The Diffuse Scattering in Electron Diffraction from the High-Temperature Phase of Silver Selenide

BY R. DE RIDDER AND S. AMELINCKX
Rijksuniversitair Centrum (R.U.C.A.), Middelheimlaan 1, B-2020 Antwerpen, Belgium

(Received 29 April 1974)

The diffuse scattering as observed in electron diffraction patterns of \(\alpha \)-Ag\(_2\)Se is associated with a disordered silver-vacancy system. Because of the disorder the silver atoms are displaced from their crystallographic positions and one has to account for: (a) a characteristic diffuse scattering which can be treated in terms of the kinematical Warren–Averbach–Roberts theory (size displacement effect) [Warren, B. E., Averbach, B. L. & Roberts, B. W. (1951). J. Appl. Phys. 22, 1493; Borie, B. (1957). Acta Cryst. 10, 89; Borie, B. & Sparks C. J. Jr (1971). Acta Cryst. A27, 198]; (b) a change in the Bragg intensities from the presence of Huang scattering in the neighbourhood of the Bragg reflections [Rahlfs, P. (1936). Z. Phys. Chem. 31B, 157]. In relation to the general features and details of the diffuse intensity distribution the structural model for \(\alpha \)-Ag\(_2\)Se as proposed by Rahlfs is reviewed.

Lattice Relaxation at Antiphase Boundaries in Ordered Ni–Mo Alloys

BY G. VAN TENDELOO AND S. AMELINCKX
Rijksuniversitair Centrum (R.U.C.A.), Middelheimlaan 1, B-2020 Antwerpen, Belgium

(Received 29 April 1974)

Different types of antiphase boundaries have been studied by electron microscopy in the alloys Ni\(_3\)Mo and Ni\(_4\)Mo [Van Tendeloo, G., Delavignette, P., Gevers, R., & Amelinckx, S. (1973). Phys. Stat. Sol. (a), 18, 85; Ruedl, E., Delavignette, P. & Amelinckx, S. (1968). Phys. Stat. Sol. 28, 305]. Thermal boundaries as well as glide boundaries exhibit a residual contrast when two-beam diffraction conditions are used for a fundamental reflexion [Van Tendeloo, G. & Amelinckx, S. (1974). Phys. Stat. Sol. In the press]. From these observations it could be deduced that some relaxation of the lattice has occurred. The presence of excess molybdenum along the interface gives rise to a small supplementary displacement vector \(\xi \), the total displacement vector for the fault then being \(\mathbf{R} + \xi \). The direction and the sense of \(\xi \) have been determined from diffraction experiments; for all different situations the supplementary displacement is equivalent to a small expansion of the boundary regions. Glide antiphase boundaries having a particular orientation seem to have a larger \(\xi \) vector than the thermal boundaries, which is shown to be consistent with the structural model of the defects. For the Ni\(_3\)Mo alloy, where the thermal interfaces are not so strictly confined to crystallographic planes, the dependence of \(\xi \) on the orientation of the fault is striking.