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In the title molecule, C21H17N3O2, the five-membered ring is slightly ruffled and

dihedral angles between the pendant six-membered rings and the central, five-

membered ring vary between 50.78 (4) and 86.78 (10)�. The exocyclic nitrogen

lone pair is involved in conjugated � bonding to the five-membered ring. In the

crystal, a layered structure is generated by O—H� � �N and N—H� � �O hydrogen

bonds plus C—H� � ��(ring) and weak �-stacking interactions.

1. Chemical context

Hydantoins or imidazolidine-2,4-diones are heterocyclic

compounds characterized by the presence of an imidazole ring

and keto groups in positions 2 and 4. Hydantoin-containing

compounds exhibit a broad spectrum of pharmacological and

biological activities such as an anticancer (Cao et al., 2022),

antibacterial (Ghasempour et al., 2021; El Moutaouakil Ala

Allah et al., 2024), antidiabetic (Sergent et al., 2008), anti-

inflammatory (Lin et al., 2021), antimicrobial (Shaala &

Youssef, 2021), anticonvulsant (Byrtus et al., 2011) and anti-

HIV (Romine et al., 2011) activities. Thiohydantoins, sulfur

analogues of hydantoins, undergo replacement of one or both

carbonyl groups with thiocarbonyl groups (Johnson & Scott,

1913; Wyzlic et al., 1996; Cromwell & Stark, 1969). This

substitution enables versatile structural modifications, facil-

itating the customization of thiohydantoins to preferentially

adopt specific structural types. Such modifications, achieved by

introducing steric bulk, altering hydrophilic or hydrophobic

interactions, or promoting �–� stacking, afford control over

the molecule’s ability to form hydrogen-bonded arrays in the

solid state. Hence, the capacity to manipulate the formation of

hydrogen-bonded arrays in the solid state is of vital impor-

tance in the pharmaceutical field (Lu & Rohani, 2009).

In this study, we present the synthesis, detailed examination

of the molecular and crystal structures, and Hirshfeld surface
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analysis of the title compound, 2-[(4-hydroxyphenyl)amino]-

5,5-diphenyl-1H-imidazol-4(5H)-one (Fig. 1), a new hydantoin

derived from thiohydantoin by a nucleophilic substitution

reaction.

2. Structural commentary

The mean planes of the C4–C9, C10–C15 and C16–C21

benzene rings are inclined to that of the C1/C2/N1/C3/N2 ring

by 73.33 (9), 50.78 (11) and 86.78 (10)�, respectively. The

C16—N3—C3—N1 torsion angle is � 7.2 (5)� indicating that

the N3—C16 bond lies close to the plane of the C1/C2/N1/C3/

N2 ring. This latter ring is slightly ruffled with N2 0.031 (2) Å

at one side of the mean plane (r.m.s. deviation of the fitted

atoms = 0.002 Å) and C1 0.027 (3) Å at the opposite side. The

sum of the angles around N3 is 359.4 (13)� implying that its

lone pair is involved in N!C � bonding. This occurs primarily

with C3 as the C3—N3 distance is 1.329 (3) Å while the

C16—N3 distance is 1.439 (3) Å indicating some degree of

conjugation with the dihydroimidazolone ring.

3. Supramolecular features

In the crystal, paired O2—H2A� � �N1 hydrogen bonds

(Table 1) and weak, offset �-stacking interactions between

C16–C21 rings [centroid–centroid distance = 3.9814 (19) Å,

offset = 2.23 Å] form inversion dimers, which are connected

into chains extending along the c-axis direction by

N2—H2� � �O1 and N3—H3� � �O2 hydrogen bonds (Table 1

and Fig. 2). These are linked into layers parallel to the bc plane

by C17—H17� � �Cg4 and C21—H21� � �Cg3 interactions

(Table 1 and Fig. 3; Cg3 and Cg4 are the centroids of the C10–

C15 and C16–C21 benzene rings, respectively).

4. Database survey

A search of the Cambridge Structural Database (CSD version

5.45, updated to March 2024; Groom et al., 2016) with the

search fragment A (Fig. 4, R = C) gave three hits, one with R =

CH2COOEt (refcode REFREB; Karolak-Wojciechowska et

al., 1998) and the others with R = C( NH)OMe (XASGOO;

Bishop et al., 2005) and R = C( NH)OBun (XEVZEE;

Bishop et al., 2007). The latter two were reported as complexes
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Table 1
Hydrogen-bond geometry (Å, �).

Cg3 and Cg4 are the centroids of the C10–C15 and the C16–C21 benzene rings,
respectively.

D—H� � �A D—H H� � �A D� � �A D—H� � �A

O2—H2A� � �N1i 0.86 (1) 1.93 (2) 2.763 (3) 163 (4)
N2—H2� � �O1ii 0.90 (1) 1.92 (1) 2.814 (3) 176 (3)
N3—H3� � �O2iii 0.89 (1) 2.34 (2) 3.104 (4) 143 (2)

C17—H17� � �Cg4iii 0.95 2.92 3.831 (4) 162
C21—H21� � �Cg3iv 0.95 2.93 3.822 (4) 157

Symmetry codes: (i) � xþ 1; � y þ 1; � zþ 1; (ii) x; � yþ 1
2
; zþ 1

2
; (iii)

� x þ 1; y � 1
2
; � zþ 3

2
; (iv) x; y þ 1; z.

Figure 2
A portion of one chain of molecules viewed along the b-axis direction.
O—H� � �N and N—H� � �O hydrogen bonds are depicted, respectively, by
pink and violet dashed lines and non-interacting hydrogen atoms are
omitted for clarity.

Figure 3
Packing viewed along the c-axis direction with intermolecular hydrogen
bonds depicted as in Fig. 2. C—H� � ��(ring) interactions are depicted by
green dashed lines and non-interacting hydrogen atoms are omitted for
clarity.

Figure 1
The molecular structure of the title molecule with labelling scheme and
50% probability ellipsoids.



with CuII and so are not directly comparable to the title

molecule because of the constraints imposed by coordination

to the metal. In REFREB, the five-membered ring adopts an

envelope conformation with C4 at the tip of the flap and

0.044 (6) Å from the mean plane (r.m.s. deviation of the fitted

atoms = 0.003 Å) with the mean planes of the attached phenyl

rings inclined to the above plane by 63.3 (2) and 82.9 (2)�,

respectively, which are similar to the corresponding angles in

the title molecule. Also, the torsion angle corresponding to the

C16—N3—C3—N1 angle in the title molecule is for REFREB

� 8.0 (5)�, which is again comparable to that cited above

although the remainder of the ester chain is pointed away

from the plane of the five-membered ring.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed using Crystal-

Explorer21 (Turner et al., 2017) to evaluate the relative

contributions of the intermolecular interactions in the crystal.
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Figure 4
Fragment used in the CSD search.

Figure 5
Front and back views of the Hirshfeld surface for the title molecule
mapped over dnorm.

Figure 6
The 2-D fingerprint plots for the title molecule; (a) all interactions and
delineated into (b) H� � �H, (c) C� � �H/H� � �C, (d) O� � �H/H� � �O and (e)
N� � �H/H� � �N contacts.



Additional details of the plots produced and their inter-

pretation have been published (Tan et al., 2019). Fig. 5

presents two views of the surface mapped over dnorm together

with four neighbouring molecules showing the intermolecular

N—H� � �O and O—H� � �N hydrogen bonds as well as one of

the C—H� � ��(ring) interactions. From the 2D fingerprint

plots, the major intermolecular interactions, comprising 48.7%

of the total, are H� � �H contacts (Fig. 6b), appearing as a broad

central peak and which are presumed to be van der Waals

contacts. At 28.9% of the total are the C� � �H/H� � �C contacts

(Fig. 6c), shown as two broad peaks at de + di = 3.14 Å, which

are primarily the two sets of C—H� � ��(ring) interactions

(Table 1) with the width of the peaks due to the range of

H� � �C distances from the hydrogen atom in question to the

several carbon atoms of the ring. The O� � �H/H� � �O (Fig. 6d)

and N� � �H/H� � �N (Fig. 6e) contacts appear as sharp spikes at

de + di = 2.16 and 2.20 Å, respectively, contributing 13.3% and

6.9%, respectively.

6. Synthesis and crystallization

The synthesis of the title compound is shown in Fig. 7.

2-(Methylthio)-5,5-diphenyl-3,5-dihydro-4H-imidazol-4-one

(0.5 g, 1.78 mmol) and 4-aminophenol (0.2 g, 1.80 mmol) were

dissolved in 30 ml of glacial acetic acid. The reaction mixture

was heated under reflux for 24 h and the reaction progress was

monitored with thin-layer chromatography (TLC). The

precipitated solid was filtered, washed with water, dried and

purified by recrystallization from ethanol to afford colourless

crystals.

Yield = 68%, m.p. = 424-425 K. FT–IR (ATR, �, cm� 1):

3385 (OH), 3200 (NH), 1740 (C O); 1H NMR (500 MHz,

CDCl3): � ppm 7.26–7.62 (m, 14H, Ar-H), 9.17 (s, 1H, NHimi-

dazole), 9.95 (s, 1H, NHamine), 10.11 (s, 1H, OH); 13C NMR:

78.53 (C-2Ph); 116.00, 116.18, 123.89, 127.62, 128.02, 128.74,

130.57, 135.00 (C–-Ar); 141.36 (C N); 168.32 (C O). HRMS

(ESI): calculated for C21H17N3O2 [M - H]+ 344.1321; found

344.1520.

7. Refinement

Crystal data, data collection and structure refinement details

are summarized in Table 2. Analysis of 185 reflections having

I/�(I) > 12 and chosen from the full data set with CELL_NOW

(Sheldrick, 2008a) showed the crystal to belong to the

monoclinic system and to be twinned by a 180� rotation about

the c*-axis. The raw data were processed using the multi-

component version of SAINT under control of the two-

component orientation file generated by CELL_NOW. The

final refinement used the full twinned dataset. H atoms

attached to carbon were placed in calculated positions and

were included as riding contributions with isotropic displace-

ment parameters 1.2–1.5 times those of the attached atoms.

Those attached to nitrogen and to oxygen were placed in

locations derived from a difference map and refined with

DFIX 0.91 0.01 and DFIX 0.84 0.01 instructions, respectively.

One reflection affected by the beamstop was omitted from the

final refinement.
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Figure 7
Synthesis of the title compound.

Table 2
Experimental details.

Crystal data
Chemical formula C21H17N3O2

Mr 343.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150

a, b, c (Å) 17.764 (3), 8.4429 (12),
11.6601 (16)

� (�) 100.948 (4)
V (Å3) 1716.9 (4)
Z 4
Radiation type Mo K�

� (mm� 1) 0.09
Crystal size (mm) 0.38 � 0.21 � 0.02

Data collection
Diffractometer Bruker D8 QUEST PHOTON 3

diffractometer
Absorption correction Multi-scan (TWINABS; Sheldrick,

2009)
Tmin, Tmax 0.97, 1.00
No. of measured, independent and

observed [I > 2�(I)] reflections
16776, 5347, 3329

Rint 0.045
(sin �/�)max (Å� 1) 0.627

Refinement
R[F 2 > 2�(F 2)], wR(F 2), S 0.055, 0.132, 1.04
No. of reflections 5347
No. of parameters 248
No. of restraints 3

H-atom treatment H atoms treated by a mixture of
independent and constrained
refinement

��max, ��min (e Å� 3) 0.23, � 0.22

Computer programs: APEX4 and SAINT (Bruker, 2021), SHELXT (Sheldrick, 2015a),

SHELXL2018/1 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and

SHELXTL (Sheldrick, 2008b).
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Abderrazzak El Moutaouakil Ala Allah, Walid Guerrab, Joel T. Mague, Abdulsalam Alsubari, 

Abdullah Yahya Abdullah Alzahrani and Youssef Ramli

Computing details 

2-[(4-Hydroxyphenyl)amino]-5,5-diphenyl-1H-imidazol-4(5H)-one 

Crystal data 

C21H17N3O2

Mr = 343.38
Monoclinic, P21/c
a = 17.764 (3) Å
b = 8.4429 (12) Å
c = 11.6601 (16) Å
β = 100.948 (4)°
V = 1716.9 (4) Å3

Z = 4

F(000) = 720
Dx = 1.328 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 3889 reflections
θ = 2.3–26.2°
µ = 0.09 mm−1

T = 150 K
Plate, colourless
0.38 × 0.21 × 0.02 mm

Data collection 

Bruker D8 QUEST PHOTON 3 
diffractometer

Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 7.3910 pixels mm-1

ω scans
Absorption correction: multi-scan 

(TWINABS; Sheldrick, 2009)
Tmin = 0.97, Tmax = 1.00

16776 measured reflections
5347 independent reflections
3329 reflections with I > 2σ(I)
Rint = 0.045
θmax = 26.5°, θmin = 2.3°
h = −22→21
k = 0→10
l = 0→14

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.055
wR(F2) = 0.132
S = 1.03
5347 reflections
248 parameters
3 restraints
Primary atom site location: dual

Secondary atom site location: difference Fourier 
map

Hydrogen site location: mixed
H atoms treated by a mixture of independent 

and constrained refinement
w = 1/[σ2(Fo

2) + (0.0457P)2 + 0.5709P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max < 0.001
Δρmax = 0.23 e Å−3

Δρmin = −0.22 e Å−3
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Special details 

Experimental. The diffraction data were collected in three sets of 363 frames 0.5° width in ω) at φ = 0, 120 and 240°. A 
scan time of 60 sec/frame was used. Analysis of 185 reflections having I/σ(I) > 12 and chosen from the full data set with 
CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° 
rotation about the c* axis. The raw data were processed using the multi-component version of SAINT under control of the 
two-component orientation file generated by CELL_NOW.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; 
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, 
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) 
is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors 
based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even 
larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) and were included as 
riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to 
nitrogen and to oxygen were placed in locations derived from a difference map and refined with DFIX 0.91 0.01 and 
DFIX 0.84 0.01 instructions, respectively. Refined as a 2-component twin. One reflection affected by the beamstop was 
omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

O1 0.76440 (12) 0.1256 (2) 0.59260 (16) 0.0529 (6)
O2 0.43772 (15) 0.8230 (3) 0.4878 (2) 0.0664 (7)
H2A 0.4033 (16) 0.767 (4) 0.444 (3) 0.092 (14)*
N1 0.68601 (13) 0.2980 (3) 0.66727 (18) 0.0409 (6)
N2 0.73357 (13) 0.2658 (3) 0.86027 (18) 0.0386 (6)
H2 0.7453 (16) 0.303 (3) 0.9339 (13) 0.047 (9)*
N3 0.63328 (14) 0.4450 (3) 0.8052 (2) 0.0440 (6)
H3 0.6262 (16) 0.448 (3) 0.8788 (13) 0.057 (10)*
C1 0.78406 (15) 0.1675 (3) 0.8050 (2) 0.0342 (6)
C2 0.74437 (17) 0.1927 (3) 0.6755 (2) 0.0385 (7)
C3 0.68300 (16) 0.3401 (3) 0.7783 (2) 0.0368 (7)
C4 0.86637 (16) 0.2335 (3) 0.8283 (2) 0.0394 (7)
C5 0.91538 (19) 0.1953 (5) 0.9308 (3) 0.0669 (11)
H5 0.898781 0.124191 0.984000 0.080*
C6 0.9881 (2) 0.2584 (5) 0.9574 (3) 0.0864 (13)
H6 1.020691 0.231765 1.029192 0.104*
C7 1.0135 (2) 0.3585 (5) 0.8820 (4) 0.0766 (12)
H7 1.063708 0.401801 0.900559 0.092*
C8 0.9667 (2) 0.3961 (5) 0.7801 (4) 0.0749 (11)
H8 0.984311 0.465610 0.726783 0.090*
C9 0.8931 (2) 0.3340 (4) 0.7526 (3) 0.0610 (9)
H9 0.860949 0.361313 0.680653 0.073*
C10 0.78376 (15) −0.0048 (3) 0.8413 (2) 0.0366 (7)
C11 0.75374 (17) −0.0543 (4) 0.9371 (3) 0.0491 (8)
H11 0.728488 0.019425 0.978410 0.059*
C12 0.7607 (2) −0.2115 (4) 0.9723 (3) 0.0657 (10)
H12 0.740132 −0.244907 1.037771 0.079*
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C13 0.7969 (2) −0.3190 (4) 0.9136 (4) 0.0671 (11)
H13 0.801641 −0.426344 0.938423 0.081*
C14 0.8263 (2) −0.2712 (4) 0.8188 (3) 0.0626 (9)
H14 0.851184 −0.345553 0.777377 0.075*
C15 0.81995 (18) −0.1159 (4) 0.7836 (3) 0.0499 (8)
H15 0.840871 −0.084081 0.718038 0.060*
C16 0.58283 (16) 0.5387 (3) 0.7202 (2) 0.0410 (7)
C17 0.50842 (17) 0.4918 (4) 0.6807 (3) 0.0538 (8)
H17 0.490481 0.394955 0.707081 0.065*
C18 0.45952 (18) 0.5859 (4) 0.6024 (3) 0.0558 (9)
H18 0.407891 0.553935 0.575721 0.067*
C19 0.48536 (18) 0.7249 (4) 0.5634 (2) 0.0484 (8)
C20 0.56002 (19) 0.7722 (4) 0.6020 (3) 0.0575 (9)
H20 0.578193 0.867915 0.574152 0.069*
C21 0.60862 (18) 0.6788 (4) 0.6820 (3) 0.0536 (8)
H21 0.659858 0.712093 0.710447 0.064*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

O1 0.0689 (15) 0.0619 (14) 0.0268 (11) 0.0189 (11) 0.0064 (10) −0.0030 (10)
O2 0.0690 (17) 0.0577 (15) 0.0600 (15) 0.0140 (13) −0.0199 (13) 0.0000 (13)
N1 0.0428 (15) 0.0502 (15) 0.0270 (12) 0.0084 (12) −0.0001 (11) 0.0012 (11)
N2 0.0424 (14) 0.0476 (15) 0.0232 (12) 0.0101 (12) −0.0003 (11) −0.0007 (12)
N3 0.0446 (15) 0.0533 (16) 0.0336 (14) 0.0150 (13) 0.0059 (12) 0.0031 (13)
C1 0.0370 (16) 0.0391 (16) 0.0255 (13) 0.0074 (13) 0.0036 (12) −0.0007 (12)
C2 0.0424 (17) 0.0420 (17) 0.0295 (15) 0.0038 (14) 0.0031 (13) 0.0027 (13)
C3 0.0336 (16) 0.0436 (17) 0.0320 (15) 0.0014 (13) 0.0035 (13) 0.0018 (13)
C4 0.0423 (17) 0.0398 (16) 0.0367 (16) 0.0017 (14) 0.0091 (14) −0.0017 (14)
C5 0.052 (2) 0.095 (3) 0.049 (2) −0.020 (2) −0.0041 (17) 0.0157 (19)
C6 0.056 (2) 0.126 (4) 0.068 (2) −0.025 (2) −0.013 (2) 0.014 (3)
C7 0.045 (2) 0.102 (3) 0.082 (3) −0.016 (2) 0.011 (2) −0.011 (3)
C8 0.062 (2) 0.085 (3) 0.082 (3) −0.019 (2) 0.026 (2) 0.011 (2)
C9 0.056 (2) 0.072 (2) 0.055 (2) −0.0032 (19) 0.0103 (17) 0.0117 (19)
C10 0.0313 (15) 0.0444 (17) 0.0310 (15) 0.0004 (13) −0.0014 (12) 0.0018 (13)
C11 0.0445 (18) 0.057 (2) 0.0450 (18) 0.0009 (16) 0.0062 (15) 0.0088 (16)
C12 0.064 (2) 0.072 (3) 0.059 (2) −0.010 (2) 0.0065 (19) 0.027 (2)
C13 0.062 (2) 0.048 (2) 0.080 (3) −0.0079 (19) −0.017 (2) 0.013 (2)
C14 0.061 (2) 0.049 (2) 0.073 (2) 0.0080 (17) 0.0010 (19) −0.001 (2)
C15 0.0507 (19) 0.049 (2) 0.0496 (19) 0.0065 (15) 0.0081 (16) 0.0004 (16)
C16 0.0404 (18) 0.0432 (18) 0.0381 (16) 0.0096 (14) 0.0038 (14) 0.0025 (14)
C17 0.0455 (19) 0.054 (2) 0.060 (2) −0.0005 (16) 0.0034 (17) 0.0101 (17)
C18 0.0372 (17) 0.065 (2) 0.061 (2) 0.0037 (17) −0.0025 (16) 0.0025 (18)
C19 0.0473 (19) 0.049 (2) 0.0432 (17) 0.0110 (16) −0.0048 (15) −0.0037 (16)
C20 0.056 (2) 0.0481 (19) 0.063 (2) −0.0011 (16) −0.0019 (18) 0.0074 (17)
C21 0.0401 (18) 0.059 (2) 0.056 (2) 0.0008 (17) −0.0052 (16) 0.0045 (17)
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Geometric parameters (Å, º) 

O1—C2 1.230 (3) C8—H8 0.9500
O2—C19 1.377 (3) C9—H9 0.9500
O2—H2A 0.859 (12) C10—C15 1.383 (4)
N1—C3 1.354 (3) C10—C11 1.390 (4)
N1—C2 1.355 (3) C11—C12 1.388 (4)
N2—C3 1.337 (3) C11—H11 0.9500
N2—C1 1.459 (3) C12—C13 1.369 (5)
N2—H2 0.899 (12) C12—H12 0.9500
N3—C3 1.329 (3) C13—C14 1.370 (5)
N3—C16 1.439 (3) C13—H13 0.9500
N3—H3 0.892 (12) C14—C15 1.372 (4)
C1—C10 1.515 (4) C14—H14 0.9500
C1—C4 1.540 (4) C15—H15 0.9500
C1—C2 1.555 (4) C16—C17 1.373 (4)
C4—C9 1.373 (4) C16—C21 1.373 (4)
C4—C5 1.376 (4) C17—C18 1.385 (4)
C5—C6 1.377 (5) C17—H17 0.9500
C5—H5 0.9500 C18—C19 1.369 (4)
C6—C7 1.358 (5) C18—H18 0.9500
C6—H6 0.9500 C19—C20 1.376 (4)
C7—C8 1.352 (5) C20—C21 1.390 (4)
C7—H7 0.9500 C20—H20 0.9500
C8—C9 1.388 (5) C21—H21 0.9500

C19—O2—H2A 109 (2) C8—C9—H9 119.6
C3—N1—C2 105.9 (2) C15—C10—C11 118.1 (3)
C3—N2—C1 109.7 (2) C15—C10—C1 119.3 (3)
C3—N2—H2 121.4 (18) C11—C10—C1 122.4 (3)
C1—N2—H2 124.7 (18) C12—C11—C10 119.9 (3)
C3—N3—C16 124.0 (2) C12—C11—H11 120.0
C3—N3—H3 117.9 (19) C10—C11—H11 120.0
C16—N3—H3 117.5 (19) C13—C12—C11 120.7 (3)
N2—C1—C10 112.8 (2) C13—C12—H12 119.7
N2—C1—C4 111.0 (2) C11—C12—H12 119.7
C10—C1—C4 110.6 (2) C12—C13—C14 119.7 (3)
N2—C1—C2 98.5 (2) C12—C13—H13 120.2
C10—C1—C2 112.2 (2) C14—C13—H13 120.2
C4—C1—C2 111.3 (2) C13—C14—C15 120.0 (3)
O1—C2—N1 125.3 (2) C13—C14—H14 120.0
O1—C2—C1 123.7 (2) C15—C14—H14 120.0
N1—C2—C1 111.0 (2) C14—C15—C10 121.5 (3)
N3—C3—N2 122.1 (3) C14—C15—H15 119.2
N3—C3—N1 123.3 (2) C10—C15—H15 119.2
N2—C3—N1 114.6 (3) C17—C16—C21 119.9 (3)
C9—C4—C5 117.6 (3) C17—C16—N3 120.4 (3)
C9—C4—C1 122.9 (2) C21—C16—N3 119.6 (3)
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C5—C4—C1 119.5 (3) C16—C17—C18 120.0 (3)
C4—C5—C6 121.1 (3) C16—C17—H17 120.0
C4—C5—H5 119.4 C18—C17—H17 120.0
C6—C5—H5 119.4 C19—C18—C17 120.2 (3)
C7—C6—C5 120.5 (3) C19—C18—H18 119.9
C7—C6—H6 119.7 C17—C18—H18 119.9
C5—C6—H6 119.7 C18—C19—C20 120.2 (3)
C8—C7—C6 119.4 (3) C18—C19—O2 121.6 (3)
C8—C7—H7 120.3 C20—C19—O2 118.1 (3)
C6—C7—H7 120.3 C19—C20—C21 119.5 (3)
C7—C8—C9 120.6 (4) C19—C20—H20 120.3
C7—C8—H8 119.7 C21—C20—H20 120.3
C9—C8—H8 119.7 C16—C21—C20 120.2 (3)
C4—C9—C8 120.8 (3) C16—C21—H21 119.9
C4—C9—H9 119.6 C20—C21—H21 119.9

C3—N2—C1—C10 −123.8 (2) C1—C4—C9—C8 177.0 (3)
C3—N2—C1—C4 111.5 (3) C7—C8—C9—C4 0.1 (6)
C3—N2—C1—C2 −5.3 (3) N2—C1—C10—C15 170.7 (2)
C3—N1—C2—O1 179.0 (3) C4—C1—C10—C15 −64.3 (3)
C3—N1—C2—C1 −1.4 (3) C2—C1—C10—C15 60.5 (3)
N2—C1—C2—O1 −176.3 (3) N2—C1—C10—C11 −14.7 (3)
C10—C1—C2—O1 −57.4 (4) C4—C1—C10—C11 110.3 (3)
C4—C1—C2—O1 67.1 (4) C2—C1—C10—C11 −124.8 (3)
N2—C1—C2—N1 4.1 (3) C15—C10—C11—C12 0.1 (4)
C10—C1—C2—N1 123.0 (3) C1—C10—C11—C12 −174.6 (3)
C4—C1—C2—N1 −112.5 (3) C10—C11—C12—C13 0.0 (5)
C16—N3—C3—N2 173.9 (3) C11—C12—C13—C14 −0.3 (5)
C16—N3—C3—N1 −7.2 (5) C12—C13—C14—C15 0.5 (5)
C1—N2—C3—N3 −175.7 (3) C13—C14—C15—C10 −0.4 (5)
C1—N2—C3—N1 5.3 (3) C11—C10—C15—C14 0.1 (4)
C2—N1—C3—N3 178.7 (3) C1—C10—C15—C14 175.0 (3)
C2—N1—C3—N2 −2.3 (3) C3—N3—C16—C17 97.0 (4)
N2—C1—C4—C9 −94.0 (3) C3—N3—C16—C21 −85.6 (4)
C10—C1—C4—C9 140.0 (3) C21—C16—C17—C18 0.0 (5)
C2—C1—C4—C9 14.6 (4) N3—C16—C17—C18 177.5 (3)
N2—C1—C4—C5 83.9 (3) C16—C17—C18—C19 0.6 (5)
C10—C1—C4—C5 −42.0 (4) C17—C18—C19—C20 −0.2 (5)
C2—C1—C4—C5 −167.4 (3) C17—C18—C19—O2 −178.4 (3)
C9—C4—C5—C6 1.4 (5) C18—C19—C20—C21 −0.9 (5)
C1—C4—C5—C6 −176.7 (3) O2—C19—C20—C21 177.4 (3)
C4—C5—C6—C7 −1.0 (6) C17—C16—C21—C20 −1.1 (5)
C5—C6—C7—C8 0.1 (6) N3—C16—C21—C20 −178.6 (3)
C6—C7—C8—C9 0.3 (6) C19—C20—C21—C16 1.5 (5)
C5—C4—C9—C8 −1.0 (5)
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Hydrogen-bond geometry (Å, º) 

Cg3 and Cg4 are the centroids of the C10–C15 and the C16–C21 benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A

O2—H2A···N1i 0.86 (1) 1.93 (2) 2.763 (3) 163 (4)
N2—H2···O1ii 0.90 (1) 1.92 (1) 2.814 (3) 176 (3)
N3—H3···O2iii 0.89 (1) 2.34 (2) 3.104 (4) 143 (2)
C17—H17···Cg4iii 0.95 2.92 3.831 (4) 162
C21—H21···Cg3iv 0.95 2.93 3.822 (4) 157

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y−1/2, −z+3/2; (iv) x, y+1, z.
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