

Received 27 September 2016 Accepted 8 November 2016

Edited by W. N. Hunter, University of Dundee, Scotland

Keywords: cellulases; *Klebsiella pneumoniae*; carboxymethyl cellulase; cellulose biosynthesis; crystal structure; Cel10.

PDB reference: Cel10, 5gy3

Supporting information: this article has supporting information at journals.iucr.org/f

The crystal structure of the endoglucanase Cel10, a family 8 glycosyl hydrolase from *Klebsiella pneumonia*e

Ayman Attigani,^a Lifang Sun,^b Qing Wang,^b Yadan Liu,^b Dingping Bai,^a Shengping Li^b* and Xiaohong Huang^a*

^aKey Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare, College of Animal Science, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Fuzhou 350002, People's Republic of China, and ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, People's Republic of China. *Correspondence e-mail: spingli1981@fjirsm.ac.cn, xhhuang138@hotmail.com

Cellulases are produced by microorganisms that grow on cellulose biomass. Here, a cellulase, Cel10, was identified in a strain of Klebsiella pneumoniae isolated from Chinese bamboo rat gut. Analysis of substrate specificity showed that Cel10 is able to hydrolyze amorphous carboxymethyl cellulose (CMC) and crystalline forms of cellulose (Avicel and xylan) but is unable to hydrolyze *p*-nitrophenol β -D-glucopyranoside (*p*-NPG), proving that Cel10 is an endoglucanase. A phylogenetic tree analysis indicates that Cel10 belongs to the glycoside hydrolase 8 (GH8) subfamily. In order to further understanding of its substrate specificity, the structure of Cel10 was solved by molecular replacement and refined to 1.76 Å resolution. The overall fold is distinct from those of most other enzymes belonging to the GH8 subfamily. Although it forms the typical $(\alpha/\alpha)_6$ -barrel motif fold, like Acetobacterxylinum CMCax, one helix is missing. Structural comparisons with Clostridium thermocellum CelA (CtCelA), the best characterized GH8 endoglucanase, revealed that sugar-recognition subsite -3 is completely missing in Cel10. The absence of this subsite correlates to a more open substrate-binding cleft on the cellooligosaccharide reducing-end side.

1. Introduction

Cellulose is the most abundant organic compound on earth and is the major polysaccharide component of plant cell walls. Cellulose fibres comprise crystalline and amorphous arrays of polysaccharide chains. Effective hydrolysis of cellulose requires three types of cellulases, namely endo-(1,4)- β -Dglucanase (EC 3.2.1.4; carboxymethylcellulase or CMCase), exo-(1,4)- β -D-glucanase (EC 3.2.1.91; cellobiohydrolase, avicelase, microcrystalline cellulase or β -exoglucanase) and β -glucosidase (EC 3.2.1.21), which must act synergistically to achieve the degradation of crystalline cellulose (Tomme et al., 1995). Although a large number of microorganisms are capable of degrading cellulose, only a few of them produce significant quantities of cell-free bioactive compounds capable of completely hydrolyzing crystalline cellulose in vitro (Bai et al., 2012). Numerous studies have reported the degradation of cellulosic materials, but only a few have examined which microorganisms might offer economical benefits (Yamada et al., 2011). Microbes play a vital role in the degradation of cellulose and some animals have achieved effective cellulose utilization by developing symbiotic relationships with microbes that are present in their gut as the primary cellulolytic agent (Watanabe & Tokuda, 2001).

Macromolecule-production info	ormation.
Source organism	K. pneumoniae
DNA source	cDNA from K. pneumoniae
Forward primer	CGGGATCCGATACGGCCTGGGAGCGCTA
Reverse primer	CCGCTCGAGCTAACGCTGATCCTGTTTCG
Cloning vector	pET-32a
Expression vector	pET-32a
Expression host	E. coli BL21 (DE3)
Complete amino-acid sequence	GTSSMADIGSDTAWERYKARFMMPDGRIIDTANG-
of the construct product	NVSHTEGQGFAMLLAVANNDRPAFDKLWQWTD-
	STLRDKSNGLFYWRYNPVAPDPIADKNNASDG-
	DTLIAWALLRAQKQWQDKRYAIASDAITASLL-
	KYTVVTFAGRQVMLPGVKGFNLNDHLNLNPSY-
	FIFPAWRAFAERTHLTAWRTLQTDGQALLGQM-
	GWGKSHLPSDWVALRADGKMLPAKEWPPRMSF-
	DAIRIPLYLSWADPQSALLAPWKAWMQSYPRL-
	QTPAWINVSTNEVAPWYMAGGLLAVRDLTLGE-
	PQEAPQIDDKDDYYSASLKQLVWLAKQDQR

 Table 1

 Macromolecule-production information.

The Chinese bamboo rat (*Rhizomyssinensis*) is well known for its dietary oddities: it is a bamboo specialist within the mammalian order Herbivores that possesses a gastrointestinal tract typical of carnivores. It consumes the roots and shoots of bamboo and other highly fibrous plants each day (Musser & Carleton, 2005; Anderson & Jones, 1984; Clarke, 2010). By sequence analysis of the conserved 16S rRNA, a molecular marker for the identification of bacterial species (Srinivasan et al., 2015), a bacterium isolated from the gastrointestinal tract of the Chinese bamboo rat was identified as a Klebsiella strain and named Klebsiella 10. A cellulase gene was cloned from the Klebsiella 10 chromosomal DNA using a pair of special primers and was thus named Cel10. The gene encodes a protein of 310 amino-acid residues, including a signal-peptide segment (residues 1-23), and has a mature molecular weight of 35 kDa. The protein is predicted to be a member of glycoside hydrolase family 8 (GH8) according to the CAZy database (http://www.cazy.org). Based on the facts that genes encoding cellulases are essential in bacteria and that the proteins are putative targets for enzyme development, there have been numerous studies of the three-dimensional structures of cellulases (Dominguez et al., 1995; Ducros et al., 1995; Clarke, 2010). Previous analyses have provided a basis for modelling homologous GH8 cellulases and the architecture of the activesite cleft, which presents at least five glucosyl binding subsites and explains why GH8 cellulases cleave oligosaccharide polymers that are at least five D-glucosyl subunits in length. Furthermore, the structure of CtCelA (CelA) allows comparison with $(\alpha/\alpha)_6$ -barrel glycosidases that are not related in sequence, suggesting a possible, albeit distant, evolutionary relationship between different families of glycosyl hydrolases (Alzari et al., 1996).

Cellulases, by virtue of their ability to degrade cellulose substantially, are key industrial enzymes of the 21st century. There is a considerable drive to uncover new enzymes, to determine their three-dimensional structures and assess them for cellulose deconstruction. Thus, recombinant Cel10 was studied in order to understand its structure–function relationship with respect to cellulolytic activity. Here, we present the cloning, expression, purification, crystallization and X-ray diffraction analysis of a cellulase from the cellulolytic bacterium *K. pneumoniae* found in the gut of the Chinese bamboo rat.

2. Materials and methods

2.1. Cloning and expression of Cel10

The DNA encoding amino acids 24-333 of Cel10 was amplified by polymerase chain reaction (PCR) using K. pneumoniae genomic DNA as a template and the gene-specific forward primer CLE-BamH1 (5'-CGGGAT-CCGATACGGCCTGGGAGCGCTA-3') and reverse primer CLE-XhoI (5'-CCGCTCGAGCTAACGCTGATCCTGTT-TCG-3') (Table 1). The PCR product was cloned into the expression vector pET-32a [modified by inserting a Tobacco etch virus (TEV) protease cleavage site inside the NcoI site] with BamHI and XhoI. Escherichia coli strain DH5a (Novagen) was used for plasmid amplification, which was confirmed by DNA sequencing. The recombinant plasmid was then transformed into E. coli strain BL21 (DE3) (Novagen) for protein expression. Cells were grown in Luria-Bertani (LB) medium plus 100 mg l^{-1} ampicillin with shaking at 310 K for 6 h, and expression of Cel10 was induced by adding isopropyl β -D-1-thiogalactopyranoside to a final concentration of 0.3 mM when the cells reached the mid-log phase of growth (optical density at 600 nm of 0.6-0.8); the cells were then grown overnight with shaking at 289 K.

2.2. Protein production and purification

Cel10 protein was purified using a four-step protocol: an Ni²⁺-affinity chromatography step, cleavage of the N-terminal 6His-Trx tag with TEV protease, removal of the cleaved tag by a second Ni²⁺-affinity chromatography step and finally sizeexclusion chromatography (SEC), which was performed on an ÄKTApurifier (GE Healthcare) using SEC programmes according to previously described procedures (Bryan et al., 2011). The cells containing expressed Cel10 were harvested by centrifugation at 7000g for 5 min at 277 K. The cell pellets were thawed on ice, resuspended in lysis buffer consisting of 50 mM MES pH 6.0, 500 mM NaCl, 5% glycerol supplemented with 5% Tween 20 and 0.1 µm PMSF, and disrupted by ultrasonication on ice for 30 min. Cell debris was removed by centrifugation at 20 000g for 30 min at 277 K using a Beckman Avanti J-301 centrifuge. The resulting supernatant was loaded onto nickel Sepharose affinity resin. After the flowthrough had been discarded, the column was washed with lysis buffer containing a linear gradient from 20 to 100 mM imidazole, and target proteins were eluted from the column using lysis buffer plus 500 mM imidazole. 6His-TEV protease was added to the eluted protein at a ratio of 1:10(w:w) to cleave the 6His-Trx tag. The 6His-TEV protease and 6His-Trx tag were then removed by a second Ni²⁺-affinity chromatography step. The resulting protein was further purified by SEC (Superdex 200, GE Healthcare) using a buffer consisting of 50 mM MES, 100 mM NaCl pH 6.0, 5% glycerol. The SEC chromatogram showed one peak at 87.69 ml consistent with the molecular weight of Cel10 (35 kDa). After SDS-PAGE analysis (Fig. 1),

research communications

Table 2 Crystallization

erystamzation:	
Method	Sitting drop
Plate type	Cryschem plate
Temperature (K)	293
Protein concentration (mg ml $^{-1}$)	28
Buffer composition of protein solution	20 mM Tris-HCl pH 6.0, 150 mM NaCl, 5% glycerol
Composition of reservoir solution	0.1 <i>M</i> glycine–NaOH pH 9.0, 30% PEG 8K, 0.5 <i>M</i> KCl
Volume and ratio of drop	2 μl (1:1 ratio)
Volume of reservoir (µl)	400

the purified Cel10 was concentrated for crystallization to 28 mg ml^{-1} using an ultrafiltration system (Millipore, 30 kDa cutoff). The protein concentration was determined by the Bradford method using bovine serum albumin (BSA) as the standard (Bradford, 1976).

2.3. Substrate specificity

The Cel10 activity was determined according to a previously described method (Saratale *et al.*, 2010, 2012). Endoglucanase activity was determined using a reaction mixture consisting of 1 ml enzyme solution (4 mg ml⁻¹) with 2 ml 1%(w/v) CMC in McIlvaine's buffer (0.1 *M* citric acid/0.2 *M* phosphate buffer pH 5) and incubated at 323 K for 30 min followed by the addition of 1.5 ml dinitrosalicylic acid reagent. Cellulolytic activities towards Avicel for avicelase activity and towards xylan for xylanase activity were measured by replacing the

Figure 1

SDS-PAGE analysis of purified recombinant Cel10. Top: size-exclusion chromatography (SEC) chromatogram of Cel10 from the final purification column showing a notable peak. Bottom: SDS-PAGE gel of the peak fraction. The protein fractions were resolved on a gradient SDS-PAGE gel (15%) and stained using Coomassie Blue for visualization. Lane *M* contains molecular-weight markers (labelled in kDa).

CMC from the earlier assay with 1%(w/v) of the respective substrate in the same buffer. Activities were expressed as micromole of reducing sugar (glucose or xylose) equivalent released per minute. β -Glucosidase activity was determined by measuring the hydrolysis of *p*-nitrophenyl β -D-glucopyranoside (*p*-NPG) as described previously (Lymar *et al.*, 1995). The enzyme (1 ml) was incubated with 5 mM *p*-NPG in 1 ml 50 mM citrate buffer pH 4.5 at 323 K for 60 min, the reaction was stopped by adding 1 ml 1 M sodium carbonate and the colour formed was measured at 410 nm. One unit of β -glucosidase activity was defined as the amount of enzyme that liberates 1 µmol *p*-nitrophenol per minute under the assay conditions. Specific activity is defined as the number of units per milligram of protein.

2.4. Crystallization

Initial crystallization screening was performed at 293 K by the sitting-drop vapour-diffusion method using commercial crystallization screening kits. Each crystallization drop was prepared by mixing 0.3 μ l reservoir solution and 0.3 μ l protein solution, and the mixture was equilibrated against 0.1 ml reservoir solution. After four weeks, crystals appeared in a solution consisting of PEG 8K, 0.5 *M* potassium chloride, 0.1 *M* HEPES pH 7.5. Conditions were further optimized by varying the pH value and precipitant concentrations to obtain diffraction-quality crystals (Table 2). For data collection, the crystals were grown for four weeks at 293 K, with the optimal condition consisting of 0.1 *M* glycine–NaOH pH 9.0, 30% PEG 8K, 0.5 *M* potassium chloride (Fig. 2).

2.5. Data collection, structure determination and refinement

Prior to data collection, a single crystal was transferred into mother liquor containing $30\%(\nu/\nu)$ glycerol as a cryoprotectant and then mounted in a 0.1 mm nylon loop (Hampton Research) and flash-cooled in liquid nitrogen. X-ray diffraction data were collected to 1.76 Å resolution on beamline BL17U1 at Shanghai Synchrotron Radiation Facility (SSRF;

Crystals were obtained in 0.1 M glycine–NaOH pH 9.0, 30% PEG 8K, 0.5 M potassium chloride by the sitting-drop vapour-diffusion method.

research communications

Table 3Data collection and processing.

Values in parentheses are for the outer shell.

Diffraction source	BL17U1, SSRF
Wavelength (Å)	0.9792
Temperature (K)	100
Detector	ADSC Q315R
Crystal-to-detector distance (mm)	250
Rotation range per image (°)	1
Total rotation range (°)	180
Exposure time per image (s)	0.8
Space group	$P2_{1}2_{1}2_{1}$
a, b, c (Å)	53.570, 73.256, 79.200
α, β, γ (°)	90, 90, 90
Mosaicity (°)	0.3
Resolution range (Å)	50-1.7639
Total No. of reflections	130639
No. of unique reflections	30441 (1508)
Completeness (%)	99.23
Multiplicity	4.3 (4.4)
Wilson <i>B</i> factor ($Å^2$)	14.48
$\langle I/\sigma(I)\rangle$	32.98 (10.02)
CC _{1/2}	0.954
R _{merge} †	0.08 (0.236)
R _{r.i.m} ‡	0.043 (0.108)

† $R_{\text{merge}} = \sum_{hkl} \sum_i |I_i(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_i I_i(hkl)$, where $I_i(hkl)$ are the intensities of the individual replicates of a given reflection hkl and $\langle I(hkl) \rangle$ is the average intensity over all replicates of that reflection. ‡ Estimated $R_{\text{r.i.m}} = R_{\text{merge}} [N/(N-1)]^{1/2}$, where N is the data multiplicity.

Table 4

Structure determination and refinement.

Resolution range (Å)	44.361-1.763
Completeness (%)	99.55
No. of reflections, working set	31307
No. of reflections, test set	1517
Final R _{work}	0.1615
Final R _{free}	0.1988
No. of non-H atoms	
Total	2495
Water	480
Total	2975
R.m.s. deviations	
Bonds (Å)	0.006
Angles (°)	0.840
Average <i>B</i> factor $(Å^2)$	17.0
Ramachandran plot	
Favoured regions (%)	97.08
Additionally allowed (%)	2.92
Outliers (%)	0
PDB code	5gy3

Shanghai, People's Republic of China) using a charge-coupled device (CCD) detector. The data were processed and scaled using the *HKL*-2000 and *CCP*4 suites (Winn *et al.*, 2011). Data-collection and processing statistics are shown in Table 3. The crystal belonged to space group $P2_12_12_1$, with unit-cell parameters a = 53.57, b = 73.26, c = 79.20 Å, and contained one molecule in the asymmetric unit. Calculation of the Matthews coefficient using *CCP*4 indicated a $V_{\rm M}$ of 2.22 Å³ Da⁻¹, corresponding to a solvent content of 44.61%. The crystal structure of Cel10 was determined by molecular replacement using the CMCax structure (PDB entry 1wzz, 36% identity; Yasutake *et al.*, 2006) as the search model in *Phaser* (McCoy *et al.*, 2007) and was refined with *PHENIX* (Adams *et al.*, 2010). All molecular figures were prepared using *PyMOL*

Tá	able	e 5	

Activity of endoglucanase Cel10 towards various substrates.

Substrate	Activity (U mg ⁻¹		
CMC	31.8		
Avicel	18.3		
Xylan	8.7		
<i>p</i> -NPG	None		

(Schrödinger). The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession code 5gy3. Structure-refinement statistics are shown in Table 4.

3. Results and discussion

3.1. Substrate-specificity analysis

The Cel10 enzyme was analyzed using various substrates to determine its catalytic specificity, as shown in Table 5. The results showed that Cel10 hydrolyzes amorphous CMC and crystalline forms of cellulose (Avicel and xylan) but does not hydrolyze *p*-NPG. However, Cel10 cellulase activity was more efficient on CMC than on Avicel and xylan, which indicates that it is an endoglucanese. Furthermore, Cel10 was

Figure 3

Phylogenetic tree showing the relationship between Cel10 and other hydrolase families. In the phylogenetic tree analysis, Cel10 was in the same cluster as members of different families and showed over 97% homology to Cel8A in GH8 (GenBank accession No. 440494657). These results demonstrate that Cel10 is a member of GH8. The phylogenetic tree was drawn using MEGA v.4.0. The amino-acid sequence of Cel10 was aligned with those from other different cellulase hydrolase families to generate a neighbour-joining phylogenetic tree. Bootstrap percentage values are indicated at branch points. Accession numbers are listed in the centre.

considered to be a member of the GH8 family according to the CAZy database (http://www.cazy.org; Cantarel et al., 2009) and in a phylogenetic analysis with MEGA4.0 (Tamura et al., 2007) from amino-acid sequence comparison of Cel10 with other glycosyl hydrolase family members (Fig. 3). CMC (an amorphous cellulose derivative) is commonly used as a substrate for the study of endoglucanases (Lynd et al., 2002). On the other hand, exoglucanases can degrade Avicel efficiently (Lynd et al., 2002). In our case, Cel10 displayed a stronger catalytic preference for CMC than for Avicel. In a comparison of activity against CMC with other endoglucanases (Schwarz et al., 1986; Mahadevan et al., 2008), CtCelA showed the highest enzyme specific activity. Interestingly, the differences between these recombinant endoglucanases illustrate that the enzymatic activity was mainly affected by the original strain specificity (Posta et al., 2004), the classification of the GH family (Janeček et al., 2011) and synergism (Lynd et al., 2002).

Our data suggest that the degree of hydrolysis of an insoluble substrate might be related to intermolecular synergy between the carbohydrate-binding module (CBM) and the catalytic domain of cellulases, which occurs because binding of the CBM to the cellulose substrate brings the catalytic domain to the substrate surface and the CBM loosens the crystalline structure by partially separating the cellulose strands from the surface of cellulose microfibrils, making the substrate easier to hydrolyze (Lynd *et al.*, 2002). Therefore, CBM is essential for the hydrolysis of crystalline cellulose (Ogawa *et al.*, 2007). It has been proposed that these independent 'domains' are critical for targeting the enzymes to the substrate and for enhancing their hydrolytic activity. This result suggests that the absence of a CBD in Cel10 makes it less effective against crystalline cellulose.

3.2. Three-dimensional structure of Cel10

The structure of Cel10 was solved by molecular replacement using the three-dimensional structure of the Acetobacterxylinum endoglucanase CMCax (PDB entry 1wzz) as the search model. The final structure was refined at 1.76 Å resolution with an $R_{\rm work}$ of 16.15% and an $R_{\rm free}$ of 19.88% (Table 4). There is one molecule in the asymmetric unit and the final structure contains residues 24-333. The structure of Cel10 is mainly composed of 11 helices forming an overall socalled 'barrel fold' ($\alpha 1 - \alpha 12$; Fig. 4a), which differs from most of the other enzymes belonging to the GH8 subfamily, which display an atypical $(\alpha/\alpha)_6$ -barrel motif fold. It is similar to the CMCax structure but with one helix (α 11 in CtCelA, labelled in red) missing in the Ce110 structure; instead a flexible loop is formed (labelled green) (Fig. 4b). Notably, compared with the flexible loops in the CtCelA structure the connections between helices $\alpha 5$ and $\alpha 6$ and between $\alpha 7$ and $\alpha 8$ form extended β -strands β 3, β 4 and β 5, and β 6 and β 7, respectively, with two antiparallel β -sheets being formed by β 3, β 4 and β 5 and by $\beta 6$ and $\beta 7$ (Fig. 5). However, the functional role of this stable protrusion, which differs from that in the corresponding part of CtCelA, awaits further investigation. As reported, CtCelA is one of the best-characterized endo- β -1,4-glucanases, with the structure having been determined in complex

Figure 4

Structure of Cel10 (a) and structure superimposition of Cel10 (PDP entry 5gy3; blue) with CtCelA (PDB entry 1kwf; yellow) (b). Helix α 11 in CtCelA (labelled in red) is missing and forms a flexible loop (labelled in green) in Cel10.

with the cellobiose substrate (Alzari *et al.*, 1996). According to the phylogenetic analysis, Cel10 should exhibit essentially similar enzymatic characteristics to CtCelA (Fig. 3). However,

structural comparisons of the active sites of Cel10 and CtCelA reveal notable differences. Two of the five aromatic residues involved in stacking interactions that are critical for substrate

		α1	β1	α2	α3	L I	32	
Col 10	24							100
CMCaX	24							112
	20 60					KS-HENG-NGI MHW		150
Cel10	DSSP							100
CMCaX	DSSP	НИНИНИНИНИ		нннннннн	І ННННННННН	HHH1111111111	FELLILI	
CtCelA	DSSP	HHHHHHHHHHEELLLEELL	LHHLLLEEHHH	HHHHHHHHHL			ELLLLLLLLLLL	
		α4	α5	β3	β4	β5	α6	
0.140	100							100
Cellu CMC-V	109					NLNDHLNLNPSTFIF		193
	113							197
						33V INP3 <mark>1</mark> FAF		233
CMCaX								
OLOGIA	0001				has had been been been been been been been bee			
		-	0.6					
		α7	β6	β7 [38 α8	α9	β9	
Cel10	194	α7 RTLQTDGQALLGQXGWGKSF		β7 GKMLPAKEWPP	38 α8 RMSFDAIRIPLYL	α9	β9 ► AWMQSYPRLQTPAWIN	278
Cel10 CMCaX	194 198	α7 RTLQTDGQALLGQXGWGKSH RQVXEDG I RLVSAGRFGQWF	β6 HLPSDWVALRAD	β7 GKMLPAKEWPP GALSIASGWPP	38 α8 RMSFDAIRIPLYL RFSYDAIRVPLYF	α9 SWADPQSALLAPWKA YWAHXLAPVLADFTF	β9 WMQSYPRLQTPAWIN RFWNNFGANALPGWVD	278 284
CellO CMCaX CtCelA	194 198 234	α7 RTLQTDGQALLGQXGWGKSH RQVXEDG I RLVSAGRFGQWF NQVADKCYQ I VEEVKNNGTO	β6 HLPSDWVALRAD RLPPDWLAVNRT GLVPDWCTA	β7 GKMLPAKEWPPI GALSIASGWPPI -SGTPASGQSYI	38 α8 RMSFDAIRIPLYL RFSYDAIRVPLYF DYKYDATRYGWRT	α9 SWADPQSALLAPWKA YWAHXLAPVLADFTF AVDYSAKANCDMLTH	β9 ★ WMQSYPRLQTPAWIN RFWNNFGANALPGWVD KFFARDGAKGIVDGYT	278 284 322
CellO CMCaX CtCelA CellO	194 198 234 DSSP	α7 RTLQTDGQALLGQXGWGKSH RQVXEDG I RLVSAGRFGQWF NQVADKCYQ I VEEVKNNGTC HHHHHHHHHHHHLLLLLL	β6 HLPSDWVALRAD RLPPDWLAVNRT GLVPDWCTA	β7 GKMLPAKEWPPI GALSIASGWPPI -SGTPASGQSYI LLEEELLLLLL	38 α8 RMSFDAIRIPLYL RFSYDAIRVPLYF DYKYDATRYGWRT EELLLLHHHHHH	α9 SWADPQSALLAPWKA YWAHXLAPVLADFTF AVDYSAKANCDMLTH HHHLLLLHHHHHHH	β9 AWMQSYPRLQTPAWIN RFWNNFGANALPGWVD KFFARDGAKGIVDGYT HHHLLLHHHLLLLEE	278 284 322
CellO CMCaX CtCelA CellO CMCaX	194 198 234 DSSP DSSP	α7 RTLQTDGQALLGQXGWGKSH RQVXEDG I RLVSAGRFGQWF NQVADKCYQ I VEEVKNNGTC HHHHHHHHHHHHHLLLLLLL	B6 HLPSDWVALRADI RLPPDWLAVNRTI GLVPDWCTA LLLLLEEEELLI LLLLLEEEELLI	β7 GKMLPAKEWPPI GALSIASGWPPI -SGTPASGQSYI LLEEELLLLLL LLEEELLLLLL	38 α8 RMSFDAIRIPLYL RFSYDAIRVPLYF DYKYDATRYGWRT. EELLLLHHHHHH	α9 SWADPQSALLAPWKA YWAHXLAPVLADFTF AVDYSAKANCDMLTH HHHLLLLHHHHHHHH HHLLLLLHHHHHHHH	β9 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	278 284 322
CellO CMCaX CtCelA CellO CMCaX CtCelA	194 198 234 DSSP DSSP DSSP	α7 RTLQTDGQALLGQXGWGKSH RQVXEDG I RLVSAGRFGQWF NQVADKCYQ I VEEVKNNGTC HHHHHHHHHHHHHLLLLLL HHHHHHHHHHHHHLLLLLL	B6 HLPSDWVALRAD RLPPDWLAVNRT GLVPDWCTA LLLLLEEEELL LLLLLEEEELL	β7 GKMLPAKEWPPI GALSIASGWPPI –SGTPASGQSYI LLEEELLLLLL LLEEELLLLLL	38 α8 RMSFDAIRIPLYL: RFSYDAIRVPLYF DYKYDATRYGWRT. EELLLLHHHHHHH EELLLLHHHHHHH	α9 SWADPQSALLAPWKA YWAHXLAPVLADFTF AVDYSAKANCDMLTF HHHLLLLHHHHHHH HHLLLLHHHHHHHH	β9 WMQSYPRLQTPAWIN RFWNNFGANALPGWVD KFFARDGAKGIVDGYT HHHHLLLHHHLLLLEE HHHHHLLLLEE HHHHLLLHHHLLLLE	278 284 322
CellO CMCaX CtCelA CellO CMCaX CtCelA	194 198 234 DSSP DSSP DSSP	α7 RTLQTDGQALLGQXGWGKSF RQVXEDG I RLVSAGRFGQWF NQVADKCYQ I VEEVKNNGTC HHHHHHHHHHHHHHLLLLLL HHHHHHHHHHHHHHLLLLLL HHHHHHHHHHHHHHLLLLLL A10	β6 HLPSDWVALRADI LPPDWLAVNRTI SLVPDWCTA	₿7 GKMLPAKEWPPI GALS I ASGWPPI −SGTPASGQSYI LLEEELLLLLL LLEEELLLLLL	38 α8 RMSFDAIRIPLYL RFSYDAIRVPLYF DYKYDATRYGWRT. EELLLLHHHHHHH EELLLLHHHHHHHH LLLLHHHHHHHH LLLLHHHHHHHH LLLLHHHHHHHH LLLLHHHHHHHH LLLLHHHHHHHH	α9 SWADPQSALLAPWK/ YWAHXLAPVLADFTF AVDYSAKANCDMLTF HHHLLLLHHHHHHH HHLLLLHHHHHHH HHHHHHHHH	β9 WMQSYPRLQTPAWIN RFWNNFGANALPGWVD (FFARDGAKGIVDGYT HHHHLLHHHLLLEE HHHHHLLLHHHLLLEE HHHHLLLHHHLLLLE	278 284 322
Cel10 CMCaX CtCelA Cel10 CMCaX CtCelA CtCel10	194 198 234 DSSP DSSP DSSP 279	α7 RTLQTDGQALLGQXGWGKSH RQVXEDG I RLVSAGRFGQWF NQVADKCYQ I VEEVKNNGTC HHHHHHHHHHHHHHLLLLLL HHHHHHHHHHHHHHLLLLLL α10 VSTNEVAPWYMAGGLLAVRE	β6 HLPSDWVALRAD LPPDWLAVNRT SLVPDWCTA	β7 [GKMLPAKEWPPI GALSIASGWPPI –SGTPASGQSYI LLEEELLLLLL LLEEELLLLLL	38 α8 RMSFDAIRIPLYL RFSYDAIRVPLYF DYKYDATRYGWRT. EELLLLHHHHHHH EELLLLHHHHHHHH LLLLHHHHHHHH LLLLHHHHHHHHH LLLLHHHHHHHH LLLLHHHHHHHHH LLLLHHHHHHHHH LLLLHHHHHHHH LLLHHHHHHHHH LLLLHHHHHHHH LLLLHHHHHHHH LLLLHHHHHHHH LLLLHHHHHHHHH LLLLHHHHHHHHH LLLHHHHHHHHH LLLHHHHHHHHH LLLHHHHHHHHHH LLLLHHHHHHHHHHH LLLHHHHHHHHHHH LLLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	α9 SWADPQSALLAPWK/ YWAHXLAPVLADFTF AVDYSAKANCDMLTF HHHLLLLHHHHHHH HHLLLLHHHHHHHH HHLLLLHHHHHH	β9 WMQSYPRLQTPAWIN RFWNNFGANALPGWVD (FFARDGAKGIVDGYT HHHHLLHHHLLLEE HHHHHLLLHHHLLLEE HHHHLLLHHHLLLLE	278 284 322
Cel10 CMCaX CtCelA Cel10 CMCaX CtCelA Cel10 CMCaX	194 198 234 DSSP DSSP DSSP 279 285	α7 RTLQTDGQALLGQXGWGKSH RQVXEDGIRLVSAGRFGQWF NQVADKCYQIVEEVKNNGTC HHHHHHHHHHHHHHLLLLLL HHHHHHHHHHHHHLLLLLL	β6 HLPSDWVALRAD LPPDWLAVNRT 3LVPDWCTA LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL	β7 GKMLPAKEWPPI GALSIASGWPPI -SGTPASGQSYI LEEELLLLLL LLEEELLLLLL IDDKDDYYSASI LDHAPDYYSASI	38 α8 RMSFDAIRIPLYL RSYDAIRVPLYF SYKYDATRYGWRT. EELLLLHHHHHHH EELLLLHHHHHHHH LLLHHHHHHHH LLLHHHHHHHH CALLHHHHHHHH CALLHHHHHHHH CALLHHHHHHHH CALLHHHHHHHH CALLHHHHHHHH CALLHHHHHHHH CALLHHHHHHHH CALLHHHHHHHH CALLHHHHHHHH CALLYNIARAEET	α9 SWADPQSALLAPWK/ YWAHXLAPVLADFTF AVDYSAKANCOMLTF HHHLLLHHHHHHH HHLLLLHHHHHHH HHLLLLHHHHHH	β9 WMQSYPRLQTPAWIN RFWNNFGANALPGWVD (FFARDGAKGIVDGYT HHHHLLHHHLLLEE HHHHHLLLHHHLLLEE HHHHLLLHHHLLLLE	278 284 322
Cel10 CMCaX CtCelA Cel10 CMCaX CtCelA Cel10 CMCaX CtCelA	194 198 234 DSSP DSSP DSSP 279 285 323	α7 RTLQTDGQALLGQXGWGKSH RQVXEDGIRLVSAGRFGQWF NQVADKCYQIVEEVKNNGTC HHHHHHHHHHHHHHLLLLLL HHHHHHHHHHHHHLLLLLL A10 VSTNEVAPWYMAGGLLAVRC LTTGARSPYNAPPGYLAVAB IQ-GSKISNNHNASFIGPVA	β6 HLPSDWVALRAD LPPDWLAVNRT 3LVPDWCTA LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL AASMELYRVAVI	β7 GKMLPAKEWPPI GALSIASGWPPI -SGTPASGQSYI LEEELLLLLL IDDKDDYYSASI LDHAPDYYSASI KDSEVGYYGNSI	38 α8 RMSFDAIRIPLYL RFSYDAIRVPLYF SYKYDATRYGWRT. EELLLLHHHHHHH EELLLLHHHHHHHH LLLHHHHHHHH α12 KQLYWLAKQDQR TLLYYIARAEET RLTLLYINFPN	α9 SWADPQSALLAPWK/ YWAHXLAPVLADFTF AVDYSAKANCOMLTF HHILLLHHHHHHH HILLLHHHHHHHH HILLLHHHHHHHH	β9 WMQSYPRLQTPAWIN RFWNNFGANALPGWVD KFFARDGAKGIVDGYT HHHHLLHHHLLLEE HHHHHLLLHHHLLLEE HHHHLLLHHHLLLLE	278 284 322
Cel10 CMCaX CtCelA Cel10 CMCaX CtCelA Cel10 CMCaX CtCelA CcEl10	194 198 234 DSSP DSSP DSSP 279 285 323 DSSP	α7 RTLQTDGQALLGQXGWGKSF RQVXEDGIRLVSAGRFGQWF NQVADKCYQIVEEVKNNGTC HHHHHHHHHHHHHHLLLLLL HHHHHHHHHHHHHLLLLLL CA10 VSTNEVAPWYMAGGLLAVRC LTTGARSPYNAPPGYLAVAE IQ-GSKISNNHNASFIGPV/ LLLLLLLLHHHHHHH	β6 HLPSDWVALRAD RLPPDWLAVNRT SLVPDWCTA LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLEEEELL LLLLLEEEELL AASMELYRVAVI	β7 GKMLPAKEWPPI GALSIASGWPPI -SGTPASGQSYI LEEELLLLLL IDDKDDYYSASI LDHAPDYYSASI KDSEYGYYGNSI LLLLLHHHHH	38 α8 RMSFDAIRIPLYL RFSYDAIRVPLYF DYKYDATRYGWRT. EELLLLHHHHHHH EELLLLHHHHHHHH LLLHHHHHHHH LLLHHHHHHHH LLLYIARAEET RLTLLYIARAEET RLTLLYIARAEET	α9 SWADPQSALLAPWK/ YWAHXLAPVLADFTF AVDYSAKANCOMLTF HHHLLLLHHHHHHH HHLLLLHHHHHHH HHHHHHHHH	β9 WMQSYPRLQTPAWIN RFWNNFGANALPGWVD KFFARDGAKGIVDGYT HHHHLLHHHLLLEE HHHHHLLHHHLLLEE HHHHLLLHHHLLLEE HHHHLLLHHHLLLLE	278 284 322
Cel10 CMCaX CtCelA Cel10 CMCaX CtCelA Cel10 CMCaX CtCelA Cel10 CMCaX	194 198 234 DSSP DSSP DSSP 279 285 323 DSSP DSSP	α7 RTLQTDGQALLGQXGWGKSF RQVXEDGIRLVSAGRFGQWF NQVADKCYQIVEEVKNNGTC HHHHHHHHHHHHHHLLLLLL HHHHHHHHHHHHHLLLLLL CA10 VSTNEVAPWYMAGGLLAVRC LTTGARSPYNAPPGYLAVAE IQ-GSKISNNHNASFIGPV/ LLLLLLLLHHHHHHHH	β6 HLPSDWVALRAD RLPPDWLAVNRT SLVPDWCTA LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLLEEEELL LLLLEEEELL AASMELYRVAVI	β7 GKMLPAKEWPPI GALSIASGWPPI -SGTPASGQSYI LEEELLLLL IDDKDDYYSASI LDHAPDYYSASI KDSEYGYYGNSI LLLLLHHHHH	38 α8 RMSFDAIRIPLYL RFSYDAIRVPLYF DYKYDATRYGWRT. EELLLLHHHHHHH EELLLLHHHHHHH CLLHHHHHHH CLLHHHHHHH CLLYIARAEET RLTLLYIARAEET RHHHHHHHHLL	α9 SWADPQSALLAPWK/ YWAHXLAPVLADFTF AVDYSAKANCOMLTF HHHLLLLHHHHHHH HHLLLLHHHHHHH HHHHHHHHH	β9 WMQSYPRLQTPAWIN RFWNNFGANALPGWVD KFFARDGAKGIVDGYT HHHHLLHHHLLLEE HHHHHLLHHHLLLEE HHHHLLHHHLL	278 284 322

Figure 5

The structure and sequence alignment of Cel10 with CMCax (PDB entry 1wzz) and CtCelA (PDB entry 1kwf). Structure-based sequence alignment of enzymes belonging to GH8. Conserved catalytic residues are highlighted in yellow and the aromatic residues forming sugar-recognition subsites are shown in green. This figure was created using *DaliLite* (Holm & Rosenström, 2010).

Figure 6

Molecular surface-potential representation of CtCelA (left; PDB entry 1kwf) and Cel10 (right). A model of the substrate in PDB entry 1kwf is also shown in the cleft of Cel10. The electrostatic surface potentials were generated using *PyMOL* (http://www.pymol.org) in absolute mode. Areas coloured white, red and blue denote neutral, negative and positive potential, respectively.

research communications

recognition by CtCelA (Guérin *et al.*, 2002), corresponding to Trp205 and Tyr369 of CtCelA, are not conserved in Cel10. Phe163 of Cel10 seems to play an identical role to Trp205 of CtCelA, while a residue corresponding to Tyr369 of CtCelA is missing in the Cel10 structure, leading to a significant broadening of the cleft at the cellooligosaccharide reducing end (Fig. 6). These observations suggested that sugar-recognition subsite -3 is not present in Cel10, implying that Cel10 cannot immobilize cellobiose at the active-site cleft owing to the structural differences in the oligosaccharide recognition site.

Consistent with the homology model of CMCax, Populus tremula \times tremuloides KOR and the expected structure of AgCelC (Master et al., 2004), the absence of subsite -3 of Cel10 is a common feature among cellulose biosynthesisrelated endoglucanases (Yasutake et al., 2006). It has been speculated that KOR may function in cleavage of the lipidlinked glucose from the reducing end of the growing glucan chain (Peng et al., 2002), and it has been reported that AgCelC may act as a transferase rather than as an endoglucanase during cellulose synthesis (Matthysse et al., 1995). The absence of subsite -3 may account for the recognition of such lipidlinked oligosaccharides. However, the relationship between cellulose synthesis and lipid-linked oligosaccharides in A. xylinum has not yet been clarified, and the actual role of Cel10 in the cellulose-production process requires further investigation.

Acknowledgements

The authors thank the staff of beamline BL17U1 at Shanghai Synchrotron Radiation Facility (SSRF) for support during diffraction data collection. This work was supported by the Natural Science Foundation of Fujian Province (2013J01151), a Key Project of Fujian Province (2014H0056), the Fujian Provincial Department of Science and Technology (No. KH2130004) and the National Nature Science Foundation of China (31470741 and 31270790).

References

Adams, P. D. et al. (2010). Acta Cryst. D66, 213-221.

- Alzari, P. M., Souchon, H. & Dominguez, R. (1996). Structure, 4, 265–275.
- Anderson, S. & Jones, J. K. (1984). Orders and Families of Recent Mammals of the World. New York: John Wiley & Sons.
- Bai, S., Kumar, M. R., Kumar, D. M., Balashanmugam, P., Kumaran, M. & Kalaichelvan, P. (2012). Arch. Appl. Sci. Res. 4, 269–279.
- Bradford, M. M. (1976). Anal. Biochem. 72, 248-254.
- Bryan, C. M., Bhandari, J., Napuli, A. J., Leibly, D. J., Choi, R., Kelley, A., Van Voorhis, W. C., Edwards, T. E. & Stewart, L. J. (2011). *Acta Cryst.* F67, 1010–1014.

- Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V. & Henrissat, B. (2009). *Nucleic Acids Res.* **37**, D233–D238.
- Clarke, N. D. (2010). Curr. Opin. Struct. Biol. 20, 527-532.
- Dominguez, R., Souchon, H., Spinelli, S., Dauter, Z., Wilson, K. S., Chauvaux, S., Béguin, P. & Alzari, P. M. (1995). *Nature Struct. Biol.* 2, 569–576.
- Ducros, V., Czjzek, M., Belaich, A., Gaudin, C., Fierobe, H.-P., Belaich, J.-P., Davies, G. J. & Haser, R. (1995). Structure, 3, 939–949.
- Guérin, D. M., Lascombe, M. B., Costabel, M., Souchon, H., Lamzin, V., Béguin, P. & Alzari, P. M. (2002). J. Mol. Biol. 316, 1061–1069.
- Holm, L. & Rosenström, P. (2010). Nucleic Acids Res. 38, W545–W549.
- Janeček, Š., Svensson, B. & MacGregor, E. A. (2011). Enzyme Microb. Technol. 49, 429–440.
- Lymar, E. S., Li, B. & Renganathan, V. (1995). Appl. Environ. Microbiol. 61, 2976–2980.
- Lynd, L. R., Weimer, P. J., van Zyl, W. H. & Pretorius, I. S. (2002). Microbiol. Mol. Biol. Rev. 66, 506–577.
- Mahadevan, S. A., Wi, S. G., Lee, D.-S. & Bae, H. J. (2008). FEMS Microbiol. Lett. 287, 205–211.
- Master, E. R., Rudsander, U. J., Zhou, W., Henriksson, H., Divne, C., Denman, S., Wilson, D. B. & Teeri, T. T. (2004). *Biochemistry*, 43, 10080–10089.
- Matthysse, A. G., Thomas, D. L. & White, A. R. (1995). J. Bacteriol. 177, 1076–1081.
- McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–674.
- Musser, G. & Carleton, M. (2005). Mammal Species of the World: A Taxonomic and Geographic Reference, edited by D. E. Wilson & D. M. Reeder, pp. 894–1531. Baltimore: Johns Hopkins University Press.
- Ogawa, A., Suzumatsu, A., Takizawa, S., Kubota, H., Sawada, K., Hakamada, Y., Kawai, S., Kobayashi, T. & Ito, S. (2007). J. Biotechnol. **129**, 406–414.
- Peng, L., Kawagoe, Y., Hogan, P. & Delmer, D. (2002). Science, 295, 147–150.
- Posta, K., Béki, E., Wilson, D. B., Kukolya, J. & Hornok, L. (2004). J. Basic Microbiol. 44, 383–399.
- Saratale, G. D., Saratale, R. G., Lo, Y.-C. & Chang, J.-S. (2010). Biotechnol. Prog. 26, 406–416.
- Saratale, G. D., Saratale, R. G. & Oh, S. E. (2012). *Biomass Bioenergy*, **47**, 302–315.
- Srinivasan, R., Karaoz, U., Volegova, M., MacKichan, J., Kato-Maeda, M., Miller, S., Nadarajan, R., Brodie, E. L. & Lynch, S. V. (2015). *PLoS One*, **10**, e0117617.
- Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). Mol. Biol. Evol. 24, 1596–1599.
- Tomme, P., Warren, R. A. & Gilkes, N. R. (1995). Adv. Microb. Physiol. 37, 1–81.

Watanabe, H. & Tokuda, G. (2001). Cell. Mol. Life Sci. 58, 1167-1178.

- Winn, M. D. et al. (2011). Acta Cryst. D67, 235-242.
- Yamada, R., Taniguchi, N., Tanaka, T., Ogino, C., Fukuda, H. & Kondo, A. (2011). *Biotechnol. Biofuels*, 4, 8.
- Yasutake, Y., Kawano, S., Tajima, K., Yao, M., Satoh, Y., Munekata, M. & Tanaka, I. (2006). *Proteins*, 64, 1069–1077.