either north or south pole. The rotation about E brings to coincidence the vector and dial axis C; the misadjusted reciprocal plane and its pole fall to loci labelled 3. (vi) The angle between the X-ray beam (A) and pole 3 (or between plane BC and plane 3) define the multiplied correction of the dial reading (γ).

Little experience is needed to see that only a small part of Fig. 1 has to be drawn to obtain the corrections sought.

References

Crystal Data

Données cristallographiques sur quatre polyphosphates mixtes du type $\text{BaM}^{II}(\text{PO}_3)_4$ pour $\text{M}^{II}=\text{Mn, Cd, Ca et Hg}$. Par MARIE-THÉRÈSE AVERBUCH-POUCHOT, Laboratoire des Rayons X, CNRS, B.P. 166, Centre de Tri, 38042 Grenoble Cedex, France

(Reçu le 29 janvier 1975, accepté le 29 janvier 1975)

Four new long-chain polyphosphates are described: $\text{BaMn(PO}_3)_4$, $\text{BaCd(PO}_3)_4$, $\text{BaCa(PO}_3)_4$ and $\text{BaHg(PO}_3)_4$.

All are monoclinic ($P2_1/n$) and belong to a new type of structure. Chemical preparations and crystal data are given.

Introduction

Les diagrammes d'équilibre $\text{Cd(PO}_3)_2$-$\text{Ba(PO}_3)_2$ et $\text{Ca(PO}_3)_2$-$\text{Ba(PO}_3)_2$ établis par Bukhalova, Tokman & Shpakova (1970) révèlent l'existence de deux composés définis: $\text{BaCd(PO}_3)_4$ et $\text{BaCa(PO}_3)_4$. Ces auteurs ne précisent pas la nature de l'anion condensé et n'ont pas effectué d'étude cristallographique sur ces deux sels. Dans cette étude, nous décrivons une méthode de préparation pour ces deux composés ainsi que des sels isotypes: $\text{BaMn(PO}_3)_4$ et $\text{BaHg(PO}_3)_4$ en précisant la nature de leur anion et leurs caractéristiques cristallographiques.

Préparations chimiques

Poudres

Ces quatre sels se préparent facilement par calcination d'un mélange en proportions stoechiométriques de monophosphate biammonique, de carbonate de baryum et de carbonate du métal bivalent correspondant aux différentes formules des composés. Les températures de chauffage sont de $700^\circ C$ pour $\text{MnBa(PO}_3)_4$, $\text{CdBa(PO}_3)_4$ et $\text{CaBa(PO}_3)_4$ et de $400^\circ C$ pour $\text{HgBa(PO}_3)_4$.

Cristaux

Seuls des monocristaux de $\text{CdBa(PO}_3)_4$ ont été préparés.

On les obtient par chauffage à $350^\circ C$, durant une journée, d'une solution de 7 cm^3 d'acide monophosphorique à 85% dans laquelle ont été introduits 1 g de carbonate de baryum et $1,2 \text{ g}$ de carbonate de cadmium. Les cristaux se présentent sous forme de prismes allongés possédant quatre faces.

Analyse chromatographique

L'analyse chromatographique révèle que tous ces sels sont des polyphosphates à longues chaînes.

Étude cristallographique

L'étude d'un cristal du sel de baryum-cadmium par la méthode de Weissenberg montre que ce composé est monoclinique avec le groupe spatial $P2_1/n$. Les diagrammes de poudre indiquent que ces différents composés sont tous isotypes. Leurs caractéristiques cristallographiques sont rassemblées dans le Tableau 1. Les Tableaux 2, 3, 4 et 5 rassemblent les dépouillements de diffractogrammes effected à vitesse lente ($\frac{1}{4}(\text{°})(\text{min})$) à l'aide d'un diffractomètre Philips–Noreleo, utilisant la longueur d'onde du cuivre K_{α_1}. Les intensités données sont les hauteurs des pics au dessus du fond continu. Les valeurs des paramètres de réseau données dans le Tableau 1 ont été affinées par une

| Tableau 1. Caractéristiques cristallographiques des sels du type $\text{BaM}^{II}(\text{PO}_3)_4$. $\text{M}^{II}=\text{Mn, Cd, Ca et Hg}$ |
|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Formules | a (Å) | b (Å) | c (Å) | β (°) | V (Å3) | Z | d_e |
| $\text{MnBa(PO}_3)_4$ | 14,69 (1) | 9,147 (6) | 7,201 (4) | 90,57 (1) | 967,3 | 4 | 3,49 |
| $\text{CdBa(PO}_3)_4$ | 14,94 (1) | 9,192 (7) | 7,219 (5) | 90,79 (1) | 991,3 | 4 | 3,96 |
| $\text{CaBa(PO}_3)_4$ | 15,24 (1) | 9,173 (7) | 7,231 (5) | 90,62 (1) | 1010,8 | 4 | 3,24 |
| $\text{HgBa(PO}_3)_4$ | 15,05 (1) | 9,236 (8) | 7,239 (6) | 90,62 (1) | 1006,4 | 4 | 4,30 |
| Tableau 2. Dépouillement d’un diagramme de poudre de BaMn(PO₃)₄ |
|-----------------------------|-----------------------------|-----------------------------|
| hkl | d_{cal} | d_{obs} | I_{obs} | hkl | d_{cal} | d_{obs} | I_{obs} |
|-----------------------------|-----------------------------|-----------------------------|
| 110 | 7.76 | 7.76 | 24 | 012 | 3.350 | 3.346 | 9 |
| 200 | 7.34 | - | 0 | 112 | 3.273 | 3.272 | 28 |
| 10T | 6.49 | 6.46 | 8 | 112 | 3.260 | - | 0 |
| 210 | 5.73 | 5.71 | 35 | 202 | 3.245 | 3.244 | 25 |
| 011 | 5.66 | 5.65 | 22 | 202 | 3.220 | - | 0 |
| 11T | 5.29 | - | 0 | 411 | 3.091 | 3.092 | 3 |
| 111 | 5.27 | - | 0 | 411 | 3.069 | 3.067 | 11 |
| 020 | 4.57 | 4.57 | 6 | 212 | 3.059 | 3.060 | 40 |
| 21T | 4.50 | - | 0 | 32T | 3.039 | 3.036 | 73 |
| 211 | 4.46 | - | 0 | 32T | 3.037 | - | 0 |
| 120 | 4.37 | 4.36 | 72 | 321 | 3.023 | - | 0 |
| 310 | 4.32 | 4.31 | 8 | 130 | 2.985 | 2.986 | 21 |
| 30T | 4.07 | 4.06 | 17 | 420 | 2.863 | 2.862 | 6 |
| 301 | 4.03 | 4.01 | 11 | 022 | 2.829 | - | 0 |
| 220 | 3.882 | 3.878 | 25 | 230 | 2.816 | - | 0 |
| 021 | 3.861 | - | 0 | 031 | 2.808 | - | 0 |
| 12T | 3.793 | - | 0 | 051 | 2.796 | 2.797 | 21 |
| 121 | 3.729 | 3.731 | 34 | 122 | 2.782 | - | 0 |
| 31T | 3.716 | - | 0 | 312 | 2.777 | 2.777 | 33 |
| 311 | 3.688 | - | 0 | 122 | 2.774 | - | 0 |
| 400 | 3.671 | 3.675 | 70 | 13T | 2.760 | 2.760 | 47 |
| 002 | 3.600 | - | 0 | 131 | 2.756 | - | 0 |
| 22T | 3.425 | 3.424 | 100 | 312 | 2.753 | - | 0 |
| 221 | 3.410 | 3.412 | 91 | 50T | 2.729 | 2.732 | 5 |

| Tableau 4. Dépouillement d’un diagramme de poudre de BaCd(PO₃)₄ |
|-----------------------------|-----------------------------|-----------------------------|
| hkl | d_{cal} | d_{obs} | I_{obs} | hkl | d_{cal} | d_{obs} | I_{obs} |
|-----------------------------|-----------------------------|-----------------------------|
| 110 | 7.86 | 7.85 | 37 | 320 | 3.404 | 3.405 | 12 |
| 200 | 7.62 | - | 0 | 012 | 3.363 | 3.357 | 12 |
| 10T | 6.57 | 6.58 | 14 | 112 | 3.295 | 3.297 | 51 |
| 101 | 6.49 | 6.49 | 9 | 202 | 3.287 | - | 0 |
| 210 | 5.86 | 5.86 | 18 | 112 | 3.273 | - | 0 |
| 011 | 5.68 | 5.68 | 23 | 202 | 3.245 | 3.244 | 6 |
| 11T | 5.34 | 5.34 | 6 | 411 | 3.183 | 3.186 | 13 |
| 111 | 5.30 | 5.30 | 9 | 411 | 3.145 | 3.146 | 21 |
| 020 | 4.59 | 4.59 | 6 | 212 | 3.095 | 3.097 | 30 |
| 21T | 4.58 | - | 0 | 32T | 3.093 | - | 0 |
| 211 | 4.52 | - | 0 | 321 | 3.067 | - | 0 |
| 310 | 4.39 | 4.39 | 87 | 130 | 2.998 | 2.996 | 17 |
| 30T | 4.19 | 4.19 | 32 | 420 | 2.931 | 2.931 | 6 |
| 301 | 4.12 | 4.12 | 15 | 510 | 2.892 | 2.893 | 26 |
| 220 | 3.929 | 3.930 | 32 | 022 | 2.839 | - | 0 |
| 021 | 3.873 | - | 0 | 230 | 2.838 | - | 0 |
| 31T | 3.811 | 3.808 | 70 | 50T | 2.825 | 2.829 | 35 |
| 400 | 3.810 | - | 0 | 312 | 2.825 | - | 0 |
| 12T | 3.762 | 3.758 | 66 | 031 | 2.816 | - | 0 |
| 121 | 3.761 | - | 0 | 031 | 2.798 | - | 0 |
| 310 | 3.746 | - | 0 | 50T | 2.792 | - | 0 |
| 002 | 3.615 | 3.616 | 2 | 122 | 2.784 | - | 0 |
| 410 | 3.518 | 3.519 | 47 | 312 | 2.784 | - | 0 |
| 22T | 3.465 | 3.466 | 100 | 131 | 2.772 | 2.774 | 44 |
| 221 | 3.440 | 3.440 | 30 | 221 | 3.440 | 3.440 | 30 |

méthode de moindres carrés à partir des données angulaires recueillies par le procédé décrit plus haut. La structure cristalline du sel de cadmium-baryum est en cours de détermination.

Référence