $1.2 \times U_{\text {eq }}$ of the parent carbon atoms for other hydrogens. For compound 2a, an extinction correction was performed; the extinction parameter (Sheldrick, 2015) refined to 0.00051 (4).

Acknowledgements

We gratefully acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389397.

Döring, C. (2016). Halogen(I)-Aminkomplexe und ihre Oxidationsprodukte. Dissertation, Technical University of Braunschweig. Germany. ISBN: 978-3-8439-2639-3.
Döring, C. \& Jones, P. G. (2023a). Acta Cryst. E79, 1017-1027.
Döring, C. \& Jones, P. G. (2023b). Acta Cryst. E79, 1161-1165.
Döring, C. \& Jones, P. G. (2024). Acta Cryst. E80, 157-165.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Rigaku OD (2015). (Formerly Oxford Diffraction and later Agilent Technologies.) CrysAlis PRO, Version 1.171.38.43 (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

