Données cristallographiques sur un phosphobéryllate d'ammonium: Be$_2$P$_3$O$_{10}$NH$_4$. Par M. BAGIE, B. BEUCHER, A. DURIF et M. T. AVERBUCH-POUCHOT, Laboratoire des Rayons X, CNRS, 166 X, Centre de Tri, 38042-Grenoble Cédex, France

(Reçu le 20 avril 1976; accepté le 19 mai 1976)

Ammonium phosphoberyllate, Be$_2$P$_3$O$_{10}$NH$_4$, is monoclinic with a unit cell $a = 12.200$ (8), $b = 8.645$ (3), $c = 8.937$ (3) Å, $\beta = 117.40$ (5)° and $Z = 4$. Possible space groups are Cc or $C2/c$. The chemical preparation and crystal data are given for this new compound.

Préparation chimique

Le phosphobéryllate d'ammonium Be$_2$P$_3$O$_{10}$NH$_4$ se prépare facilement en calcinant durant 32 h à 350°C un mélange de 1 g d'oxyde de beryllium et de 15 g de monophosphate diammonique. Après lavage dans de l'eau tiède on recueille des cristaux prismatiques à section quasi carrée de Be$_2$P$_3$O$_{10}$NH$_4$.

Etude cristallographique

L'étude d'un de ces cristaux par la méthode de Weissenberg montre que la symétrie est monoclinique et les extinctions hkl n'existent qu'avec $h + k = 2n$ $h0l$ n'existent qu'avec $l = 2n$ conduisent à deux groupes spatiaux possibles: Cc ou $C2/c$.

Les dimensions de la maille: $a = 12.200$ (8), $b = 8.645$ (3), $c = 8.937$ (3) Å, $\beta = 117.40$ (5)°, ont été affinées par une méthode de moindres carrés à partir de données angulaires recueillies à l'aide d'un diffractomètre Philips Norelco opérant à vitesse lente (1/8°(θ)/min) et utilisant la longueur d'onde du cuivre $K\alpha_1\alpha_2$.

Cette maille renferme quatre unités formulaires. Le Tableau 1 donne le dépouillement d'un diagramme de poudre de ce composé effectué dans les conditions données plus haut. Les intensités fournies dans ce tableau sont les hauteurs des pics au-dessus du fond continu.

Tableau 1. Dépouillement d'un diagramme de poudre

<table>
<thead>
<tr>
<th>hkl</th>
<th>d_{obs}</th>
<th>d_{calc}</th>
<th>I</th>
<th>hkl</th>
<th>d_{obs}</th>
<th>d_{calc}</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>6.80</td>
<td>6.76</td>
<td>1</td>
<td>132</td>
<td>2.417</td>
<td>2.419</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>6.09</td>
<td>6.08</td>
<td>2</td>
<td>331</td>
<td>2.353</td>
<td>2.352</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>5.43</td>
<td>5.42</td>
<td>5</td>
<td>512</td>
<td>2.339</td>
<td>2.338</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>4.55</td>
<td>4.54</td>
<td>3</td>
<td>511</td>
<td>2.301</td>
<td>2.301</td>
<td>1</td>
</tr>
<tr>
<td>020</td>
<td>4.34</td>
<td>4.32</td>
<td>3</td>
<td>420</td>
<td>2.294</td>
<td>2.295</td>
<td>1</td>
</tr>
<tr>
<td>202</td>
<td>4.28</td>
<td>4.27</td>
<td>2</td>
<td>222</td>
<td>2.271</td>
<td>2.271</td>
<td>1</td>
</tr>
<tr>
<td>112</td>
<td>3.96</td>
<td>3.95</td>
<td>20</td>
<td>332</td>
<td>2.257</td>
<td>2.256</td>
<td>4</td>
</tr>
<tr>
<td>021</td>
<td>—</td>
<td>3.80</td>
<td>7</td>
<td>330</td>
<td>2.253</td>
<td>2.253</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>3.68</td>
<td>3.68</td>
<td>24</td>
<td>204</td>
<td>2.222</td>
<td>2.222</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>3.49</td>
<td>3.49</td>
<td>8</td>
<td>423</td>
<td>2.212</td>
<td>2.212</td>
<td>3</td>
</tr>
<tr>
<td>220</td>
<td>—</td>
<td>3.38</td>
<td>8</td>
<td>513</td>
<td>2.190</td>
<td>2.189</td>
<td>1</td>
</tr>
<tr>
<td>312</td>
<td>3.35</td>
<td>3.35</td>
<td>45</td>
<td>314</td>
<td>2.153</td>
<td>2.153</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>3.33</td>
<td>3.33</td>
<td>1</td>
<td>312</td>
<td>2.142</td>
<td>2.142</td>
<td>1</td>
</tr>
<tr>
<td>112</td>
<td>3.06</td>
<td>3.06</td>
<td>16</td>
<td>241</td>
<td>2.033</td>
<td>2.033</td>
<td>0</td>
</tr>
<tr>
<td>222</td>
<td>3.04</td>
<td>3.04</td>
<td>7</td>
<td>312</td>
<td>2.144</td>
<td>2.144</td>
<td>1</td>
</tr>
<tr>
<td>022</td>
<td>2.957</td>
<td>2.959</td>
<td>2</td>
<td>204</td>
<td>2.136</td>
<td>2.136</td>
<td>0</td>
</tr>
<tr>
<td>221</td>
<td>2.923</td>
<td>2.923</td>
<td>3</td>
<td>204</td>
<td>2.100</td>
<td>2.101</td>
<td>1</td>
</tr>
<tr>
<td>130</td>
<td>2.877</td>
<td>2.786</td>
<td>0</td>
<td>204</td>
<td>2.086</td>
<td>2.086</td>
<td>0</td>
</tr>
<tr>
<td>113</td>
<td>2.745</td>
<td>2.745</td>
<td>1</td>
<td>204</td>
<td>2.071</td>
<td>2.071</td>
<td>0</td>
</tr>
<tr>
<td>131</td>
<td>2.734</td>
<td>2.732</td>
<td>2</td>
<td>133</td>
<td>2.043</td>
<td>2.043</td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>2.706</td>
<td>2.708</td>
<td>16</td>
<td>241</td>
<td>2.033</td>
<td>2.033</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>2.692</td>
<td>2.691</td>
<td>16</td>
<td>241</td>
<td>2.026</td>
<td>2.026</td>
<td>1</td>
</tr>
<tr>
<td>202</td>
<td>—</td>
<td>2.668</td>
<td>0</td>
<td>240</td>
<td>2.007</td>
<td>2.008</td>
<td>1</td>
</tr>
<tr>
<td>131</td>
<td>2.536</td>
<td>2.536</td>
<td>0</td>
<td>240</td>
<td>2.006</td>
<td>2.006</td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>2.479</td>
<td>2.478</td>
<td>1</td>
<td>224</td>
<td>1.976</td>
<td>1.976</td>
<td>2</td>
</tr>
<tr>
<td>223</td>
<td>—</td>
<td>2.452</td>
<td>0</td>
<td>224</td>
<td>1.984</td>
<td>1.984</td>
<td></td>
</tr>
<tr>
<td>422</td>
<td>2.442</td>
<td>2.442</td>
<td>1</td>
<td>224</td>
<td>1.976</td>
<td>1.976</td>
<td></td>
</tr>
</tbody>
</table>