Many inorganic structures were also presented. Several could be described by the packing of spheres, such as \(A_B X_2 \) (\(A = \text{Rb}, \text{Cs}; B = \text{As}, \text{Sb}; X = \text{Cl}, \text{Br}, \text{I} \)) which consists of hexagonal \(AX_2 \) layers with \(B \) in octahedral interstices. LaFe\(_2\)PO\(_4\) is a structure derived from CoAs\(_3\) structures by filling distorted icosaheiral and octahedral voids with lanthanum and iron atoms respectively. The trigonal pyramidal nature of As(III)-O stereochemistry was noted. In compounds MP\(_2\)O\(_5\) \((M = \text{Li}, \text{Na})\) the distribution of phosphorus and arsenic is not statistical, but depends upon on the formal charge at the position and the electronegativity of the atom filling it. The \(\text{I}_2\text{Cl}_4 \) ion in \(\text{I}_2\text{SbCl}_6 \) was shown to have a linear arrangement of iodine atoms with a chlorine atom at each end arranged perpendicular to the \(\text{I}_2 \) group. Silver iodide complexes Ag\(_2\)I\(_4\)NO\(_3\) and Ag\(_9\)I\(_5\)F\(_5\) were studied and \(K_3\text{FeF}_6 \) was shown to exist as infinite zigzag cis chains of Fe\(_6\) octahedra. The shapes of the phosphorus network in polyphosphides were also investigated.

Other structural studies included ternary phosphorus chalcogenides, the Te\(_2\)O\(_4\) ion, cadmium germanates and some silicates such as K\(_2\)\(\text{NdSi}_6\text{O}_{15}\) and K\(_2\)\(\text{CeSi}_6\text{O}_{15}\). Several minerals such as hohnmnite, macleithite, gibbsite, and tachsleredite were studied. In the case of silicates the chains formed by SiO\(_4\) tetrahedra can be linear or branched. The periodicity (number of tetrahedra in the identity period of the chain) depends on the cation present. In such polymers the Si-O-Si angle can deviate appreciably from the mean value of 140°. In the case of some barium silicates, high-resolution electron microscopy was used to show the variation in chain multiplicity.

Magnetic and ferroelectric properties were the object of many studies. The antiferromagnetic domain distribution in nickel oxide was studied by magnetic neutron Laue diffraction which allows the arrangement and direction of magnetic moments to be determined. The ferroelectricity associated with the high-temperature phase of ammonium nitrate was investigated and a structural basis involving nitrate groups was suggested to account for this effect. Charge transfer in \(M_2\text{Mo}_5\text{S}_8 \) compounds from the interstitial cation \(M \) to the closely packed octahedron formed by the molybdenum atom is probably an important factor in this class of high-field superconductors. Also the semiconductor–semiconductor phase transition of V\(_2\)O\(_3\) at 155°, which involves a change in crystal structure, was studied by a comparison of both structures. The paraelectric phase of \(\text{CsH}_2\text{PO}_3 \) was also described. Some octahedral complexes of Cu(II) and Mn(III) were studied with respect to Jahn–Teller distortions. Cu\((\text{OH})_2\) shows four Cu-O distances of 1.96–1.97 Å and two of 2.81 Å. Other examples of \((4 + 2)\)-distorted coordination octahedra were shown. The \(\text{MnF}_6 \) group in the compound \(\text{Rh}(_2\text{H}_2)_6\) \(\text{MnF}_6 \) is regular, implying a dynamic Jahn–Teller effect.

Many organometallic and coordination compounds were examined. Cubane-like structures were found containing four of each Co(II) and F" or Ni(II) and OH. A tetrahedral Ru\(_4\) cluster was found to contain two short and four longer Ru–Ru edges. Many chelated metal salts were studied, for example neodymium fulmate, some iron(III) dithiocarmabates and many complexes of Cr(III), Pt(II), Cu(II), Zn(II) and Ni(II). Some Pt(I) complexes contained Pt–Pt bonds and a Pt(0) complex, \(\text{Pt(C}_2\text{H}_4\text{)}_2(_2\text{C}_2\text{F}_3) \) was shown by neutron diffraction to be a σ complex and its geometry was described. Some niobium(V), indium(III) and Ni(II) porphyrins were studied. Some very interesting transition-metal hydride coordination complexes were studied by neutron diffraction. A metal–metal (Re–Re) bond bridged by four hydrogen atoms was found. A neutron diffraction study of hydrated Na\(_3\)Mo\(_6\text{P}_5\text{O}_{30}(_2\text{OH})_6\) showed an anion structure consisting of a wide channel 6 Å diameter which contains water.

The meeting was also a celebration for Dorothy Hodgkin on the occasion of her retirement, although, of course, she will continue working as ever. Many of her former students, from countries all around the world, made a point of attending the meeting. Gifts were brought for her and presented at the end of the meeting. It was hoped that the excellent scientific caliber of the meeting might serve as an appropriate tribute to her.

JENNY P. GLUSKER
The Institute for Cancer Research
The Fox Chase Cancer Center
Philadelphia, PA 19111
USA

Crystallographers
This section is intended to be a series of short paragraphs dealing with the activities of crystallographers, such as their changes of position, promotions, assumption of significant new duties, honours, etc. The work of each crystallographer is summarized in the section, and full details are given in the respective biographies. The work of the Union is considered in the section, and the Union's activities are brought to the attention of all crystallographers. The Union is considering the viability of marketing microfilm editions of its publications itself. The rules concerning the photocopying of articles for personal use are given on the inside front cover of each issue of the journal.

The Union has become aware of some commercial offerings of unauthorized reproductions of its publications. As one important means to combat this, the Union strongly urges all crystallographers not to make use of any such unauthorized activities and to bring them to the Union's attention. The publications of the Union belong to the crystallographic community, as such, and it is therefore in the interest of all crystallographers that infringement of the Union's copyright be discouraged by a total lack of response from all crystallographers.