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Protein structures from the causative agent of anthrax (Bacillus anthracis) are

being determined as part of a structural genomics programme. Amongst initial

candidates for crystallographic analysis are enzymes involved in nucleotide

biosynthesis, since these are recognized as potential targets in antibacterial

therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage

pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from

B. anthracis has been solved by molecular replacement at 2.24 Å resolution and

refined to an R factor of 18.4%. This is the first report of a DeoD structure from

a Gram-positive bacterium.

1. Introduction

Purine nucleoside phosphorylase (PNP) is involved in the purine-

salvage pathway. It promotes the reversible phosphorolysis of the

glycosidic bond of purine ribo- and deoxyribonucleosides and their

analogues. This phosphorolysis by inorganic phosphate produces the

purine base and (deoxy)ribose-1-phosphate as products. Previous

studies have shown there are two distinct classes of nucleoside

phosphorylases (Pugmire & Ealick, 2002). Members of the NP-I

(nucleoside phosphorylase I) family are either trimers or hexamers

made up of subunits that contain an �/�-fold. Proteins of the NP-II

family are dimers in which each subunit has a small �-domain sepa-

rated from an �/�-domain by a large crevice.

Enzymes belonging to the NP-I family can be further classified

according to their substrate specificity and amino-acid sequences.

Trimeric PNPs specific for guanine and hypoxanthine (20-deoxy)-

ribonucleosides are present in mammalian species. The hexameric

PNPs, which accept a broader range of substrates including adeno-

sine, are prevalent in bacterial species, although Escherichia coli

(Seeger et al., 1995), Bacillus subtilis (Senesi et al., 1976) and

B. stearothermophilus (Hori et al., 1989) appear to have both trimeric

and hexameric forms.

B. anthracis is a Gram-positive rod-shaped spore-forming

bacterium. It is the causative agent of anthrax, which is an acute,

infectious and normally lethal disease. The B. anthracis genome was

sequenced at The Institute for Genomic Research (TIGR; Read et al.,

2003). As in other Bacillus species, there are two gene products

annotated as PNPs in the genomic sequence database for B. anthracis

strain Ames. We have solved the structure of one of the B. anthracis

enzymes, hereafter referred to as DeoD, which is designated BA1483

in the TIGR database (http://www.tigr.org).

2. Materials and methods

2.1. Cloning, expression and purification

The deoD gene encoding BA1483 was amplified by the polymerase

chain reaction (PCR) from B. anthracis genomic DNA using the

primers 50-CACCACCACCACATGAGTGTACATATTGAAGCA-

AAACAAGGCG-30 and 50-GAGGAGAAGGCGCGTTATTGTTG-

AATTGCTGCATCTAAAGCGATTTC-30 to incorporate sequences

(in bold) designed to generate compatible overhangs with the vector

pETYSBLIC. This plasmid is a pET28a derivative that has been
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adapted for ligation-independent cloning (LIC; Aslanidis & De Jong,

1990) and confers an N-terminal hexa-histidine tag to the cloned

gene. The reaction products were used to transform E. coli NovaBlue

competent cells (Novagen) and selected through kanamycin resis-

tance. Single-colony PCR screening and DNA sequencing allowed

the isolation of the desired recombinants. The recombinant plasmid

pETYSBLdeoD was introduced into E. coli strain B834 (DE3) and

grown at 310 K in 1 l Luria–Bertani broth supplemented with

35 mg ml�1 kanamycin to an OD600 of 0.5. Expression of DeoD was

then induced by addition of isopropyl-�-d-thiogalactopyranoside to

1 mM and the cells were grown for a further 3 h at 310 K. Cells were

harvested by centrifugation at 6080g for 10 min (Sorvall GS-3) and

frozen overnight at 193 K. The pellet was thawed and resuspended in

buffer A (20 mM Na2HPO4, 0.5 M NaCl, 10 mM imidazole pH 7.5)

and lysed by sonication (Soniprep 150, MSE). Cell debris was

removed by centrifugation at 26 890g for 60 min (Sorvall SS34) and

the supernatant cleared by filtration through a 0.2 mm device

(Sartorius), yielding 10 ml crude extract. The supernatant was loaded

onto a 5 ml HiTrap nickel-chelating column (Äkta Explorer system,

Amersham Biosciences) previously equilibrated with buffer A. The

protein was eluted in buffer A containing 500 mM imidazole and

automatically directed onto a HiLoad 16/60 Superdex 200 prep-grade

gel-filtration column (Amersham Biosciences) pre-equilibrated in

50 mM Tris–HCl pH 7.5 and 250 mM NaCl. The purified protein was

concentrated to 6.2 mg ml�1 in 25 mM NaCl, 25 mM Tris–HCl pH 7.5.

2.2. Protein characterization

Electrospray mass spectrometry performed on an ABI Qstar

tandem mass spectrometer using 20 ml of a 4.5 mg ml�1 solution of

purified protein dialysed against 2 mM Tris–HCl pH 7.5 buffer

showed a peak (26 733 Da) in close agreement with the calculated

DeoD molecular weight. The circular-dichroism spectrum was

recorded between 180 and 260 nm on a Jasco J810 CD Spectro-

photometer using 400 ml pure protein solution (0.2 mg ml�1) in

25 mM Tris–HCl pH 7.5 buffer containing 25 mM NaCl. Spectrum

analysis using the program K2d (Andrade et al., 1993) suggested a

predominance (51%) of �-helical content, plus 16% �-sheet and 33%

random coil.

2.3. Crystallization

Preliminary crystallization screening was performed by sitting-

drop vapour diffusion with nanodrops (150 nl, equilibrated against

80 ml reservoir solution) using a Mosquito Nanolitre Pipetting robot

(TTP LabTech) to set up 96-well plates at 298 K. Four commercial

screens were used: Crystal Screens I, II and Index (Hampton

Research), and Stura Footprint (Molecular Dimensions). Crystals

grew overnight from a number of different conditions. These included

orthorhombic shaped crystals from 2.0 M ammonium sulfate plus 5%

2-propanol or 30%(v/v) PEG 400, 0.1 M HEPES pH 7.5, 0.2 M
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Table 1
X-ray data-collection and refinement statistics.

Values in parentheses represent data for the highest resolution shell.

Space group P212121

Unit-cell parameters (Å, �) a = 63.86, b = 128.26, c = 223.57,
� = � = � = 90

Resolution range (Å) 20.00–2.24 (2.32–2.24)
No. of unique reflections 81257 (7218)
Completeness (%) 90.8 (82.0)
Redundancy 3.9 (3.2)
I/�(I) 8.14 (1.84)
Rmerge (%) 14.1 (49.1)
R factor† 0.184 (0.239)
Rfree† (5% of diffraction data) 0.235 (0.308)
No. of subunits in the asymmetric unit 6
No. of protein non-H atoms 11450
No. of water molecules 716
R.m.s.d. bond lengths (Å) 0.014
R.m.s.d. angles (�) 1.538
Mean B value (Å2)

Solvent 25.5
Main chain 21.7
Side chain 23.4

† R factor =
P
jFobsj � jFcalcj=

P
jFobsj, where Fcalc and Fobs are the calculated and

observed structure-factor amplitudes, respectively. Rfree is the R factor calculated with
5% of the reflections chosen at random and omitted from refinement.

Figure 1
(a) Ribbon diagram of a single subunit of B. anthracis DeoD. The �-helices and
�-strands are labelled in sequential order. The chain is ramped in rainbow colours
from the N-terminus (blue) to the C-terminus (red). The structure figures were
drawn with PyMol (DeLano, 2002). (b) Ribbon diagram of purine nucleoside
phosphorylase. There are two types of interactions between subunits. Between A
and F, B and D, and C and E there are extensive interactions to form dimers
through amino acids on helices �3 and �5, strands �6 and �7 and loops �3–�4, �8–
�6 and �3–�6. Interactions between subunits A and D, C and F, and B and E are
based on the contribution of amino acids from helices �1, �2 and �3 and loops �2–
�3, �2–�4 and �5–�7; these build the dimers into a hexamer.



MgCl2�6H2O solutions. In addition, hexagonal plates from 2.0 M

ammonium sulfate, 2%(v/v) PEG 400, 0.1 M HEPES pH 7.5 or 2.4 M

sodium malonate pH 7.0 solutions were obtained. Crystal growth was

scaled up by hanging-drop vapour diffusion at 293 K in 24-well plates

using a 1:1 mixture of protein solution (6.2 mg ml�1) and reservoir

solution (1 ml each). For diffraction data collection, an orthorhombic

crystal of length 80 mm was harvested after overnight growth from

25%(v/v) PEG 400, 0.1 M HEPES pH 7.5, 0.2 M MgCl2�6H2O.

2.4. Data collection and processing

A single crystal was mounted in a loop and flash-cooled in liquid

nitrogen using the mother liquor as cryoprotectant. X-ray diffraction

data were collected in-house at 120 K on an image-plate detector

equipped with a MAR Research 345 scanner to a resolution of 2.24 Å

using a Rigaku RUH3R X-ray generator. The crystal-to-detector

distance was 150 mm and images consisting of 0.5� rotations were

exposed for 10 min. X-ray diffraction data were processed using

DENZO and SCALEPACK from the HKL2000 package within the

CCP4 suite of programs (Collaborative Computational Project,

Number 4, 1994). Data statistics are shown in Table 1.

2.5. Structure solution and refinement

The structure was solved by molecular replacement with

MOLREP (Vagin & Teplyakov, 1997) using the homologous (56%

sequence identity) E. coli PNP structure (PDB code 1ecp) as a

starting model. Data in the resolution range 20–3 Å were used in both

rotation and translation calculations, which gave an obvious solution

with significant contrast, resulting in six molecules in the asymmetric

unit and a solvent content of 58.4%. After a rigid-body refinement

performed by REFMAC (Murshudov et al., 1997), the correlation

coefficient was 59.6% and the R factor was 45.7% (Rfree = 45.6%).

Structure refinement was continued using REFMAC and model

building in QUANTA (Accelrys Inc., San Diego, CA, USA) and

COOT (Emsley & Cowtan, 2004). The final R factor for the model

consisting of 1399 amino-acid residues and 716 water molecules is

18.4% (Rfree = 23.5%). Refinement statistics are listed in Table 1. The

structure was validated with PROCHECK3.5.4 (Laskowski et al.,

1993) and SFCHECK6.0.3 (Vaguine et al., 1999).

3. Results and discussion

The refined model of B. anthracis DeoD is composed of six virtually

identical subunits (A–F) in the asymmetric unit. Most residues are in

well defined electron density, except for the His6 tag. Residues 1–232

(numbering from the native protein initiation methionine) are visible

in chains A, B and C, 1–233 in chains D and F and 1–234 in chain E,

out of a total of 235 in the polypeptide chain. Analysis of the

Ramachandran plot showed that 91.7% of the non-glycine residues

are in the favoured regions, 8.1% in the additional allowed regions

and 0.2% in the generously allowed regions.

Each subunit has an �/�-fold consisting of nine �-strands in a

highly twisted mixed �-sheet flanked by seven �-helices carrying

several extended loops (Fig. 1a). The quaternary structure is similar

to that of bacterial PNPs, e.g. E. coli (Mao et al., 1997) and Thermus

thermophilus (Tahirov et al., 2004). It consists of a disc-shaped

hexamer with D3 symmetry, organized as a trimer of dimers with

approximate dimensions 101 � 96 � 42 Å. The interactions between

subunits forming each dimer are substantially more extensive than

those between dimers (Fig. 1b).

Sequence alignments with other hexameric PNPs show a high

sequence identity (�60%) and superimposition with other already

deposited structures reveals a highly conserved subunit topology and

active-site location (Fig. 2). Previous studies have shown that

hexameric PNPs have two active sites per dimer. The DeoD structure

has wide and accessible major grooves between the two subunits

forming each dimer. Superimposition of DeoD with PNP structures

containing a ligand shows that these grooves usually accommodate

the substrate. There are several conserved residues in this region

(Fig. 3a). Residue His4 contributes to ribose binding and Arg43

balances the negative charge on the phosphate. These two residues

are recruited from one subunit and, together with a number of resi-

dues from the adjacent subunit, are implicated in ligand binding to

the active site (Fig. 3b). These include Arg87 and Thr90, which also

interact with the phosphate (Mao et al., 1997). Binding of the base

moiety is predominately via a stacking interaction with Phe159 and

base specificity is conferred by Asp204 (Tahirov et al., 2004). Glu181

forms a bidentate interaction with the ribose O20- and O30-hydroxyl

groups. This organization of subunit cooperation leads to three active

sites on each face of the hexamer.
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Figure 2
Sequence alignment of B. anthracis DeoD with purine nucleoside phosphorylases from E. coli (Eco) and T. thermophilus (Tth). The sequence-alignment figure was
generated using ESPript (Gouet et al., 1999). Strictly conserved residues are highlighted with red boxes; conservative substitutions are also boxed.



There are differences in substrate specificity between human and

bacterial PNPs. These have been exploited in potential anticancer

therapies, where a gene for a bacterial PNP is transfected into a

tumour and the protein converts a non-toxic pro-drug to a cytotoxic

species (Sorscher et al., 1994). Further analysis of the structure of

B. anthracis DeoD and its complexes may reveal differences that

would allow selective inhibition of DeoD activity.
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Figure 3
(a) Surface representation of a single subunit, showing the pocket that accommodates the substrate (magenta) that is augmented by interactions with residues His4 and
Arg43 (yellow) from the neighbouring subunit. (b). Stereoview of ligand binding, based on the position of adenosine (stick representation, coloured by atom) in
T. thermophilus PNP (Tahirov et al., 2004). The electron density for selected side chains is represented as wire contoured at a level of 1�. These are (clockwise from bottom of
figure) Glu181, Arg87, Thr90, Asp204 and Phe159 in magenta from one subunit (blue). His4 and Arg43 (yellow) from the adjacent subunit (green) complete the active centre
(see text).


