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Abstract 

The MOLSCRIPT program produces plots of protein 
structures using several different kinds of representations. 
Schematic drawings, simple wire models, ball-and-stick 
models, CPK models and text labels can be mixed freely. 
The schematic drawings are shaded to improve the illusion 
of three dimensionality. A number of parameters affecting 
various aspects of the objects drawn can be changed by the 
user. The output from the program is in PostScript format. 

Introduction 

The complexity of protein structures makes it necessary to 
use simplified representations in order to present relevant 
features. The proper type of representation depends on 
exactly what aspect of the structure is of interest. For 
example, the active site or binding site of a protein may 
best be shown by ball-and-stick models, while the overall 
fold of a protein is best represented by schematic drawings 
made by hand (Br/ind6n, J6rnvall, Eklund & Furugren, 
1975; Holbrook, Liljas, Steindel & Rossmann, 1975; 
Richardson, 1981, 1985) or by a computer program 
(Priestle, 1988). The ability to combine different types of 
representations is important for a number of purposes, 
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such as showing the location of important residues or 
ligands in the overall structure. This type of more compli- 
cated plot is usually best prepared with a computer pro- 
gram (Lesk & Hardman, 1982, 1985). 

Our aim was to create a program that could draw 
schematic pictures of proteins similar to those popularized 
by Jane Richardson, as well as more detailed representa- 
tions such as ball and stick. Features such as shading, gray 
scale and text labels were deemed necessary to produce 
high-quality plots suitable for publication and educational 
purposes. The strategy was to utilize the recent advances in 
printing technology, mainly laser printers and the Post- 
Script language (Adobe Systems Inc., 1985). Another 
important aim was to design a powerful and yet concept- 
ually simple user interface. 

The program 

The MOLSCRIPT program reads an input script file that 
specifies the coordinate file(s), the desired view obtained by 
transforming the atomic coordinates within a fixed coordi- 
nate system, which graphics parameters to change from the 
default values, and what graphical objects to create from 
the atomic coordinates. Fig. l(a) is a plot of the C-terminal 
fragment of cellobiohydrolase I (Kraulis et al., 1989) 
created by MOLSCRIPT from the input script file shown 
in Fig. l(b). The input file is free format, may contain 
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comments, and must adhere to a well defined syntax. Fig. 2 
shows different views of the B2 subunit of ribonucleotide 
reductase (Nordlund, Sj6berg & Eklund, 1990) that illus- 
trate some capabilities of M O L S C R I P T .  

Different kinds of representations are available in M O L -  
SCRIPT .  These include the basic wire-drawing, ball-and- 
stick and CPK models. Bonds in the wire-drawing and 
ball-and-stick models are drawn between atoms that are 
closer to each other than a given cut-off distance. In some 
cases this criterion is inadequate. For example, in the Fe 
center of B2 (Fig. 2c) it is impossible to obtain all bonds 
between the Fe atoms and their ligands without also 
getting spurious bonds between, for example, the O atoms 

(a) 

! MolScript vl.l, script file 

i CT-CBHI, secondary structure 
! and view of cysteine sulphurs. 

plot 

slab 11.5; 

read mol "ctcbhl.pdb"; 

transform atom * 
by centre position atom * 
by rotation z 80.0; 

turn from 1 to 6; 
strand from 6 to 10; 
turn from 10 to 24; 
strand from 24 to 30; 
turn from 30 to 31; 
strand from 31 to 36; 

cpk atom SG; 

! For coil depth-cueing. 

! Input coordinate file. 

! Transform all atoms by 
! centering all atoms and 
! then rotate for good view. 

! The command 'turn' gives a 
! coil that goes through the 
! CA atom positions. 

! Cysteine sulphur atoms. 

end_plot 

(b) 
Fig. 1. (a) Plot of the C-terminal fragment of ceUobiohydrolase I, 

CT-CBH1 (Kraulis et al., 1989), using CPK representation for 
the S atoms of the four cysteines in this 36-residue peptide. (b) 
Input script file used to produce the picture in (a). No modifi- 
cation by hand was made to any of the printed plots shown in 
Figs. 1 or 2. 

within the carboxylate groups when using the simple dis- 
tance cut-off criterion. In M O L S C R I P T  this problem is 
solved by providing an alternative method to define which 
bonds to draw. This uses two different sets of atoms and 
requires that a drawn bond must connect an atom within 
one set to an atom within the other set. By using different 
cut-off distances with these two methods, any desired set of 
bonds can be drawn. 

Schematic drawings of protein structures use helical 
ribbons for a helices, thick arrows for fl strands and 
cylindrical coils for loops. These graphical objects are 
created directly from the Ca-a tom coordinates of the 
protein (see Fig. 3 and below), not by fitting ideal second- 
ary structure elements onto the structure. Consequently, 
irregularities in the secondary structure elements will be 
visible to some degree in the schematic drawings. In most 
cases this is actually a useful feature rather than a problem, 
since the drawing is closer to reality while still being 
simple. For example, in Fig. 2(c), the helix ribbon close to 
residue Glu 204 is considerably wider than normal, reflec- 
ting a real irregularity in the helix at this point. 

The exact appearance of a graphical object is controlled 
by a number of parameters, collectively termed the 
graphics state. When M O L S C R I P T  creates a graphical 
object, it is given dimensions, gray scale and shading 
according to the graphics state at that stage in the process- 
ing of the input script file. Any parameter can be changed 
at any point in the input script file. This allows the user 
considerable scope for fine tuning a plot, since different 
objects in the same plot can be given a different gray scale 
or shading. The basic wire model, for example, can be 
embellished by using different line widths, gray scale, 
dashing or depth cueing for different parts. M O L S C R I P T  
allows the use of colors defined either by the RGB (red- 
green-blue) or by the HSB (hue-saturation-brightness) 
system. Of course, the available printer or display device 
determines how colors are rendered. 

Shading of surface segments is used to emphasise the 
three dimensionality of the objects used for the schematic 
representations (helix, strand, coil). The surface color of a 
graphical object is varied between black and the user- 
specified color as a function of the angle between the 
normal for each plane segment and the vector pointing 
towards the viewer (Foley & Van Dam, 1982). The param- 
eters controlling the shading function are part of the 
graphics state, and hence can be changed by the user. 
During tests of the program, it was found that the shading 
of helix-ribbon plane segments became aesthetically more 
pleasing if the shading angle was corrected for the angle 
between the helix axis and the vector towards the viewer. 
In effect, the shading angle is computed as if the helix axis 
were in the plane of the paper (see Fig. 2). 

For spheres (in CPK and ball-and-stick models) a very 
simple, yet effective, shading method is used. This method, 
which may be called Donald-Duck shading, uses three 
concentric arcs and an idealized reflection of a window to 
give the illusion of shadow and highlighting on a sphere 
(see Fig. la). 

An important feature of M O L S C R I P T  is the atom and 
residue selection mechanism by which a set of atoms or 
residues is given as argument to a command that produces 
graphical objects. This facility was inspired by a similar 
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feature in the refinement p rogram X - P L O R  (Brfinger, 
1988). It is, for example, possible to make  C P K  or ball- 
and-stick models  of  any set of  atoms, not  just of  predefined 
subsets. This allows M O L S C R I P T  to be of  use also for 
making  plots o f  non-prote in  structures. 

Text labels can be posi t ioned either at explicit coordi-  
nates or at the positions of  selected atoms. Labels can be 
manipula ted  in ways that  allow output  o f  Greek characters  
as par t  of  a label (e.g. in a tom names) and that  allow the 
residue name or type of  a toms to be inserted into the label 

for each specified atom. The size of  label characters  is 
depth cued, so that  a label is smaller at larger distances 
f rom the viewer. The positions of  labels can be fine tuned 
to avoid overlaps with other  parts of  the plot. 

The graphical objects created within M O L S C R I P T  can, 
in principle, be used as input for other  rendering programs.  
In particular,  there is an option in M O L S C R I P T  to create 
files suitable for the R A S T E R 3 D  program (written by 
David Bacon), which renders ray-traced pictures composed 
of  spheres and t r iangular  plane segments. 

(a) 

// 

(b) 

(c) 

Fig. 2. (a) Plot of the B2 subunit of ribonucleotide reductase 
(Nordlund et al., 1990) showing the shading of helices with the 
two Fe atoms as black spheres. (b) Same as (a), but rotated 90 ° 
around the x axis for a view into the a barrel, showing the 
location of the Fe atoms. Combined 90 ° views of a structure, 
such as (a) and (b), are often more effective than stereo pictures 
for conveying spatial relationships in a structure. (c) Close-up 
view of the Fe atoms in B2 and residues interacting with them. 
The residues are shown in ball-and-stick representation. The 
helix in front is shown as a coil to avoid obscuring details. In 
this plot it was necessary to use both methods available in 
MOLSCRIPT for defining which bonds to draw (see the text). 
White bonds use the single-atom-set method, while the gray 
bonds use the two-atom-sets method with a larger cut-off 
distance. 
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Implementation 

The basic strategy in implementing M O L S C R I P T  was to 
use the facilities of the PostScript language to maximum 
advantage. The PostScript imaging model states that any 
marks (lines, surface color) applied to the display surface 
completely obscures any previously Applied marks at that 
position (Adobe Systems Inc., 1985). This is used in MOL- 
SCRIPT  to achieve hidden-surface removal by simply 
depth sorting all graphical segments and then writing the 
farthest segments first to the PostScript file. No special 
hidden-surface removal algorithm has been implemented in 
M O L S C R I P T  beyond this trivial depth sort. Of course, 
this requires that the graphical segments are small enough 
not to overlap in complicated ways. Also, all graphical 
segments have to be stored in an intermediate representa- 
tion within the program until an entire plot has been 
created. 

The helix is created by first computing a curve using the 
Hermite spline function (Foley & Van Dam, 1982) based 
on the coordinate and helix tangent vector at each Ca 
atom. The ribbon segments are then made by translating 
this curve parallel to the helix axis. The helix tangent and 
axis vectors at each Ca atom are constructed geometrically 
from vectors involving the neighboring Ca atoms (see 
Fig. 3a). 

i-I 

/~H ~ i + l :' 

""'.. R :: 
"'".... eL : C 

i 
(a) 

i 
O - .  

o°°°" p • .. • 

o ° ° °" ~[/V,, • " - • .  O ~ O i + l  i-1 
Fig. 3. (a) Construction of helix vectors for the atom Ca(i). The 

vector C is the vector from atom Ca(i -  1) to atom Ca(i +1). 
Vector R is perpendicular to the plane formed by the atoms 
Ca(/ 1), Ca(i) and Ca(i + 1). Both C and R are normalized. 
The helix axis vector is then computed as H = (cosa)R + 
(sina)C and the helix tangent vector as T = (cos/3)C - (sin/3)R. 
The constants a - 32 and/3 = 11 were determined empirically 
and are optimized for a regular a helix. Note that C and R are 
perpendicular but H and T are not. (b) The definition of vectors 
for atom Ca(i) used to create the fl-strand arrow. The vector S 
is the strand-arrow direction vector for atom Ca(i). The arrow 
normal vector P at atom Ca(i) is the vector from the midpoint 
between atoms Ca( i -1)  and Ca(i + 1) to atom Ca(i). The 
vector W is used for creating the arrow planes and is simply 
perpendicular to S and P. Subsequent P vectors must not have 
an angle greater than 90' between them, otherwise they are 
turned around. 

The /3-strand arrow is made from direction and plane 
vectors computed as described in Fig. 3(b). The path of the 
arrow is a Hermite curve through the Ca-atom coordinates 
smoothed using an algorithm described by Priestle (1988). 
The number of smoothing iterations can be changed by the 
user. 

The coil is also a Hermite spline curve through the 
Ca-atom coordinates which have been smoothed using 
Priestle's algorithm. The smoothing step can be bypassed if 
the user wishes the coil to pass through the real Ca  atom 
positions (see Fig. 2c). 

The M O L S C R I P T  program can be viewed as a special 
computer language compiler. The 'source code' for MOL- 
SCRIPT  are the input script file and coordinate file, while 
the output PostScript file is the 'object code'. The final 
plot, produced by sending the PostScript file to, for 
example, a laser printer, can be seen as the "executable'. 
The input script file parsing module in M O L S C R I P T  is 
based on the principles for syntax definition and parsing as 
described by Wirth (1976). The basic graphics algorithms 
were taken from Foley & Van Dam (1982). 

The program is written in Fortran77 and runs on a 
Silicon Graphics IRIS-4D system. It has been ported to 
other UNIX systems, such as the Alliant FX/40 and 
DECstation 3100, as well as to VAX/VMS systems with 
very few changes. The source code relies extensively on a 
number of general Fortran subroutine packages which 
were originally developed for other purposes (Kraulis, 
1989). 

The PostScript code produced by the program follows 
the structuring conventions as laid down by Adobe 
Systems Inc. (1985) and is suitable for direct output on, for 
example, a laser printer or for viewing on a display using a 
PostScript previewer program ('psview" on Silicon 
Graphics IRIS-4D systems). 

The M O L S C R I P T  program, with a manual and a set of 
example input script files, is available from the author. 

The author thanks T. Alwyn Jones, Mats Kihl6n, Ylva 
Lindqvist, Hans Eklund, Erling Wikman, Carl-lvar Brfin- 
d6n and others at the Biomedical Centre, Uppsala, for 
support, ideas and comments. Hans Eklund provided the 
ribonucleotide reductase B2 coordinates. This work was 
supported by Nordisk Industrifond and the Swedish 
Natural Science Research Council (NFR). 
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Abstract 

A program has been developed to help design a geometric 
representation of the atomic structure of interfaces 
between two crystalline structures. The C-language pro- 
gram run on a graphics-oriented computer has proved to 
be a simple precise tool to use. It provides a clear picture 
of the atomic positions at the interface and, simultane- 
ously, a stereographic projection and diffraction pattern 
for each crystal and bicrystal. Examples of multiple 
twinning in the sphalerite structure and of various metal- 
ceramic interfaces are presented. 

Introduction 

The atomic structure of intergranular and interphase 
boundaries has been extensively studied and reviewed peri- 
odically (cf Bourret, 1990, for a most recent review). Every 
analysis of a theoretical or experimental result has to go 
through geometric modeling of the interface in which the 
crystal structure of each phase, the mutual orientation 
relationship (rotation, translation) between the two phases 
and the orientation and position of the boundary plane has 
to be fully determined and graphically represented. Rulers 
and protractors on tracing paper are the tools usually used 
for this representation. Furthermore, in non-cubic crystals, 
the irrationality of the lattice parameters introduces a 
supplementary imprecision in the drawing. 

Traditionally, one has to represent each crystal by its 
projection on a lattice plane, in order to have an 'end-on' 
view of the boundary. Firstly, the projection often requires 
several equivalent planes in order to have a full representa- 
tion of the structure. Secondly, the two projections have to 
be rotated and translated with great precision. Thirdly, on 
this dichromatic pattern (i.e. the superimposition of the 
two projections) the boundary plane has to be positioned, 
and, fourthly, the excess atoms removed. 

The logic of this procedure has never been questioned, 
but its realization has always been tedious and time con- 
suming. The purpose of the computer program is to carry 
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out the same procedure in a prccisc, easy to use and 
efficient way. Once installed on a routine basis, it can be 
used on its own to provide a clear picture of the interface. 
The input data (rotation axis and rotation angle) can 
be provided, for instance, by a transmission-electron- 
microscopy study. Eventually, the atomic position around 
the interface could be used as a starting configuration for 
relaxation calculation (static, dynamic, electronic). 

Outline of the program 

The procedure used by the program in order to build an 
interface between two crystals is very similar to the one 
followed by experimentalists. 

Once the input data crystal files are created, the first step 
of the procedure is to find the projection plane for each 
crystal (a plane perpendicular to the interface plane). 
Three-dimensional (3D) views of the two crystals, each 
showing eight cells of the crystalline lattice, are displayed. 
A view can be rotated around any crystallographic axis; 
any crystallographic plane can be displayed; the indices of 
the current plane on the screen can be calculated. A 
stereographic projection and a simple diffraction diagram 
(including systematic extinctions) of a current view can be 
obtained on separate windows. These commands allow the 
user to try different crystalline orientations if an exact 
relationship has not been completely determined experi- 
mentally. 

The next step is the superimposition of the two projec- 
tions. Since the number of atoms displayed in the 3D view 
is small (64, excluding additional atoms inside the unit 
cell), a larger 2D view has to be calculated. The program 
determines two directions generating a plane and the 
number of equivalent planes to display in order for the 
projection to be complete. This procedure makes it pos- 
sible to keep track of the first atomic plane built (which 
can be arbitrarily placed at altitude zero) and therefore to 
display the 2D unit cell of this plane. The number of atoms 
displayed on a 2D view may vary from 100 to 2000 atoms 
per crystal. 

Once the projections are superimposed, any of them can 
be rotated around any atomic position of the same crystal 
or translated in any direction. Since the interface plane is 
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