The space group of γ-In_2Se_3 and γ_1-$\text{(Ga}_x\text{In}_{1-x})_2\text{Se}_3$: erratum. By S. Popović, Ruder Bošković Institute, 41001 Zagreb, POB 1016, Croatia, Yugoslavia

(Received 1 July 1980; accepted 10 July 1980)

Abstract
In the paper Revised and new crystal data for indium selenides by Popović, Tonejc, Gržeta-Plenković, Čelustka & Trojko [J. Appl. Cryst. (1979), 12, 416-420] it was concluded that $P6_322$ or $P6_522$ was the probable space group of the second high-temperature, γ, phase of In_2Se_3. Also, in the paper Phases, lattice parameters and thermal expansion of $(\text{Ga}_x\text{In}_{1-x})_2\text{Se}_3$, $0 < x < 1$, between room temperature and melting point by Tonejc, Popović & Gržeta-Plenković [J. Appl. Cryst. (1980), 13, 24-30] the same space groups were suggested for the phase γ_1, existing in the In-rich region. However, the space group in both cases should be $P6_1$ or $P6_5$. This is in agreement with the work of Likforman, Carré & Hillel [Acta Cryst. (1978), B34, 1-5] who solved the crystal structure of one of the forms of In_2Se_3, and with the work of Schulte-Kellinghaus & Krämer [Acta Cryst. (1979), B35, 3016-3017] who solved the crystal structure of AlInS_3. Likforman, Carré & Hillel [Acta Cryst. (1978), B34, 1-5] call their phase the low-temperature form of In_2Se_3. In the work by Popović, Tonejc, Gržeta-Plenković, Čelustka & Trojko [J. Appl. Cryst. (1979), 12, 416-420] it has been found that γ-In_2Se_3 can be undercooled and be stable even at room temperature. Both papers probably deal with the same crystal form of In_2Se_3.

All relevant information is contained in the abstract. A list of references is given below.

References

Crystal Data

X-ray powder diffraction data for 5'-azido-5'-deoxy-3'-O-acetylthymidine. By D. F. Mullica, W. O. Milligan, W. B. Lunsford and M. Castro, Departments of Chemistry and Physics, Baylor University, Waco, Texas 76703, USA

(Received 1 July 1980; accepted 29 July 1980)

Abstract
5'-azido-5'-deoxy-3'-O-acetylthymidine ($\text{C}_{12}\text{H}_{15}\text{N}_5\text{O}_5$) is orthorhombic. The crystal data for the primitive space lattice are $a = 5.584 (1)$ Å, $b = 14.347 (4)$ Å, $c = 18.021 (4)$ Å, $D_n = 1.41 (1)$, $D_x = 1.422 \text{ Mg m}^{-3}$ and $Z = 4$. The quantitative figure of merit (F_N) is $F_{30} = 96 (0.006, 52)$. Indexed X-ray powder data are reported.

Origin of specimens
A pyrimidine base nucleoside resulting from a partial hydrolysis of nucleic acids in cell metabolism is thymidine. The molecular structure of thymidine (orthorhombic, $P2_12_12_1$, $a = 4.86$, $b = 13.91$ and $c = 16.32$ Å) has been determined (Young, Tollin & Wilson, 1969). This paper is part of a series of research studies on structural modifications of derivatives of thymidine at the 3' and 5' sites.

Clear rod-like crystals of the title compound were prepared in a three-step procedure. Reaction of thymidine with p-toluenesulfonyl chloride according to the procedures of Jastorff & Hettler (1965) afforded the desired compound in good yield. The observed density (flootation) was 1.41 (1) Mg m$^{-3}$.

Cell data
Orthorhombic unit cell; space group $P2_12_12_1$:

$\begin{align*}
a &= 5.584 (1) \text{ Å} & M_r &= 309-28 \text{ g mol}^{-1} \\
b &= 14.347 (4) & Z &= 4 \\
c &= 18.021 (4) & D_n &= 1.41 (1) \text{ Mg m}^{-3} \\
U &= 1443-7 (10) \text{ Å}^3 & D_x &= 1.422 (1). \\
\end{align*}$

Powder data
The X-ray powder diffraction data reported for 5'-azido-5'-deoxy-3'-O-acetylthymidine were obtained in an evacuated 114.8 mm diameter Siemens cylindrical camera at 290 K, using Ni-filtered Cu $K\alpha$ radiation (mean $\lambda = 1.54184$ Å). Finely ground crystals were placed into thin-walled glass capillaries (0.2 mm diameter). The observed and calculated spacings, in Å, and the visual estimated relative intensities

$\begin{align*}
0021-8898/80/060611-02$ S01.00
\end{align*}$

© 1980 International Union of Crystallography