The crystal structure of Cs₂HfCl₆ was determined to be cubic, Fm3m, similar to K₂PtCl₆, with parameters: \(a_0 = 10.42 \pm 0.01 \) Å and \(u = 0.247 \pm 0.003 \). Powder diffraction data on which the determination was based are given.

Origin of specimens

Crystals of Cs₂HfCl₆ were grown from the melt by lowering an evacuated quartz ampule containing Cs₂HfCl₆ through a temperature gradient (Axe, 1960). The maximum temperature of the furnace was 820°C and the lowering speed was 2 cm/d. The Cs₂HfCl₆ has to be prepared in a dry atmosphere as it will decompose in the presence of water vapour. It was prepared as follows: HfCl₄ was dissolved in methanol saturated with HCl in a three necked, round-bottom flask. A soxhlet extractor containing CsCl was inserted in one of the necks of the flask. The HfCl₄ solution was boiled and stirred. The methanol vapour gradually dissolved the CsCl also appeared. These lines were used as a standard for the determination of the effective radius of the camera. The powder data are given in Table 1.

It was assumed that Cs₂HfCl₆ has the same structure as K₂PtCl₆ (Wyckoff, 1957), and therefore space group Fm3m. According to this assumption the structure is completely determined by the size of unit cell \(a_0 \) and by the parameter \(u \) where \(a_0 \) is the Hf–Cl distance. Therefore, the observed \(d \) values were tentatively indexed with the corresponding \(hkl \)s, and the parameter \(a_0 \) was determined by least-squares fitting, i.e. \(a_0 = 10.42 \pm 0.01 \) Å. The agreement in Table 1 confirms that the crystal has indeed f.c.c. symmetry (\(hkl \)'s are either all odd or all even).

To determine the parameter \(u \) the relative intensities were calculated by the formula:

\[
I = j|F|^2g(\theta),
\]

where

\[
g(\theta) = \frac{[1 + \cos^2 \theta \cos^2 \alpha]}{[\sin^2 \theta \cos \theta \cos^2 (2\theta - 30^\circ)]},
\]

\(j \) is the multiplicity and \(\alpha = 26.5^\circ \). Atomic scattering factors were taken from International Tables for X-ray Crystallography (1967). The \(u \) parameter was determined by comparing the experimental with the calculated relative intensities as a function of \(u \). The best fit was obtained for \(u = 0.247 \pm 0.003 \); the corresponding intensities are those given in Table 1.

Measurement of X-ray Laue diffraction photographs of single crystals of Cs₂HfCl₆ showed that the mosaic structure angle of \(\theta_{e.m.} \approx 1.7^\circ \).

For the purpose of electron paramagnetic resonance and optical measurements (Maniv, 1971), the crystals were doped with paramagnetic ions of low concentration and no change in the X-ray measurements was observed.

I am indebted to Dr Z. Kalman and Dr A. Gabay of The Hebrew University, Jerusalem, for their help.

References

