

Received 25 March 2024 Accepted 29 March 2024

Edited by S. Parkin, University of Kentucky, USA

Gold complexes with amine ligands, Part 15. Part 14: Döring & Jones (2023*b*).

**Keywords:** crystal structure; gold; methylpiperidine; hydrogen bonds; polymorph.

CCDC references: 2113947; 2113948; 2113946

**Supporting information:** this article has supporting information at journals.iucr.org/e

# Crystal structures of trichlorido(4-methylpiperidine)gold(III) and two polymorphs of tribromido-(4-methylpiperidine)gold(III)

#### Cindy Döring and Peter G. Jones\*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany. \*Correspondence e-mail: p.jones@tu-braunschweig.de

Trichlorido(4-methylpiperidine)gold(III), [AuCl<sub>3</sub>(C<sub>6</sub>H<sub>13</sub>N)], **1**, crystallizes in *Pbca* with Z = 8. Tribromido(4-methylpiperidine)gold(III), [AuBr<sub>3</sub>(C<sub>6</sub>H<sub>13</sub>N)], **2**, crystallizes as two polymorphs, **2a** in *Pnma* with Z = 4 (imposed mirror symmetry) and **2b**, which is isotypic to **1**. The Au–N bonds *trans* to Cl are somewhat shorter than those *trans* to Br, and the Au–Cl bonds *trans* to N are longer than those *cis* to N, whereas the Au–Br bonds *trans* to N are slightly shorter than the *cis* bonds. The methyl and AuX<sub>3</sub> groups (X = halogen) occupy equatorial positions at the six-membered ring. The packing of all three structures involves chains of molecules with offset stacking of the AuX<sub>3</sub> moieties associated with short Au···X contacts; for **1** and **2b** these are reinforced by N–H···X hydrogen bonds, whereas for **2a** there are no classical hydrogen bonds and the chains are interconnected by Br···Br contacts.

#### 1. Chemical context

We have published a series of articles describing the structures of amine complexes of gold. The three most recent, Parts 12– 14 in the series, concerned gold(I) and gold(III) derivatives of piperidine and pyrrolidine (Döring & Jones, 2023*a*), gold(I) complexes of morpholine (Döring & Jones, 2023*b*) and gold(I) complexes of methylpiperidine (Döring & Jones, 2024). An extensive introduction, with details of previous results, may be found in Part 12 and will not be repeated here. Here we present the structures of the two 4-methylpiperidine complexes of gold(III) trihalides, namely trichlorido(4methylpiperidine)gold(III) **1** and tribromido(4-methylpiperidine)gold(III) **2**. The ligands piperidine and 4-methylpiperidine are henceforth abbreviated to 'pip' and '4-Me-pip'.





#### 2. Structural commentary

The molecular structures of 1, 2a and 2b are shown in Figs. 1–3. Compound 2 crystallized as two polymorphs in the space groups *Pnma* (2a) and *Pbca* (2b); the former displays crystallographic mirror symmetry, whereby the mirror plane contains the gold and bromine atoms, the NH group, the

Table 1Selected geometric parameters (Å,  $^{\circ}$ ) for 1.

| Au1-N11         | 2.070 (3)   | Au1-Cl2         | 2.2832 (10) |
|-----------------|-------------|-----------------|-------------|
| Au1-Cl3         | 2.2826 (10) | Au1-Cl1         | 2.3006 (10) |
| N11-Au1-Cl3     | 93.13 (11)  | Cl2-Au1-Cl1     | 91.18 (4)   |
| N11-Au1-Cl2     | 85.80 (11)  | C16-N11-C12     | 110.6 (3)   |
| Cl3-Au1-Cl2     | 178.07 (4)  | C16-N11-Au1     | 117.8 (3)   |
| N11-Au1-Cl1     | 176.94 (11) | C12-N11-Au1     | 111.0 (3)   |
| Cl3-Au1-Cl1     | 89.90 (4)   |                 |             |
| Cl3-Au1-N11-C16 | 5 - 30.0(3) | Au1-N11-C12-C13 | 169.1 (3)   |
| Cl2-Au1-N11-C16 | 5 151.6 (3) | C12-C13-C14-C17 | 179.8 (4)   |
| Cl3-Au1-N11-C12 | 2 98.8 (3)  | C17-C14-C15-C16 | 179.4 (4)   |
| Cl2-Au1-N11-C12 | 2 -79.6 (3) | Au1-N11-C16-C15 | -172.6 (3)  |
|                 |             |                 |             |

#### Table 2

Selected geometric parameters (Å,  $^{\circ}$ ) for **2a**.

| Au1-N11         | 2.096 (5)   | Au1-Br3                   | 2.4110 (7) |
|-----------------|-------------|---------------------------|------------|
| Au1-Br1         | 2.4066 (7)  | Au1-Br2                   | 2.4273 (6) |
| N11-Au1-Br1     | 179.50 (15) | Br1 - Au1 - Br2           | 91.68 (2)  |
| N11-Au1-Br3     | 91.78 (15)  | Br3-Au1-Br2               | 179.60 (2) |
| Br1-Au1-Br3     | 88.72 (2)   | C12 <sup>i</sup> -N11-C12 | 111.2 (5)  |
| N11-Au1-Br2     | 87.82 (15)  | C12 <sup>i</sup> -N11-Au1 | 113.4 (3)  |
| Br3-Au1-N11-C12 | -64.1(3)    | Au1-N11-C12-C13           | -174.4(3)  |
| Br2-Au1-N11-C12 | 115.9 (3)   | C12-C13-C14-C15           | -179.7(4)  |
|                 |             |                           |            |

Symmetry code: (i)  $x, -y + \frac{3}{2}, z$ .

#### Table 3

Selected geometric parameters (Å, °) for 2b.

| Au1-N11               | 2.094 (4)   | Au1-Br2         | 2.4244 (5)   |
|-----------------------|-------------|-----------------|--------------|
| Au1-Br1               | 2.4187 (5)  | Au1-Br3         | 2.4246 (5)   |
| N11-Au1-Br1           | 176.50 (11) | Br2-Au1-Br3     | 177.736 (17) |
| N11-Au1-Br2           | 86.00 (11)  | C12-N11-C16     | 110.9 (4)    |
| Br1-Au1-Br2           | 90.665 (18) | C12-N11-Au1     | 111.6 (3)    |
| N11-Au1-Br3           | 93.62 (11)  | C16-N11-Au1     | 117.8 (3)    |
| Br1-Au1-Br3           | 89.751 (18) |                 |              |
| Br2-Au1-N11-C12       | -78.0 (3)   | Au1-N11-C12-C13 | 168.1 (3)    |
| Br3 - Au1 - N11 - C12 | 99.8 (3)    | C12-C13-C14-C17 | -179.2(4)    |
| Br2-Au1-N11-C16       | 152.0 (3)   | C17-C14-C15-C16 | 178.9 (4)    |
| Br3-Au1-N11-C16       | -30.2 (3)   | Au1-N11-C16-C15 | -171.6 (3)   |

carbon at C-4 and the methyl carbon (these atoms are numbered for **2a** as C14 and C15). For all three structures, the halogen atoms are numbered such that X1 (X = halogen) is



#### Figure 1

The structure of compound **1** in the crystal. Ellipsoids correspond to 50% probability levels.





*trans* to the ligand nitrogen atom N11. Structures **1** and **2b** are isotypic. The geometry at the gold atoms is as expected square planar. Bond lengths and angles (Tables 1–3) may be considered normal. The Au–N bonds *trans* to Cl are somewhat shorter than those *trans* to Br, and the Au–Cl bonds *trans* to N are longer than those *cis* to N, whereas the Au–Br bonds *trans* to N are slightly shorter than the *cis* bonds. Similar trends were observed for (pip)AuCl<sub>3</sub> and (pip)AuBr<sub>3</sub> (Döring & Jones, 2023*a*).

The relative orientation of the ligand and the Au $X_3$  unit is described by the torsion angles Xn-Au1-N11-H01 and Xn-Au1-N11-C, where n = 2 or 3 (torsion angles for n = 1are meaningless because the sequence X1-Au1-N1 is linear). We observe two distinct types: either one angle Xn-Au1-N11-H01 is approximately zero, corresponding to a short  $H01\cdots Xn$  contact that might be considered an intramolecular hydrogen bond, and the smallest absolute Xn-Au1-N11-C angle is around  $60^\circ$ , or the angle Xn-Au1-N11-H01 is approximately  $30-40^\circ$  and the smallest absolute Xn-Au1-N11-C angle is around  $30^\circ$ . The former type applies to (pip)AuCl<sub>3</sub> and **2a** [where Br2-Au1-N11-H01 is exactly zero by symmetry and H01 $\cdots$ Br2 is 2.71 (6) Å], and the latter to (pip)AuBr<sub>3</sub>, **1** and **2b**.

As would be expected for bulky substituents attached to cyclohexane-type rings, the methyl groups and the Au $X_3$  moieties occupy equatorial positions, with torsion angles C-C-N-Au and  $C-C-C-C_{methyl}$  around ±180°. Our previous two papers however include several structures where





The structure of compound  $\mathbf{2b}$  in the crystal. Ellipsoids correspond to 50% probability levels.

## research communications

#### Table 4

#### Hydrogen-bond geometry (Å, $^{\circ}$ ) for **1**.

| $D - H \cdot \cdot \cdot A$ | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdots A$ |
|-----------------------------|----------------|-------------------------|-------------------------|------------------|
| $N11 - H01 \cdots Cl1^i$    | 0.93 (4)       | 2.64 (4)                | 3.535 (4)               | 163 (4)          |
| $C15-H15B\cdots Cl1^{i}$    | 0.99           | 2.97                    | 3.804 (4)               | 143              |
| $C13-H13B\cdots Cl2^{ii}$   | 0.99           | 2.82                    | 3.798 (4)               | 171              |
| $C15-H15A\cdots Cl3^{iii}$  | 0.99           | 2.95                    | 3.610 (4)               | 125              |
| $C15-H15A\cdots Cl3^{iv}$   | 0.99           | 2.99                    | 3.728 (4)               | 132              |
| $C16-H16B\cdots Cl3^{i}$    | 0.99           | 2.91                    | 3,656 (5)               | 133              |

Symmetry codes: (i)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ , z; (ii)  $x + \frac{1}{2}$ ,  $-y + \frac{1}{2}$ , -z; (iii) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iv)  $x + \frac{1}{2}$ ,  $y, -z + \frac{1}{2}$ .

#### Table 5

#### Hydrogen-bond geometry (Å, $^\circ)$ for 2a.

| $D - H \cdot \cdot \cdot A$ | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdots A$ |
|-----------------------------|----------------|-------------------------|-------------------------|------------------|
| N11-H01···Br2               | 0.89 (6)       | 2.71 (6)                | 3.146 (5)               | 111 (5)          |
| $C12-H12B\cdots Br1^{ii}$   | 0.99           | 2.94                    | 3.786 (5)               | 145              |
| $C12-H12B\cdots Br2^{ii}$   | 0.99           | 2.99                    | 3.798 (4)               | 139              |
| $C15-H15A\cdots Br2^{iii}$  | 0.97           | 2.98                    | 3.936 (7)               | 169              |
| $C12-H12A\cdots Br3$        | 0.99           | 2.96                    | 3.526 (4)               | 118              |
| $C13-H13A\cdots Br3^{iv}$   | 0.99           | 3.09                    | 4.002 (4)               | 154              |
| $C15-H15B\cdots Br3^{iv}$   | 0.98           | 3.05                    | 3.965 (3)               | 155              |
|                             |                |                         |                         |                  |

Symmetry codes: (ii) -x, -y + 2, -z; (iii)  $x + \frac{1}{2}, y, -z - \frac{1}{2}$ ; (iv) -x + 1, -y + 2, -z.

#### Table 6

#### Hydrogen-bond geometry (Å, $^{\circ}$ ) for **2b**.

| $D - H \cdots A$          | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|---------------------------|----------------|-------------------------|-------------------------|-----------------------------|
| $N11-H01\cdots Br1^{i}$   | 0.97 (4)       | 2.81 (4)                | 3.759 (4)               | 164 (4)                     |
| $C12-H12A\cdots Br2$      | 0.99           | 2.99                    | 3.542 (5)               | 116                         |
| $C13-H13B\cdots Br2^{ii}$ | 0.99           | 2.93                    | 3.903 (5)               | 169                         |
| $C16-H16B\cdots Br3^{i}$  | 0.99           | 2.99                    | 3.750 (5)               | 135                         |

Symmetry codes: (i)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ , z; (ii)  $x + \frac{1}{2}$ ,  $-y + \frac{1}{2}$ , -z.



#### Figure 4

Packing diagram of compound **1** viewed approximately parallel to the *c* axis (but rotated by *ca* 15° around the horizontal axis for clarity) in the region  $z \simeq 0.125$ , showing two chains of molecules parallel to the *b* axis. Dashed lines indicate H···Cl hydrogen bonds (thick) or Au···Cl contacts (thin). Hydrogen atoms not involved in hydrogen bonding are omitted. Atom labels indicate the asymmetric unit. Similar chains are formed in the regions  $z \simeq 0.375$ , 0.625 and 0.875.



Figure 5

Packing diagram of compound **2a** viewed aproximately parallel to the *c* axis (but rotated by *ca* 10° about the vertical axis for clarity), showing three chains of molecules parallel to the *b* axis. The chains are centred on the regions (x, z) = (0, 0), (1, 0) and (1/2, 1/2). Dashed lines indicated Au···Br contacts (thick) or Br···Br contacts (thin); the latter are shown more clearly in Fig. 6. Atom labels indicate the asymmetric unit.

a gold(I) atom occupies an axial position in similar molecules. The 'normal' equatorial positions observed for **1**, **2a** and **2b** may be associated with steric effects, which should be greater for the larger Au $X_3$  moieties compared to the linear gold(I) centres.

#### 3. Supramolecular features

For compound **1**, the main intermolecular contacts are the hydrogen bond N1-H01···Cl1 $(\frac{1}{2} - x, \frac{1}{2} + y, z)$ , the *b* glide operator) and the two Au···Cl contacts Au1···Cl3 (same operator) = 3.2980 (10) Å and Au1···Cl2 $(\frac{1}{2} - x, -\frac{1}{2} + y, z)$  = 3.3604 (10) Å that correspond to an offset stacking of the AuCl<sub>3</sub> moieties. These combine to form chains of molecules parallel to the *b* axis (Fig. 4). In the isotypic **2b**, the corresponding Au···Br distances are 3.4060 (5) and 3.5018 (5) Å.

Compound **2a** forms chains analogous to those of **1**, with Au1 $\cdots$ Br2(-x, 1 - y, -z and -x, 2 - y, -z) = 3.5847 (2) Å; these run parallel to the *b* axis (Fig. 5). The chains are cross-linked by short Br $\cdots$ Br contacts involving one *cis* (to N) and the *trans* Br atom, with Br $1\cdots$ Br $3(-\frac{1}{2} + x, y, \frac{1}{2} - z, \text{ the$ *a* $glide operator) = 3.3686 (6) Å and angles Au1-Br<math>1\cdots$ Br3' = 166.26 (3) and Au1-Br $3\cdots$ Br1' = 162.77 (3)°. These contacts are indicated in Fig. 5 but are shown more clearly in Fig. 6; they link the molecules to form chains parallel to the *b* axis. The NH group is not involved in intermolecular hydrogen bonding.

All three structures also display  $C-H\cdots X$  contacts that might be interpreted as 'weak' hydrogen bonds (Tables 4–6),

 Table 7

 Experimental details.

|                                                                          | 1                                                                            | 2a                                                                           | 2b                                                                           |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Crystal data                                                             |                                                                              |                                                                              |                                                                              |
| Chemical formula                                                         | $[AuCl_3(C_6H_{13}N)]$                                                       | $[AuBr_3(C_6H_{13}N)]$                                                       | $[AuBr_3(C_6H_{13}N)]$                                                       |
| $M_{ m r}$                                                               | 402.49                                                                       | 535.87                                                                       | 535.87                                                                       |
| Crystal system, space group                                              | Orthorhombic, Pbca                                                           | Orthorhombic, Pnma                                                           | Orthorhombic, Pbca                                                           |
| Temperature (K)                                                          | 100                                                                          | 100                                                                          | 100                                                                          |
| a, b, c (Å)                                                              | 12.5716 (6), 8.3940 (3), 20.3319 (7)                                         | 9.9871 (5), 7.1505 (4), 15.7160 (8)                                          | 12.6471 (5), 8.7247 (3), 21.0262 (7)                                         |
| $V(Å^3)$                                                                 | 2145.53 (14)                                                                 | 1122.32 (10)                                                                 | 2320.07 (15)                                                                 |
| Z                                                                        | 8                                                                            | 4                                                                            | 8                                                                            |
| Radiation type                                                           | Μο Κα                                                                        | Μο Κα                                                                        | Μο Κα                                                                        |
| $\mu (\text{mm}^{-1})$                                                   | 14.40                                                                        | 23.74                                                                        | 22.96                                                                        |
| Crystal size (mm)                                                        | $0.22 \times 0.03 \times 0.01$                                               | $0.27 \times 0.06 \times 0.03$                                               | $0.14\times0.04\times0.03$                                                   |
| Data collection                                                          |                                                                              |                                                                              |                                                                              |
| Diffractometer                                                           | Oxford Diffraction Xcalibur, Eos                                             | Oxford Diffraction Xcalibur, Eos                                             | Oxford Diffraction Xcalibur, Eos                                             |
| Absorption correction                                                    | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2015)                          | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2015)                          | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2015)                          |
| $T_{\min}, T_{\max}$                                                     | 0.702, 1.000                                                                 | 0.240, 1.000                                                                 | 0.380, 1.000                                                                 |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 53277, 2887, 2134                                                            | 28605, 1864, 1581                                                            | 38297, 3371, 2495                                                            |
| R <sub>int</sub>                                                         | 0.080                                                                        | 0.070                                                                        | 0.074                                                                        |
| $\theta$ values (°)                                                      | $\theta_{\rm max} = 29.1,  \theta_{\rm min} = 2.6$                           | $\theta_{\rm max} = 31.1,  \theta_{\rm min} = 2.4$                           | $\theta_{\rm max} = 30.0,  \theta_{\rm min} = 2.5$                           |
| Refinement                                                               |                                                                              |                                                                              |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.024, 0.042, 1.05                                                           | 0.030, 0.050, 1.11                                                           | 0.029, 0.043, 1.04                                                           |
| No. of reflections                                                       | 2887                                                                         | 1864                                                                         | 3371                                                                         |
| No. of parameters                                                        | 105                                                                          | 65                                                                           | 105                                                                          |
| H-atom treatment                                                         | H atoms treated by a mixture of<br>independent and constrained<br>refinement | H atoms treated by a mixture of<br>independent and constrained<br>refinement | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  (e  {\rm A}^{-5})$       | 0.86, -0.86                                                                  | 1.56, -1.19                                                                  | 0.99, -0.99                                                                  |

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2019/3 (Sheldrick, 2015) and XP, (Bruker, 1998).

but none of these is strikingly short. These (and other) weak interactions might well contribute significantly to the packing energy, but it is difficult to incorporate them in easily interpretable packing diagrams.

#### 4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002), part of Version 2023.3.0 of the Cambridge Database (Groom et al., 2016). A search for short Cl···Cl contacts between molecules  $LAuCl_3$  (L = any atom) gave 51 hits (59) independent molecules) with contact distances from 3.086 to 3.37 Å and an average Au–Cl···Cl angle of 152.9°. A similar search for  $LAuBr_3$  (L = any atom) gave 28 hits (36 independent molecules) with contact distances from 3.26 to 3.67 Å and an average Au-Br...Br angle of 150.7°. The upper bounds for the contact distances in both cases correspond to the double van der Waals radii as stored in the CCDC. For both sets of results, the cis (to L) halogen atoms were more often involved than the trans halogen atoms (the latter corresponding to X1 in the structures presented here); for X = Clthere were 9 contacts of the form *trans/trans*, 5 cis/trans and 37 *cis/cis*, and the corresponding values for X = Br were 4, 7 and 25. In many cases, the Au $-X \cdots X$  angles were equal by symmetry, and both values were used to calculate the average values.

#### 5. Synthesis and crystallization

The starting materials of choice would be the gold(I) complexes (4-Me-pip)AuX, but these exist in the ionic form  $[(4-Me-pip)_2Au][AuX_2]$  rather than as neutral molecules (Döring & Jones, 2024).



#### Figure 6

Packing diagram of compound **2a** showing two zigzag chains of molecules parallel to the *b* axis; the lower chain is centred in the mirror plane at y = 0.75 and the upper chain in the plane at y = 0.25. Dashed lines indicated Br...Br contacts (or, just visible, Au..Br contacts linking the two chains in the direction into the paper). Atom labels indicate the asymmetric unit.

### research communications

#### Trichlorido(4-methylpiperidine)gold(III) (1)

A solution of bis(4-methylpiperidine)gold(I) dichloridoaurate(I) (310 mg, 0.454 mmol) in 4 mL of dichloromethane was added to a solution of PhICl<sub>2</sub> (125 mg, 0.454 mmol) in 3 mL of dichloromethane. 2 mL of the mixed solution were divided amongst five small test-tubes and overlayered with various precipitants. The tubes were then stoppered and stored in a refrigerator at 276 K. The measured crystal was obtained using diisopropyl ether as precipitant. Elemental analysis [%]: calc. C 17.91, H 3.26, N 3.48; found C 17.64, H 3.30, N 3.65.

#### Tribromido(4-methylpiperidine)gold(III) (2)

Polymorph **2a**: Bis(4-methylpiperidinium) bromide tetrabromidoaurate(III), {(4-Me-pip)H}<sub>2</sub>·Br·[AuBr<sub>4</sub>] (Döring, 2016) (26 mg, 0.0327 mmol) was dissolved in 1.5 mL of dichloromethane. The solution was divided amongst three small test tubes and overlayered with various precipitants. The tubes were then stoppered and stored in a refrigerator at 276 K. Using diisopropyl ether as precipitant, a mixture of crystals of the starting material (structure to be reported elsewhere) and of **2a** was obtained.

Polymorph **2b**: Bis(4-methylpiperidine)gold(I) dibromidoaurate(I),  $[(4-Me-pip)_2Au][AuBr_2]$ , (90 mg, 0.239 mmol) was dissolved in 2 mL of dichloromethane and two drops of elemental bromine were added. The solution was overlayered with diisopropyl ether and stored in a refrigerator at 276 K, whereby crystals of **2b** formed.

#### 6. Refinement

Details of the measurements and refinements are given in Table 7. Structures were refined anisotropically on  $F^2$ . For all compounds, the NH hydrogen atoms were refined freely. Methylene hydrogens were included at calculated positions and refined using a riding model with C-H = 0.99 Å and

 $H-C-H = 109.5^{\circ}$ . Methine hydrogens were included similarly, but with C-H = 0.99 Å. Methyl groups were included as idealized rigid groups with C-H 0.98 Å and  $H-C-H 109.5^{\circ}$ , and were allowed to rotate but not to tip (command 'AFIX 137'). *U* values of the hydrogen atoms were fixed at  $1.5 \times U_{eq}$  of the parent carbon atoms for methyl groups and  $1.2 \times U_{eq}$  of the parent carbon atoms for other hydrogens. For compound **2a**, an extinction correction was performed; the extinction parameter (Sheldrick, 2015) refined to 0.00051 (4).

#### Acknowledgements

We gratefully acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

#### References

- Bruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Döring, C. (2016). Halogen(I)-Aminkomplexe und ihre Oxidationsprodukte. Dissertation, Technical University of Braunschweig. Germany. ISBN: 978-3-8439-2639-3.
- Döring, C. & Jones, P. G. (2023a). Acta Cryst. E79, 1017-1027.
- Döring, C. & Jones, P. G. (2023b). Acta Cryst. E79, 1161-1165.
- Döring, C. & Jones, P. G. (2024). Acta Cryst. E80, 157-165.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.
- Rigaku OD (2015). (Formerly Oxford Diffraction and later Agilent Technologies.) *CrysAlis PRO*, Version 1.171.38.43 (earlier versions were also used, but are not cited separately). Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Acta Cryst. (2024). E80, 476-480 [https://doi.org/10.1107/S2056989024002822]

# Crystal structures of trichlorido(4-methylpiperidine)gold(III) and two polymorphs of tribromido(4-methylpiperidine)gold(III)

### **Cindy Döring and Peter G. Jones**

**Computing details** 

Trichlorido(4-methylpiperidine)gold(III) (1)

Crystal data [AuCl<sub>3</sub>(C<sub>6</sub>H<sub>13</sub>N)]  $M_r = 402.49$ Orthorhombic, *Pbca*  a = 12.5716 (6) Å b = 8.3940 (3) Å c = 20.3319 (7) Å V = 2145.53 (14) Å<sup>3</sup>

F(000) = 1488

Z = 8

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.1419 pixels mm<sup>-1</sup>  $\omega$  scan Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015)  $T_{min} = 0.702, T_{max} = 1.000$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.024$  $wR(F^2) = 0.042$ S = 1.052887 reflections 105 parameters 0 restraints Primary atom site location: structure-invariant direct methods  $D_x = 2.492 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7041 reflections  $\theta = 2.6-30.3^{\circ}$  $\mu = 14.40 \text{ mm}^{-1}$ T = 100 KNeedle, yellow  $0.22 \times 0.03 \times 0.01 \text{ mm}$ 

53277 measured reflections 2887 independent reflections 2134 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.080$  $\theta_{max} = 29.1^{\circ}, \theta_{min} = 2.6^{\circ}$  $h = -17 \rightarrow 17$  $k = -11 \rightarrow 11$  $l = -27 \rightarrow 27$ 

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0105P)^2 + 2.0478P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.86$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.86$  e Å<sup>-3</sup>

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|-------------|-------------|-----------------------------|
| Aul | 0.24309 (2) | 0.30864 (2) | 0.12540 (2) | 0.01126 (5)                 |

| C11  | 0.06218 (8) | 0.27039 (12) | 0.11903 (6)  | 0.0183 (2)  |
|------|-------------|--------------|--------------|-------------|
| Cl2  | 0.23963 (8) | 0.47300 (12) | 0.03594 (5)  | 0.0152 (2)  |
| C13  | 0.25068 (9) | 0.13911 (12) | 0.21305 (5)  | 0.0163 (2)  |
| N11  | 0.4051 (3)  | 0.3526 (4)   | 0.12740 (19) | 0.0140 (7)  |
| H01  | 0.413 (3)   | 0.459 (5)    | 0.116 (2)    | 0.016 (12)* |
| C12  | 0.4627 (4)  | 0.2518 (5)   | 0.0768 (2)   | 0.0164 (10) |
| H12A | 0.461894    | 0.138753     | 0.090652     | 0.020*      |
| H12B | 0.426095    | 0.260030     | 0.033863     | 0.020*      |
| C13  | 0.5764 (3)  | 0.3084 (5)   | 0.0700 (2)   | 0.0172 (9)  |
| H13A | 0.576749    | 0.418818     | 0.052940     | 0.021*      |
| H13B | 0.613978    | 0.240127     | 0.037781     | 0.021*      |
| C14  | 0.6356 (3)  | 0.3033 (5)   | 0.1356 (2)   | 0.0171 (9)  |
| H14  | 0.637276    | 0.190175     | 0.150987     | 0.020*      |
| C15  | 0.5748 (4)  | 0.4004 (5)   | 0.1862 (2)   | 0.0167 (9)  |
| H15A | 0.610893    | 0.391913     | 0.229285     | 0.020*      |
| H15B | 0.575131    | 0.513867     | 0.172913     | 0.020*      |
| C16  | 0.4608 (3)  | 0.3441 (5)   | 0.1930 (2)   | 0.0183 (10) |
| H16A | 0.459812    | 0.233002     | 0.209420     | 0.022*      |
| H16B | 0.422949    | 0.411771     | 0.225335     | 0.022*      |
| C17  | 0.7505 (3)  | 0.3604 (5)   | 0.1278 (2)   | 0.0226 (9)  |
| H17A | 0.750776    | 0.472073     | 0.113702     | 0.034*      |
| H17B | 0.786546    | 0.295036     | 0.094620     | 0.034*      |
| H17C | 0.787735    | 0.350621     | 0.169907     | 0.034*      |
|      |             |              |              |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Au1 | 0.01234 (7) | 0.00980 (8) | 0.01163 (7) | 0.00022 (6)  | 0.00052 (7)  | -0.00063 (6) |
| Cl1 | 0.0153 (5)  | 0.0172 (5)  | 0.0225 (6)  | -0.0036 (4)  | 0.0014 (5)   | 0.0009 (5)   |
| Cl2 | 0.0187 (5)  | 0.0130 (5)  | 0.0139 (5)  | -0.0011 (4)  | -0.0021 (4)  | 0.0019 (4)   |
| C13 | 0.0227 (5)  | 0.0127 (5)  | 0.0135 (4)  | -0.0006 (4)  | 0.0019 (5)   | 0.0015 (4)   |
| N11 | 0.0121 (16) | 0.0110 (17) | 0.0189 (18) | 0.0001 (13)  | -0.0004 (16) | 0.0011 (16)  |
| C12 | 0.014 (2)   | 0.021 (3)   | 0.015 (2)   | 0.0004 (17)  | 0.0039 (19)  | -0.0070 (17) |
| C13 | 0.013 (2)   | 0.023 (3)   | 0.016 (2)   | 0.001 (2)    | 0.0022 (17)  | -0.0025 (19) |
| C14 | 0.013 (2)   | 0.020(2)    | 0.019 (2)   | -0.0010 (18) | -0.0001 (17) | 0.0024 (19)  |
| C15 | 0.018 (2)   | 0.019 (2)   | 0.013 (2)   | 0.0014 (18)  | -0.0065 (18) | -0.0034 (17) |
| C16 | 0.018 (2)   | 0.025 (3)   | 0.012 (2)   | -0.0002 (19) | -0.0024 (17) | -0.0042 (18) |
| C17 | 0.019 (2)   | 0.026 (2)   | 0.022 (2)   | -0.0043 (18) | -0.004 (2)   | 0.007 (2)    |
|     |             |             |             |              |              |              |

### Geometric parameters (Å, °)

| Au1—N11 | 2.070 (3)   | C13—H13B | 0.9900    |  |
|---------|-------------|----------|-----------|--|
| Au1—Cl3 | 2.2826 (10) | C14—C15  | 1.518 (6) |  |
| Au1—Cl2 | 2.2832 (10) | C14—C17  | 1.531 (6) |  |
| Au1—Cl1 | 2.3006 (10) | C14—H14  | 1.0000    |  |
| N11—C16 | 1.509 (5)   | C15—C16  | 1.515 (6) |  |
| N11—C12 | 1.516 (5)   | C15—H15A | 0.9900    |  |
| N11—H01 | 0.93 (4)    | C15—H15B | 0.9900    |  |
|         |             |          |           |  |

| C12—C13         | 1.512 (6)   | C16—H16A        | 0.9900     |
|-----------------|-------------|-----------------|------------|
| C12—H12A        | 0.9900      | C16—H16B        | 0.9900     |
| C12—H12B        | 0.9900      | C17—H17A        | 0.9800     |
| C13—C14         | 1.528 (6)   | C17—H17B        | 0.9800     |
| C13—H13A        | 0.9900      | C17—H17C        | 0.9800     |
|                 |             |                 |            |
| N11—Au1—Cl3     | 93.13 (11)  | C15—C14—C13     | 109.4 (3)  |
| N11—Au1—Cl2     | 85.80 (11)  | C15—C14—C17     | 112.2 (4)  |
| Cl3—Au1—Cl2     | 178.07 (4)  | C13—C14—C17     | 111.1 (3)  |
| N11—Au1—Cl1     | 176.94 (11) | C15—C14—H14     | 108.0      |
| Cl3—Au1—Cl1     | 89.90 (4)   | C13—C14—H14     | 108.0      |
| Cl2—Au1—Cl1     | 91.18 (4)   | C17—C14—H14     | 108.0      |
| C16—N11—C12     | 110.6 (3)   | C16—C15—C14     | 111.8 (3)  |
| C16—N11—Au1     | 117.8 (3)   | C16—C15—H15A    | 109.3      |
| C12—N11—Au1     | 111.0 (3)   | C14—C15—H15A    | 109.3      |
| C16—N11—H01     | 103 (3)     | C16—C15—H15B    | 109.3      |
| C12—N11—H01     | 108 (3)     | C14—C15—H15B    | 109.3      |
| Au1—N11—H01     | 106 (3)     | H15A—C15—H15B   | 107.9      |
| C13—C12—N11     | 109.8 (3)   | N11—C16—C15     | 110.0 (3)  |
| C13—C12—H12A    | 109.7       | N11—C16—H16A    | 109.7      |
| N11—C12—H12A    | 109.7       | C15—C16—H16A    | 109.7      |
| C13—C12—H12B    | 109.7       | N11—C16—H16B    | 109.7      |
| N11—C12—H12B    | 109.7       | C15—C16—H16B    | 109.7      |
| H12A—C12—H12B   | 108.2       | H16A—C16—H16B   | 108.2      |
| C12—C13—C14     | 111.8 (3)   | C14—C17—H17A    | 109.5      |
| C12—C13—H13A    | 109.3       | C14—C17—H17B    | 109.5      |
| C14—C13—H13A    | 109.3       | H17A—C17—H17B   | 109.5      |
| C12—C13—H13B    | 109.3       | C14—C17—H17C    | 109.5      |
| C14—C13—H13B    | 109.3       | H17A—C17—H17C   | 109.5      |
| H13A—C13—H13B   | 107.9       | H17B—C17—H17C   | 109.5      |
|                 |             |                 |            |
| Cl3—Au1—N11—C16 | -30.0 (3)   | C12—C13—C14—C15 | -55.8 (5)  |
| Cl2—Au1—N11—C16 | 151.6 (3)   | C12-C13-C14-C17 | 179.8 (4)  |
| Cl3—Au1—N11—C12 | 98.8 (3)    | C13—C14—C15—C16 | 55.7 (5)   |
| Cl2—Au1—N11—C12 | -79.6 (3)   | C17—C14—C15—C16 | 179.4 (4)  |
| C16—N11—C12—C13 | -58.4 (4)   | C12—N11—C16—C15 | 58.4 (4)   |
| Au1—N11—C12—C13 | 169.1 (3)   | Au1—N11—C16—C15 | -172.6 (3) |
| N11-C12-C13-C14 | 57.4 (5)    | C14—C15—C16—N11 | -57.7 (5)  |

### Hydrogen-bond geometry (Å, °)

| D—H···A                                | <i>D</i> —Н | H···A    | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|----------------------------------------|-------------|----------|--------------|-------------------------|
| N11—H01···Cl1 <sup>i</sup>             | 0.93 (4)    | 2.64 (4) | 3.535 (4)    | 163 (4)                 |
| C15—H15 <i>B</i> ····Cl1 <sup>i</sup>  | 0.99        | 2.97     | 3.804 (4)    | 143                     |
| C13—H13 <i>B</i> ····Cl2 <sup>ii</sup> | 0.99        | 2.82     | 3.798 (4)    | 171                     |
| C15—H15A····Cl3 <sup>iii</sup>         | 0.99        | 2.95     | 3.610 (4)    | 125                     |

| C15—H15A····Cl3 <sup>iv</sup>        | 0.99 | 2.99 | 3.728 (4) | 132 |
|--------------------------------------|------|------|-----------|-----|
| C16—H16 <i>B</i> ···Cl3 <sup>i</sup> | 0.99 | 2.91 | 3.656 (5) | 133 |

Symmetry codes: (i) -x+1/2, y+1/2, z; (ii) x+1/2, -y+1/2, -z; (iii) -x+1, y+1/2, -z+1/2; (iv) x+1/2, y, -z+1/2.

Tribromido(4-methylpiperidine)gold(III) (2a)

#### Crystal data

[AuBr<sub>3</sub>(C<sub>6</sub>H<sub>13</sub>N)]  $M_r = 535.87$ Orthorhombic, *Pnma*  a = 9.9871 (5) Å b = 7.1505 (4) Å c = 15.7160 (8) Å V = 1122.32 (10) Å<sup>3</sup> Z = 4F(000) = 960

#### Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: fine-focus sealed X-ray tube Detector resolution: 16.1419 pixels mm<sup>-1</sup>  $\omega$  scan Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015)  $T_{min} = 0.240, T_{max} = 1.000$ 

#### Refinement

Refinement on  $F^2$ HydrLeast-squares matrix: fullH at $R[F^2 > 2\sigma(F^2)] = 0.030$ an $wR(F^2) = 0.050$ w = 1S = 1.11wl1864 reflections $(\Delta/\sigma)$ 65 parameters $\Delta\rho_{ma}$ 0 restraints $\Delta\rho_{ma}$ Primary atom site location: structure-invariantExtindirect methods(SSecondary atom site location: difference FourierFcmapExtin

 $D_x = 3.171 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4663 reflections  $\theta = 3.1-30.3^{\circ}$  $\mu = 23.74 \text{ mm}^{-1}$ T = 100 KNeedle, orange  $0.27 \times 0.06 \times 0.03 \text{ mm}$ 

28605 measured reflections 1864 independent reflections 1581 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.070$   $\theta_{max} = 31.1^\circ$ ,  $\theta_{min} = 2.4^\circ$   $h = -14 \rightarrow 14$   $k = -10 \rightarrow 10$  $l = -22 \rightarrow 22$ 

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0121P)^2 + 3.4353P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{max} < 0.001$   $\Delta\rho_{max} = 1.56 \text{ e } \text{Å}^{-3}$   $\Delta\rho_{min} = -1.18 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2019/3* (Sheldrick, 2015), Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.00051 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | У          | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|------------|--------------|-----------------------------|--|
| Au1  | 0.09315 (2)  | 0.750000   | 0.04663 (2)  | 0.01176 (7)                 |  |
| Br1  | -0.07000 (6) | 0.750000   | 0.15933 (4)  | 0.01882 (14)                |  |
| Br2  | -0.08081 (6) | 0.750000   | -0.06122 (4) | 0.01351 (13)                |  |
| Br3  | 0.26712 (6)  | 0.750000   | 0.15298 (4)  | 0.02039 (15)                |  |
| N11  | 0.2339 (5)   | 0.750000   | -0.0523 (3)  | 0.0161 (11)                 |  |
| H01  | 0.184 (7)    | 0.750000   | -0.099 (4)   | 0.013 (17)*                 |  |
| C12  | 0.3183 (4)   | 0.9225 (6) | -0.0547 (3)  | 0.0182 (9)                  |  |
| H12A | 0.373767     | 0.928684   | -0.002574    | 0.022*                      |  |
| H12B | 0.259617     | 1.034089   | -0.055751    | 0.022*                      |  |

| C13  | 0.4087 (4) | 0.9241 (6) | -0.1324 (3) | 0.0193 (9)  |  |
|------|------------|------------|-------------|-------------|--|
| H13A | 0.465879   | 1.037237   | -0.131098   | 0.023*      |  |
| H13B | 0.353144   | 0.929562   | -0.184542   | 0.023*      |  |
| C14  | 0.4975 (6) | 0.750000   | -0.1354 (4) | 0.0152 (12) |  |
| H14  | 0.554971   | 0.750002   | -0.083321   | 0.018*      |  |
| C15  | 0.5896 (7) | 0.750000   | -0.2129 (4) | 0.0253 (16) |  |
| H15A | 0.534829   | 0.750000   | -0.264018   | 0.038*      |  |
| H15B | 0.647617   | 0.860443   | -0.211145   | 0.038*      |  |
|      |            |            |             |             |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|-----|--------------|--------------|--------------|--------------|-------------|-------------|
| Aul | 0.01034 (11) | 0.01467 (12) | 0.01027 (12) | 0.000        | 0.00112 (9) | 0.000       |
| Br1 | 0.0180 (3)   | 0.0253 (3)   | 0.0132 (3)   | 0.000        | 0.0057 (2)  | 0.000       |
| Br2 | 0.0113 (3)   | 0.0163 (3)   | 0.0129 (3)   | 0.000        | -0.0005 (2) | 0.000       |
| Br3 | 0.0172 (3)   | 0.0304 (4)   | 0.0135 (3)   | 0.000        | -0.0042 (2) | 0.000       |
| N11 | 0.011 (2)    | 0.027 (3)    | 0.010 (3)    | 0.000        | 0.000(2)    | 0.000       |
| C12 | 0.018 (2)    | 0.016 (2)    | 0.021 (2)    | 0.0031 (17)  | 0.0090 (18) | 0.0020 (19) |
| C13 | 0.016 (2)    | 0.022 (2)    | 0.020 (2)    | -0.0009 (19) | 0.0067 (19) | 0.005 (2)   |
| C14 | 0.013 (3)    | 0.016 (3)    | 0.017 (3)    | 0.000        | 0.007 (2)   | 0.000       |
| C15 | 0.017 (3)    | 0.033 (4)    | 0.026 (4)    | 0.000        | 0.009 (3)   | 0.000       |

Geometric parameters (Å, °)

| Au1—N11                   | 2.096 (5)   | C12—H12B                  | 0.9900    |
|---------------------------|-------------|---------------------------|-----------|
| Au1—Br1                   | 2.4066 (7)  | C13—C14                   | 1.529 (5) |
| Au1—Br3                   | 2.4110 (7)  | C13—H13A                  | 0.9900    |
| Au1—Br2                   | 2.4273 (6)  | C13—H13B                  | 0.9900    |
| N11-C12 <sup>i</sup>      | 1.494 (5)   | C14—C15                   | 1.526 (8) |
| N11—C12                   | 1.494 (5)   | C14—H14                   | 1.0000    |
| N11—H01                   | 0.89 (6)    | C15—H15A                  | 0.9713    |
| C12—C13                   | 1.520 (6)   | C15—H15B                  | 0.9800    |
| C12—H12A                  | 0.9900      | C15—H15B <sup>i</sup>     | 0.9800    |
|                           |             |                           |           |
| N11—Au1—Br1               | 179.50 (15) | C12—C13—C14               | 111.3 (4) |
| N11—Au1—Br3               | 91.78 (15)  | С12—С13—Н13А              | 109.4     |
| Br1—Au1—Br3               | 88.72 (2)   | C14—C13—H13A              | 109.4     |
| N11—Au1—Br2               | 87.82 (15)  | С12—С13—Н13В              | 109.4     |
| Br1—Au1—Br2               | 91.68 (2)   | C14—C13—H13B              | 109.4     |
| Br3—Au1—Br2               | 179.60 (2)  | H13A—C13—H13B             | 108.0     |
| C12 <sup>i</sup> —N11—C12 | 111.2 (5)   | C15-C14-C13 <sup>i</sup>  | 111.9 (3) |
| C12 <sup>i</sup> —N11—Au1 | 113.4 (3)   | C15—C14—C13               | 111.9 (3) |
| C12—N11—Au1               | 113.4 (3)   | C13 <sup>i</sup> —C14—C13 | 109.0 (5) |
| C12 <sup>i</sup> —N11—H01 | 107 (2)     | C15—C14—H14               | 107.9     |
| C12—N11—H01               | 107 (2)     | C13 <sup>i</sup> —C14—H14 | 107.9     |
| Au1—N11—H01               | 104 (4)     | C13—C14—H14               | 107.9     |
| N11-C12-C13               | 111.2 (4)   | C14—C15—H15A              | 108.7     |
| N11—C12—H12A              | 109.4       | C14—C15—H15B              | 109.5     |
|                           |             |                           |           |

| C13—C12—H12A                  | 109.4      | H15A—C15—H15B                | 110.9       |
|-------------------------------|------------|------------------------------|-------------|
| N11—C12—H12B                  | 109.4      | C14-C15-H15B <sup>i</sup>    | 109.48 (19) |
| C13—C12—H12B                  | 109.4      | H15A-C15-H15B <sup>i</sup>   | 110.9       |
| H12A—C12—H12B                 | 108.0      | H15B-C15-H15B <sup>i</sup>   | 107.4       |
|                               |            |                              |             |
| Br3—Au1—N11—C12 <sup>i</sup>  | 64.1 (3)   | Au1—N11—C12—C13              | -174.4 (3)  |
| Br2—Au1—N11—C12 <sup>i</sup>  | -115.9 (3) | N11—C12—C13—C14              | -56.8 (5)   |
| Br3—Au1—N11—C12               | -64.1 (3)  | C12—C13—C14—C15              | -179.7 (4)  |
| Br2—Au1—N11—C12               | 115.9 (3)  | C12-C13-C14-C13 <sup>i</sup> | 55.9 (6)    |
| C12 <sup>i</sup> —N11—C12—C13 | 56.4 (6)   |                              |             |
|                               |            |                              |             |

Symmetry code: (i) x, -y+3/2, z.

Hydrogen-bond geometry (Å, °)

| D—H···A                                | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|----------------------------------------|-------------|----------|--------------|---------|
| N11—H01…Br2                            | 0.89 (6)    | 2.71 (6) | 3.146 (5)    | 111 (5) |
| C12—H12B····Br1 <sup>ii</sup>          | 0.99        | 2.94     | 3.786 (5)    | 145     |
| C12—H12 <i>B</i> ···Br2 <sup>ii</sup>  | 0.99        | 2.99     | 3.798 (4)    | 139     |
| C15—H15A····Br2 <sup>iii</sup>         | 0.97        | 2.98     | 3.936 (7)    | 169     |
| C12—H12A···Br3                         | 0.99        | 2.96     | 3.526 (4)    | 118     |
| C13—H13 <i>A</i> ···Br3 <sup>iv</sup>  | 0.99        | 3.09     | 4.002 (4)    | 154     |
| C15—H15 <i>B</i> ····Br3 <sup>iv</sup> | 0.98        | 3.05     | 3.965 (3)    | 155     |
|                                        |             |          |              |         |

Symmetry codes: (ii) -x, -y+2, -z; (iii) x+1/2, y, -z-1/2; (iv) -x+1, -y+2, -z.

Tribromido(4-methylpiperidine)gold(III) (2b)

#### Crystal data

[AuBr<sub>3</sub>(C<sub>6</sub>H<sub>13</sub>N)]  $M_r = 535.87$ Orthorhombic, *Pbca*  a = 12.6471 (5) Å b = 8.7247 (3) Å c = 21.0262 (7) Å V = 2320.07 (15) Å<sup>3</sup> Z = 8F(000) = 1920

#### Data collection

Oxford Diffraction Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.1419 pixels mm<sup>-1</sup>  $\omega$  scan Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015)  $T_{\min} = 0.380, T_{\max} = 1.000$   $D_x = 3.068 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5682 reflections  $\theta = 3.2-29.7^{\circ}$  $\mu = 22.96 \text{ mm}^{-1}$ T = 100 KNeedle, red  $0.14 \times 0.04 \times 0.03 \text{ mm}$ 

38297 measured reflections 3371 independent reflections 2495 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.074$  $\theta_{max} = 30.0^{\circ}, \theta_{min} = 2.5^{\circ}$  $h = -17 \rightarrow 17$  $k = -11 \rightarrow 12$  $l = -29 \rightarrow 29$  Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier        |
|-------------------------------------------------|---------------------------------------------------------|
| Least-squares matrix: full                      | map                                                     |
| $R[F^2 > 2\sigma(F^2)] = 0.029$                 | Hydrogen site location: mixed                           |
| $wR(F^2) = 0.043$                               | H atoms treated by a mixture of independent             |
| S = 1.03                                        | and constrained refinement                              |
| 3371 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0081P)^2 + 2.1449P]$       |
| 105 parameters                                  | where $P = (F_0^2 + 2F_c^2)/3$                          |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                     |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.99 \ { m e} \ { m \AA}^{-3}$ |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.99$ e Å <sup>-3</sup>       |
|                                                 |                                                         |

| Fractional atomic coordinates and isotropic or equivalent isotropic displayed | acement parameters $(\AA^2)$ |
|-------------------------------------------------------------------------------|------------------------------|
|-------------------------------------------------------------------------------|------------------------------|

|      |             |             |              | TT +/TT                       |  |
|------|-------------|-------------|--------------|-------------------------------|--|
|      | X           | У           | Z            | $U_{\rm iso}$ */ $U_{\rm eq}$ |  |
| Au1  | 0.24373 (2) | 0.30618 (2) | 0.12636 (2)  | 0.01070 (5)                   |  |
| Br1  | 0.05410 (4) | 0.27328 (5) | 0.12037 (2)  | 0.01833 (11)                  |  |
| Br2  | 0.24027 (4) | 0.47282 (5) | 0.03411 (2)  | 0.01409 (10)                  |  |
| Br3  | 0.24951 (4) | 0.13133 (5) | 0.21592 (2)  | 0.01560 (10)                  |  |
| N11  | 0.4069 (3)  | 0.3465 (4)  | 0.12801 (19) | 0.0115 (8)                    |  |
| H01  | 0.416 (4)   | 0.454 (5)   | 0.116 (2)    | 0.019 (14)*                   |  |
| C12  | 0.4638 (4)  | 0.2527 (5)  | 0.0784 (2)   | 0.0169 (11)                   |  |
| H12A | 0.426683    | 0.261747    | 0.037140     | 0.020*                        |  |
| H12B | 0.463810    | 0.143443    | 0.091066     | 0.020*                        |  |
| C13  | 0.5769 (4)  | 0.3088 (6)  | 0.0714 (2)   | 0.0201 (11)                   |  |
| H13A | 0.576259    | 0.415630    | 0.055540     | 0.024*                        |  |
| H13B | 0.613889    | 0.244725    | 0.039599     | 0.024*                        |  |
| C14  | 0.6373 (4)  | 0.3028 (5)  | 0.1341 (2)   | 0.0162 (10)                   |  |
| H14  | 0.640778    | 0.193362    | 0.148091     | 0.019*                        |  |
| C15  | 0.5762 (4)  | 0.3927 (5)  | 0.1845 (2)   | 0.0154 (11)                   |  |
| H15A | 0.612751    | 0.382498    | 0.225900     | 0.018*                        |  |
| H15B | 0.575849    | 0.502588    | 0.172813     | 0.018*                        |  |
| C16  | 0.4628 (4)  | 0.3372 (5)  | 0.1914 (2)   | 0.0180 (11)                   |  |
| H16A | 0.462434    | 0.229940    | 0.206773     | 0.022*                        |  |
| H16B | 0.425261    | 0.401276    | 0.222985     | 0.022*                        |  |
| C17  | 0.7504 (4)  | 0.3616 (6)  | 0.1266 (2)   | 0.0253 (11)                   |  |
| H17A | 0.748980    | 0.471144    | 0.116451     | 0.038*                        |  |
| H17B | 0.785491    | 0.305515    | 0.092217     | 0.038*                        |  |
| H17C | 0.789141    | 0.345693    | 0.166448     | 0.038*                        |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|---------------|--------------|--------------|
| Au1 | 0.01025 (9) | 0.00994 (8) | 0.01190 (8) | 0.00053 (7)   | 0.00084 (8)  | -0.00021 (7) |
| Br1 | 0.0108 (2)  | 0.0184 (2)  | 0.0259 (3)  | -0.00129 (18) | 0.0015 (2)   | 0.0018 (2)   |
| Br2 | 0.0151 (2)  | 0.0137 (2)  | 0.0135 (2)  | -0.0008(2)    | -0.0013 (2)  | 0.00201 (17) |
| Br3 | 0.0207 (3)  | 0.0128 (2)  | 0.0133 (2)  | 0.0001 (2)    | 0.0017 (2)   | 0.00118 (17) |
| N11 | 0.011 (2)   | 0.0125 (19) | 0.011 (2)   | -0.0006 (15)  | -0.0018 (17) | 0.0001 (16)  |
| C12 | 0.016 (3)   | 0.021 (3)   | 0.013 (2)   | 0.001 (2)     | 0.003 (2)    | -0.0075 (19) |
|     |             |             |             |               |              |              |

| C13 | 0.015 (3) | 0.025 (3) | 0.021 (3) | 0.002 (2)  | 0.000(2)  | -0.001(2) |
|-----|-----------|-----------|-----------|------------|-----------|-----------|
| C14 | 0.011 (2) | 0.018 (2) |           | -0.002 (2) | -0.002(2) | 0.002(2)  |
| C15 | 0.013 (3) | 0.016 (2) | 0.017 (3) | 0.003 (2)  | -0.008(2) | -0.002(2) |
| C16 | 0.016 (3) | 0.021 (3) | 0.017 (3) | -0.006(2)  | -0.002(2) | -0.003(2) |
| C17 | 0.018 (3) | 0.034 (3) | 0.024 (3) |            | -0.003(3) | 0.007(2)  |

Geometric parameters (Å, °)

| Au1—N11         | 2.094 (4)    | C13—H13B        | 0.9900     |  |
|-----------------|--------------|-----------------|------------|--|
| Au1—Br1         | 2.4187 (5)   | C14—C15         | 1.527 (6)  |  |
| Au1—Br2         | 2.4244 (5)   | C14—C17         | 1.527 (6)  |  |
| Au1—Br3         | 2.4246 (5)   | C14—H14         | 1.0000     |  |
| N11—C12         | 1.508 (6)    | C15—C16         | 1.520 (7)  |  |
| N11—C16         | 1.511 (6)    | C15—H15A        | 0.9900     |  |
| N11—H01         | 0.97 (4)     | C15—H15B        | 0.9900     |  |
| C12—C13         | 1.518 (7)    | C16—H16A        | 0.9900     |  |
| C12—H12A        | 0.9900       | C16—H16B        | 0.9900     |  |
| C12—H12B        | 0.9900       | C17—H17A        | 0.9800     |  |
| C13—C14         | 1.524 (7)    | C17—H17B        | 0.9800     |  |
| C13—H13A        | 0.9900       | C17—H17C        | 0.9800     |  |
|                 |              |                 |            |  |
| N11—Au1—Br1     | 176.50 (11)  | C13—C14—C15     | 109.2 (4)  |  |
| N11—Au1—Br2     | 86.00 (11)   | C13—C14—C17     | 111.6 (4)  |  |
| Br1—Au1—Br2     | 90.665 (18)  | C15—C14—C17     | 111.9 (4)  |  |
| N11—Au1—Br3     | 93.62 (11)   | C13—C14—H14     | 108.0      |  |
| Br1—Au1—Br3     | 89.751 (18)  | C15—C14—H14     | 108.0      |  |
| Br2—Au1—Br3     | 177.736 (17) | C17—C14—H14     | 108.0      |  |
| C12—N11—C16     | 110.9 (4)    | C16—C15—C14     | 112.3 (4)  |  |
| C12—N11—Au1     | 111.6 (3)    | C16—C15—H15A    | 109.1      |  |
| C16—N11—Au1     | 117.8 (3)    | C14—C15—H15A    | 109.1      |  |
| C12—N11—H01     | 107 (3)      | C16—C15—H15B    | 109.1      |  |
| C16—N11—H01     | 102 (3)      | C14—C15—H15B    | 109.1      |  |
| Au1—N11—H01     | 106 (3)      | H15A—C15—H15B   | 107.9      |  |
| N11—C12—C13     | 110.0 (4)    | N11—C16—C15     | 109.9 (4)  |  |
| N11—C12—H12A    | 109.7        | N11—C16—H16A    | 109.7      |  |
| C13—C12—H12A    | 109.7        | C15—C16—H16A    | 109.7      |  |
| N11—C12—H12B    | 109.7        | N11—C16—H16B    | 109.7      |  |
| C13—C12—H12B    | 109.7        | C15—C16—H16B    | 109.7      |  |
| H12A—C12—H12B   | 108.2        | H16A—C16—H16B   | 108.2      |  |
| C12—C13—C14     | 112.2 (4)    | C14—C17—H17A    | 109.5      |  |
| C12—C13—H13A    | 109.2        | C14—C17—H17B    | 109.5      |  |
| C14—C13—H13A    | 109.2        | H17A—C17—H17B   | 109.5      |  |
| C12—C13—H13B    | 109.2        | C14—C17—H17C    | 109.5      |  |
| C14—C13—H13B    | 109.2        | H17A—C17—H17C   | 109.5      |  |
| H13A—C13—H13B   | 107.9        | H17B—C17—H17C   | 109.5      |  |
| Br2—Au1—N11—C12 | -78.0 (3)    | C12—C13—C14—C15 | -55.0 (5)  |  |
| Br3—Au1—N11—C12 | 99.8 (3)     | C12—C13—C14—C17 | -179.2 (4) |  |
|                 | . /          |                 |            |  |

| 152.0 (3) | C13—C14—C15—C16                                              | 54.8 (5)                                                                                                                                                                                       |
|-----------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -30.2 (3) | C17—C14—C15—C16                                              | 178.9 (4)                                                                                                                                                                                      |
| -58.4 (5) | C12—N11—C16—C15                                              | 58.0 (5)                                                                                                                                                                                       |
| 168.1 (3) | Au1—N11—C16—C15                                              | -171.6 (3)                                                                                                                                                                                     |
| 57.4 (5)  | C14—C15—C16—N11                                              | -56.8 (5)                                                                                                                                                                                      |
|           | 152.0 (3)<br>-30.2 (3)<br>-58.4 (5)<br>168.1 (3)<br>57.4 (5) | 152.0 (3)       C13—C14—C15—C16         -30.2 (3)       C17—C14—C15—C16         -58.4 (5)       C12—N11—C16—C15         168.1 (3)       Au1—N11—C16—C15         57.4 (5)       C14—C15—C16—N11 |

### Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>               | <i>D</i> —Н | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|---------------------------------------|-------------|----------|-----------|-------------------------|
| N11—H01···Br1 <sup>i</sup>            | 0.97 (4)    | 2.81 (4) | 3.759 (4) | 164 (4)                 |
| C12—H12A···Br2                        | 0.99        | 2.99     | 3.542 (5) | 116                     |
| C13—H13 <i>B</i> ···Br2 <sup>ii</sup> | 0.99        | 2.93     | 3.903 (5) | 169                     |
| C16—H16 <i>B</i> ···Br3 <sup>i</sup>  | 0.99        | 2.99     | 3.750 (5) | 135                     |

Symmetry codes: (i) -*x*+1/2, *y*+1/2, *z*; (ii) *x*+1/2, -*y*+1/2, -*z*.