crystallization communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL BIOLOGY
COMMUNICATIONS
ISSN: 2053-230X

Preliminary crystallographic analysis of avian infectious bronchitis virus main protease

CROSSMARK_Color_square_no_text.svg

aLaboratory of Structural Biology, Tsinghua University, Beijing 100084, People's Republic of China, bLaboratory of Avian Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China, and cNational Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
*Correspondence e-mail: mliao@scau.edu.cn, bartlam@xtal.tsinghua.edu.cn

(Received 10 November 2006; accepted 4 December 2006; online 16 December 2006)

Infectious bronchitis virus (IBV) is the prototype of the genus Coronavirus. It causes a highly contagious disease which affects the respiratory, reproductive, neurological and renal systems of chickens, resulting great economic losses in the poultry industry worldwide. The coronavirus (CoV) main protease (Mpro), which plays a pivotal role in viral gene expression and replication through a highly complex cascade involving the proteolytic processing of replicase polyproteins, is an attractive target for antiviral drug design. In this study, IBV Mpro was overexpressed in Escherichia coli. Crystals suitable for X-ray crystallography have been obtained using microseeding techniques and belong to space group P6122. X-ray diffraction data were collected in-house to 2.7 Å resolution from a single crystal. The unit-cell parameters were a = b = 119.1, c = 270.7 Å, α = β = 90, γ = 120°. Three molecules were predicted to be present in the asymmetric unit from a calculated self-rotation function.

1. Introduction

Infectious bronchitis virus (IBV) is the prototype of the genus Coronavirus (Spaan & Cavanagh, 2004[Spaan, W. J. M. & Cavanagh, D. (2004). Virus Taxonomy. VIIIth Report of the ICTV, pp. 945-962. London: Elsevier/Academic Press.]; Lai & Holmes, 2001[Lai, M. M. C. & Holmes, K. V. (2001). Fields Virology, edited by D. M. Knipe & P. M. Howley, pp. 1163-1179. Philadelphia: Lippincott Williams & Wilkins.]), the members of which can infect humans and multiple species of animals, causing a variety of highly prevalent and severe diseases (Spaan & Cavanagh, 2004[Spaan, W. J. M. & Cavanagh, D. (2004). Virus Taxonomy. VIIIth Report of the ICTV, pp. 945-962. London: Elsevier/Academic Press.]; Ziebuhr, 2005[Ziebuhr, J. (2005). Curr. Top. Microbiol. Immunol. 287, 57-94.]; Pereira, 1989[Pereira, H. G. (1989). Andrewes' Viruses of Vertebrates, edited by J. S. Porterfield, pp. 42-57. London: Baillière Tindall.]; Lai & Holmes, 2001[Lai, M. M. C. & Holmes, K. V. (2001). Fields Virology, edited by D. M. Knipe & P. M. Howley, pp. 1163-1179. Philadelphia: Lippincott Williams & Wilkins.]). For instance, a previously unknown human coronavirus called severe acute respiratory syndrome coronavirus (SARS-CoV), the emergence of which was most likely to have been the result of animal–human transmission (Lau et al., 2005[Lau, S. K. P., Woo, P. C. Y., Li, K. S. M., Huang, Y., Tsoi, H.-W., Wong, B. H. L., Wong, S. S. Y., Leung, S.-Y., Chan, K.-H. & Yuen, K.-Y. (2005). Proc. Natl Acad. Sci. USA, 102, 14040-14045.]; Li et al., 2005[Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., Wang, H., Crameri, G., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B. T., Zhang, S. & Wang, L.-F. (2005). Science, 309, 1864-1868.]), was identified as the aetiological agent of a global outbreak of a life-threatening form of pneumonia called severe acute respiratory syndrome (Peiris et al., 2003[Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng, T. K. & Yuen, K. Y. (2003). Lancet, 361, 1319-1325.]; Kuiken et al., 2003[Kuiken, T. et al. (2003). Lancet, 362, 263-270.]; Ksiazek et al., 2003[Ksiazek, T. G. et al. (2003). N. Engl. J. Med. 348, 1953-1966.]; Drosten et al., 2003[Drosten, C. et al. (2003). N. Engl. J. Med. 348, 1967-1976.]). From their genome sequences, coronaviruses can be classified into three distinct groups (Spaan & Cavanagh, 2004[Spaan, W. J. M. & Cavanagh, D. (2004). Virus Taxonomy. VIIIth Report of the ICTV, pp. 945-962. London: Elsevier/Academic Press.]). IBV belongs to group III (Lai & Holmes, 2001[Lai, M. M. C. & Holmes, K. V. (2001). Fields Virology, edited by D. M. Knipe & P. M. Howley, pp. 1163-1179. Philadelphia: Lippincott Williams & Wilkins.]), which only infects avian species, and leads to a highly contagious disease affecting the respiratory, reproductive, neurological and renal systems of chickens, resulting in a drop in egg production in adult birds and damaging the developing reproductive system in young birds. IBV infection predisposes chickens to infection with secondary pathogens. The incidence of IBV-related nephritis can result in high mortality rates (Siddell et al., 2005[Siddell, S. G., Ziebuhr, J. & Snijder, E. J. (2005). Topley and Wilson's Microbiology and Microbia Infections: Virology, 10th ed., edited by B. W. J. Mahy & V. ter Meulen, pp. 823-856. London: Hodder Arnold.]; Cavanagh, 2005[Cavanagh, D. (2005). Avian Pathol. 34, 439-448.]; Ignjatovic & Sapats, 2000[Ignjatovic, J. & Sapats, S. (2000). Rev. Sci. Tech. 19, 493-508.]). IBV infection is prevalent in all countries with an intensive poultry industry, with the incidence of infection approaching 100% in most locations, causing great economic loss worldwide (Ignjatovic & Sapats, 2000[Ignjatovic, J. & Sapats, S. (2000). Rev. Sci. Tech. 19, 493-508.]). At the present time, control of IBV relies almost exclusively on vaccination and management (Holmes, 2001[Holmes, K. V. (2001). Fields Virology, edited by D. M. Knipe & P. M. Howley, pp. 1187-1203. Philadelphia: Lippincott Williams & Wilkins.]; Siddell et al., 2005[Siddell, S. G., Ziebuhr, J. & Snijder, E. J. (2005). Topley and Wilson's Microbiology and Microbia Infections: Virology, 10th ed., edited by B. W. J. Mahy & V. ter Meulen, pp. 823-856. London: Hodder Arnold.]). However, there are two major problems associated with the use of vaccines. Firstly, there are many serotypes of IBV; secondly, there is at least circumstantial evidence to suggest that new serotypes may emerge by recombination, possibly involving the live vaccine virus itself (Lee & Jackwood, 2000[Lee, C. W. & Jackwood, M. W. (2000). Arch. Virol. 145, 2135-2148.]; Cavanagh, 2003[Cavanagh, D. (2003). Avian Pathol. 32, 567-582.]).

The coronavirus main protease (Mpro) is a chymotrypsin-like cysteine protease (Anand et al., 2002[Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J. & Hilgenfeld, R. (2002). EMBO J. 21, 3213-3224.]; Yang et al., 2003[Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R. & Rao, Z. (2003). Proc. Natl Acad. Sci. USA, 100, 13190-13195.]). It not only processes at its own flanking sites within the replicase polyproteins involved in viral RNA synthesis, but also directs the processing of all downstream domains of the replicase polyproteins via at least 11 conserved cleavage sites, mediating coronavirus replication and transcription (Anand et al., 2005[Anand, K., Yang, H., Bartlam, M., Rao, Z. & Hilgenfeld, R. (2005). Coronaviruses with Special Emphasis on First Insights Concerning SARS, edited by A. Schmidt, M. H. Wolff & O. Weber, pp. 173-199. Basel: Birkhäuser Verlag.]; Ziebuhr et al., 2000[Ziebuhr, J., Snijder, E. J. & Gorbalenya, A. E. (2000). J. Gen. Virol. 81, 853-­879.]; Ziebuhr, 2005[Ziebuhr, J. (2005). Curr. Top. Microbiol. Immunol. 287, 57-94.]). The functional importance and the absence of cellular homologues identifies it as an attractive target for anti-coronavrius drug design (Yang et al., 2005[Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M. & Rao, Z. (2005). PLoS Biol. 3, e324.]; Anand et al., 2005[Anand, K., Yang, H., Bartlam, M., Rao, Z. & Hilgenfeld, R. (2005). Coronaviruses with Special Emphasis on First Insights Concerning SARS, edited by A. Schmidt, M. H. Wolff & O. Weber, pp. 173-199. Basel: Birkhäuser Verlag.]). To date, several crystal structures of coronavirus Mpros have been reported for group I and II coronaviruses, which mostly infect mammals (Anand et al., 2002[Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J. & Hilgenfeld, R. (2002). EMBO J. 21, 3213-3224.], 2003[Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. (2003). Science, 300, 1763-1767.]; Yang et al., 2003[Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R. & Rao, Z. (2003). Proc. Natl Acad. Sci. USA, 100, 13190-13195.]). However, there are no structures available for group III coronaviruses, which are distinct from those belonging to groups I and II. In this report, we describe the crystallization and preliminary crystallographic analysis of IBV Mpro as a prelude to the elucidation of its three-dimensional structure in order to provide a basis for rational drug design.

2. Materials and methods

2.1. Protein expression and purification

The cDNA encoding IBV Mpro (M41 strain) was a gift from Professor Ming Liao (South China Agricultural University, People's Republic of China). The gene sequence encoding the IBV Mpro was amplified using the PCR method with forward primer 5′-CGGGATCCTCTGGTTTTAAGAAA-3′ and reverse primer 5′-CCGCTCGAGTCATTGTAATCTAACACC-3′ and then inserted into the BamHI and XhoI sites of the pGEX-4T-1 plasmid (Pharmacia, New York, USA). The resulting plasmid was then used to transform Escherichia coli BL21 (DE3) cells. The sequence of the insert was verified by dideoxynucleotide sequencing. The positive clones harbouring the recombinant plasmid were grown to an OD600 of 0.6 at 310 K with shaking in 1 l LB medium containing 0.1 mg ml−1 ampicillin. The GST-fusion protein, GST-IBV Mpro, was then expressed by introducing 0.5 mM IPTG and incubating at 289 K for 10 h. Cells were harvested by centrifugation, resuspended in lysis buffer (20 mM Tris–HCl pH 7.3, 140 mM NaCl, 2.7 mM KCl) and sonicated at 277 K. The cell lysate was centrifuged, the supernatant was collected and the fusion protein was purified by GST-glutathione affinity chromatography. The GST tag of the fusion protein was cleaved with GST-rhinovirus 3C protease. The recombinant IBV Mpro was further purified using anion-exchange chromatography. The purified and concentrated IBV Mpro (25 mg ml−1) was stored in 10 mM Tris–HCl pH 7.5, 1 mM DTT for crystallization.

2.2. Crystallization

The purified protein was concentrated to 25 mg ml−1 using a 5K Filtron ultrafiltration membrane. Protein concentrations were determined by absorbance at 280 nm. Hampton Research Crystal Screen kits were used to screen crystallization conditions and positive hits were then optimized. Each drop was formed by mixing equal volumes (1.5 µl) of protein solution and reservoir solution and was allowed to equilibrate via vapour diffusion over 400 µl reservoir solution at 291 K. After one month, we obtained a cluster of small crystals. Some small crystals were transferred into a microcentrifuge tube containing 20 µl stabilizing solution including 5% PEG 4000, 12% 2-propanol, 0.1 M sodium cacodylate pH 6.5. The crystals were then crushed with a 3 mm diameter PTFE bead by vortexing (20 × 1 s cycles on a Vortex mixer) and 180 µl of stabilizing solution was added to the suspension, making up the seed stock. The seeds in the seed stock were then transferred using a fine whisker to new drops that had been pre-equilibrated for 4–5 d. One week later, several single crystals appeared in the drops (Fig. 1[link]).

[Figure 1]
Figure 1
Typical crystals of IBV Mpro grown by the hanging-drop method in 2.5% PEG 4000, 12% 2-propanol, 0.1 M sodium cacodylate pH 6.5. Typical crystal dimensions are 0.3 × 0.06 × 0.05 mm.

2.3. Data collection and processing

Diffraction data were collected at the Beijing Synchrotron Radiation Facility (BSRF, Institute of High Energy Physics, Beijing, People's Republic of China) at a wavelength of ∼1.0 Å with a MAR 345 (MAR Research, Hamburg) image-plate detector at 100 K. The crystal was mounted on a nylon loop and flash-cooled in a cold nitrogen-gas stream at 100 K using an Oxford Cryosystems cryostream. The cryoprotectant solution contained 20% glycerol, 2% PEG 4000, 9.6% 2-propanol, 0.08 M sodium cacodylate pH 6.5. A total of 120 frames of data were collected with an oscillation angle of 0.6° and an exposure time of 180 s for each image (Fig. 2[link]). All intensity data were indexed, integrated and scaled with the HKL-2000 programs DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Eznymol. 276, 307-326.]).

[Figure 2]
Figure 2
A typical X-ray diffraction pattern from a crystal of IBV Mpro. The diffraction image was collected on a MAR Research image-plate detector. An enlarged image is shown on the right.

3. Results and discussion

Initial microcrystals were obtained from condition No. 41 of Crystal Screen I (Hampton Research) containing 20% PEG 4000, 10% 2-­propanol, 0.1 M Na HEPES pH 7.5. Optimization of the conditions yielded the best crystals from a solution containing 2.5% PEG 4000, 12% 2-propanol, 0.1 M sodium cacodylate pH 6.5, but the crystals were found to be unsuitable for X-ray diffraction. Crystal growth was further optimized by the microseeding technique and IBV Mpro crystals subsequently diffracted to 2.7 Å resolution. The crystals belong to space group P6122, with unit-cell parameters a = b = 119.1, c = 270.7 Å, α = β = 90, γ = 120° (see Table 1[link]). From 357 356 observed reflections, 31 778 independent reflections were selected according to the criterion for observed reflections [I/σ(I) > 0]. Assuming the presence of three molecules in the asymmetric unit predicted from a self-rotation function calculated using CCP4 (Collaborative Computational Project, Number 4, 1994[Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760-­763.]), the solvent content is estimated to be 55% and the Matthews coefficient (VM; Matthews, 1968[Matthews, B. W. (1968). J. Mol. Biol. 33, 491-497.]) 2.7 Å3 Da−1. Selected data statistics are given in Table 1[link]. The structural and functional analysis of IBV Mpro will be published elsewhere.

Table 1
Data-collection and processing statistics

Values in parentheses are for the highest resolution shell.

Space group P6122
Unit-cell parameters (Å, °) a = 119.1, b = 119.1, c = 270.7, α = 90, β = 90, γ = 120
Wavelength (Å) ∼1.0
Resolution range (Å) 50–2.7
Observed reflections 357356
Unique reflections 31778
Completeness (%) 99.0 (98.8)
I/σ(I)〉 21.8 (5.1)
Rmerge (%) 10.8 (41.8)
Rmerge = [\textstyle \sum_{hkl}\sum_{i}|I_{i}(hkl) - \langle I(hkl) \rangle|/][\textstyle \sum_{hkl}\sum_{i}I_{i}(hkl)], where 〈I(hkl)〉 is the mean of the observations Ii(hkl) of reflection hkl.

Footnotes

These authors contributed equally to this work.

Acknowledgements

We thank Professor Zihe Rao for generous support and Xiaoyu Xue, Qi Zhao and Haitao Yang for technical assistance. This work was supported by Project 973 of the Ministry of Science and Technology of China (grant No. 2006CB806503), the National Natural Science Foundation of China (grant No. 30221003), the Sino–German Center [grant No. GZ236(202/9)], the Sino–European Project on SARS Diagnostics and Antivirals (SEPSDA) of the European Commission (grant No. 003831), the Innovation Team Project of the Natural Science Foundation of Guangdong (grant No. 5200638) and the Knowledge Innovation Project of the Chinese Academy of Sciences (grant No. KSCX1-YW-R-05).

References

First citationAnand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J. & Hilgenfeld, R. (2002). EMBO J. 21, 3213–3224.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAnand, K., Yang, H., Bartlam, M., Rao, Z. & Hilgenfeld, R. (2005). Coronaviruses with Special Emphasis on First Insights Concerning SARS, edited by A. Schmidt, M. H. Wolff & O. Weber, pp. 173–199. Basel: Birkhäuser Verlag.  Google Scholar
First citationAnand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. (2003). Science, 300, 1763–1767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCavanagh, D. (2003). Avian Pathol. 32, 567–582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCavanagh, D. (2005). Avian Pathol. 34, 439–448.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCollaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760–­763.  CrossRef IUCr Journals Google Scholar
First citationDrosten, C. et al. (2003). N. Engl. J. Med. 348, 1967–1976.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolmes, K. V. (2001). Fields Virology, edited by D. M. Knipe & P. M. Howley, pp. 1187–1203. Philadelphia: Lippincott Williams & Wilkins.  Google Scholar
First citationIgnjatovic, J. & Sapats, S. (2000). Rev. Sci. Tech. 19, 493–508.  Web of Science PubMed CAS Google Scholar
First citationKsiazek, T. G. et al. (2003). N. Engl. J. Med. 348, 1953–1966.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKuiken, T. et al. (2003). Lancet, 362, 263–270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLai, M. M. C. & Holmes, K. V. (2001). Fields Virology, edited by D. M. Knipe & P. M. Howley, pp. 1163–1179. Philadelphia: Lippincott Williams & Wilkins.  Google Scholar
First citationLau, S. K. P., Woo, P. C. Y., Li, K. S. M., Huang, Y., Tsoi, H.-W., Wong, B. H. L., Wong, S. S. Y., Leung, S.-Y., Chan, K.-H. & Yuen, K.-Y. (2005). Proc. Natl Acad. Sci. USA, 102, 14040–14045.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, C. W. & Jackwood, M. W. (2000). Arch. Virol. 145, 2135–2148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., Wang, H., Crameri, G., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B. T., Zhang, S. & Wang, L.-F. (2005). Science, 309, 1864–1868.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatthews, B. W. (1968). J. Mol. Biol. 33, 491–497.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods Eznymol. 276, 307–326.  CAS Google Scholar
First citationPeiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng, T. K. & Yuen, K. Y. (2003). Lancet, 361, 1319–1325.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPereira, H. G. (1989). Andrewes' Viruses of Vertebrates, edited by J. S. Porterfield, pp. 42–57. London: Baillière Tindall.  Google Scholar
First citationSiddell, S. G., Ziebuhr, J. & Snijder, E. J. (2005). Topley and Wilson's Microbiology and Microbia Infections: Virology, 10th ed., edited by B. W. J. Mahy & V. ter Meulen, pp. 823–856. London: Hodder Arnold.  Google Scholar
First citationSpaan, W. J. M. & Cavanagh, D. (2004). Virus Taxonomy. VIIIth Report of the ICTV, pp. 945–962. London: Elsevier/Academic Press.  Google Scholar
First citationYang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M. & Rao, Z. (2005). PLoS Biol. 3, e324.  CrossRef PubMed Google Scholar
First citationYang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R. & Rao, Z. (2003). Proc. Natl Acad. Sci. USA, 100, 13190–13195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZiebuhr, J. (2005). Curr. Top. Microbiol. Immunol. 287, 57–94.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZiebuhr, J., Snijder, E. J. & Gorbalenya, A. E. (2000). J. Gen. Virol. 81, 853–­879.  Web of Science PubMed CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL BIOLOGY
COMMUNICATIONS
ISSN: 2053-230X
Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds