formation process. In the case of titanium the shear planes intersect the basal planes along a (1120) direction. Prismatic planes fulfil this condition. It was not possible to obtain the diffraction spots of the planes which are normal or nearly normal to the {0001} family, hence we cannot produce experimental evidence for or against the theoretical formulations presented by Mackenzie & Bowles (1957).

White-beam synchrotron X-ray topography possesses the great advantage of displaying the macroscopic mechanical stresses preceding the transition. These stresses induce cracks in brittle materials like quartz (Zarka, 1983), while in ductile materials like metals large plastic strain precedes the moving boundary interphase.

Detailed study on premonitory effects and recrystallization will be published later.

The authors wish to thank Professor G. Stergioudis and P. Marzo for their assistance in experimental work.

References

Asymmetrically grooved monolithic crystal monochromators for suppression of harmonics in synchrotron X-radiation: erratum. By H. Hashizume, Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuda, Midori-ku, Yokohama 227, Japan

(Received 28 September 1983)

Abstract

A typographical error has occurred in Hashizume [J. Appl. Cryst. (1983), 16, 420-427]. The first two complete sentences on page 425 should read: A attains a minimum value of 0.024 at bn=0.27, where about half of the initial fundamental intensity is preserved. The initial rise of the fundamental intensity, which occurs in the range 1.0 > bn ≥ 0.64, is accounted for by a close examination of the overlap pattern of R|| and R|| at the relevant bn values: the shifted and extended peak profile of R|| admits the high-angle tail of R|| and rejects the low-angle flank of R||, and the gain due to the former more than compensates for the loss caused by the latter.

All information is given in the Abstract.

Crystal Data

Crystal data for C.I. Pigment Yellow 4, 4-(1-hydroxyethylidene)acetanilide-x-azo-(4'-nitrobenzene).* By A. Whitaker, Department of Physics, Brunel University, Uxbridge, Middlesex, England

(Received 5 January 1983; accepted 10 August 1983)

Abstract

The single-crystal data and powder pattern are reported for C.I. Pigment Yellow 4, 4-(1-hydroxyethylidene)acetanilide-x-azo-(4'-nitrobenzene), C16H15N4O4 (C.I. No 11665). The powder pattern has been indexed from the single-crystal dimensions; the problems of multiple indexing have been reduced by comparison with single-crystal intensities. Crystal is triclinic, P1 or P1', a = 7.691(2), b = 10.247(2), c = 11.195(2) Å, α = 109.00(2), β = 73.80(2), γ = 112.21(2)°, Z = 2, Dx = 1.426 Mg m⁻³. The JCPDS Diffraction File No. for C.I. Pigment Yellow 4 is 33-1985.

*The full text has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38772 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

© 1983 International Union of Crystallography