
946 COMPUTER PROGRAMS

JACK. A. & LEVITT, M. (1978). Acta Crvst. A34, 931-
935.

JANIN, J. (1979). Nature (London), 277, 491-492.
JANIN, J., MILLER, S. & CHOTHIA, C. (1988). J. Mol. Biol.

204, 155-164.
KARPLUS, M. & MCCAMMON, J. A. (1983). Ann. Rev.

Biochem. 53, 263-300.
LEE, B. & RICHARDS, F. M. (1971). J. Mol. Biol. 55,

379-400.
LESSER, G. J. & ROSE, G. D. (1990). Proteins: Struct. Funct.

Genet. 8, 6-13.
LEVITT, M. (1982). Ann. Rev. Biophys. Bioeng. 11,251-271.
MILLER, S., LESK, A. M., JANIN, J. & CHOTHIA, C. (1987).

Nature (London), 328, 834-836.
N~METHY, G., PO'Iq'LE, M. S. & SCHERAGA, H. A. (1983). J.

Phys. Chem. 87, 1883-1887.
Ooi, T., OOBATAKE, M., NI~METHY, G. & SCHERAGA, H. A.

(1987). Proc. Natl Acad. Sci. USA, 84, 3086-3090.
RICHARDS, F. M. (1977). Ann. Rev. Biophys. Bioeng. 6,

151-176.
RICHMOND, T. J. (1984). J. MoL Biol. 178, 63-89.
RICHMOND, T. J. & RICHARDS, F. M. (1978). J. Mol. Biol.

119, 537-555.

ROSE, G. D., GESELOWITZ, A. R., LESSER, G. J., LEE, R. H.
t~ ZEHFUS, M. H. (1985). Science, 229, 834-838.

ROSE, G. D. & LEE, R. H. (1986). J. Biophys. 49, 83-85.
SHRAKE, A. • RUPLEY, J. A. (1973). J. Mol. Biol. 79,

351-371.
SILLA, E., VILLAR, F., NILSSON, O., PASCUAL-AHNIR, J. L.

& TAPIA, O. (1990). J. MoL Graph. 8, 168-172.
SIPPL, M. J. (1990). J. Mol. Biol. 213, 859-883.
VINCENT, M. G. t~ PRIESTLE, J. P. (1985). J. Appl. Cryst.

18, 185-188.
WARSHEL, A. & CREIGHTON, S. (1989). In Computer Simu-

lation of Biomolecular Systems, edited by W. F. VAN
GUNSTEREN & P. K. WE1NER, pp. 120--138. Leiden:
ESCOM Science Publishers B.V.

WEINER, S. J., KOLLMAN, P. A., NGUYEN, D. T. & CASE, D.
A. (1986). J. Comput. Chem. 7, 230-252.

WLODAWER, A., MACHMAN, J., GILLILAND, G. L., GAL-
LAGHER, W. & WOODWARD, C. (1987). J. MoL Biol. 198,
469-480.

WODAK,-S. J. & JANIN, J. (1980). Proc. Natl Acad. Sci.
USA, 77, 1736-1740.

WOLFENDEN, R., ANDERSON, L., CULLIS, P. M. & SOUTH-
GATE, C. C. B. (1981). Biochemistry, 20, 849-855.

J. Appl. Cryst. (1991). 24, 946-950

M O L S C R I P T : a p r o g r a m to produce both de ta i led and schema t i c plots o f pro te in s t ruc tu res . By PER J'.
KRAULIS,* Department of Molecular Biology, Uppsala University, BMC, Box 590, S-751 24 Uppsala, Sweden

(Received 1 March 1991; accepted 10 April 1991)

Abstract

The MOLSCRIPT program produces plots of protein
structures using several different kinds of representations.
Schematic drawings, simple wire models, ball-and-stick
models, CPK models and text labels can be mixed freely.
The schematic drawings are shaded to improve the illusion
of three dimensionality. A number of parameters affecting
various aspects of the objects drawn can be changed by the
user. The output from the program is in PostScript format.

Introduction

The complexity of protein structures makes it necessary to
use simplified representations in order to present relevant
features. The proper type of representation depends on
exactly what aspect of the structure is of interest. For
example, the active site or binding site of a protein may
best be shown by ball-and-stick models, while the overall
fold of a protein is best represented by schematic drawings
made by hand (Br/ind6n, J6rnvall, Eklund & Furugren,
1975; Holbrook, Liljas, Steindel & Rossmann, 1975;
Richardson, 1981, 1985) or by a computer program
(Priestle, 1988). The ability to combine different types of
representations is important for a number of purposes,

* Current address: Department of Biochemistry, University of
Cambridge, Tennis Court Road, Cambridge CB2 1QW, England.

0021-8898/91/050946-05503.00

such as showing the location of important residues or
ligands in the overall structure. This type of more compli-
cated plot is usually best prepared with a computer pro-
gram (Lesk & Hardman, 1982, 1985).

Our aim was to create a program that could draw
schematic pictures of proteins similar to those popularized
by Jane Richardson, as well as more detailed representa-
tions such as ball and stick. Features such as shading, gray
scale and text labels were deemed necessary to produce
high-quality plots suitable for publication and educational
purposes. The strategy was to utilize the recent advances in
printing technology, mainly laser printers and the Post-
Script language (Adobe Systems Inc., 1985). Another
important aim was to design a powerful and yet concept-
ually simple user interface.

The program

The MOLSCRIPT program reads an input script file that
specifies the coordinate file(s), the desired view obtained by
transforming the atomic coordinates within a fixed coordi-
nate system, which graphics parameters to change from the
default values, and what graphical objects to create from
the atomic coordinates. Fig. l(a) is a plot of the C-terminal
fragment of cellobiohydrolase I (Kraulis et al., 1989)
created by MOLSCRIPT from the input script file shown
in Fig. l(b). The input file is free format, may contain

© 1991 International Union of Crystallography

COMPUTER PROGRAMS 947

comments, and must adhere to a well defined syntax. Fig. 2
shows different views of the B2 subunit of ribonucleotide
reductase (Nordlund, Sj6berg & Eklund, 1990) that illus-
trate some capabilities of M O L S C R I P T .

Different kinds of representations are available in M O L -
SCRIPT . These include the basic wire-drawing, ball-and-
stick and CPK models. Bonds in the wire-drawing and
ball-and-stick models are drawn between atoms that are
closer to each other than a given cut-off distance. In some
cases this criterion is inadequate. For example, in the Fe
center of B2 (Fig. 2c) it is impossible to obtain all bonds
between the Fe atoms and their ligands without also
getting spurious bonds between, for example, the O atoms

(a)

! MolScript vl.l, script file

i CT-CBHI, secondary structure
! and view of cysteine sulphurs.

plot

slab 11.5;

read mol "ctcbhl.pdb";

transform atom *
by centre position atom *
by rotation z 80.0;

turn from 1 to 6;
strand from 6 to 10;
turn from 10 to 24;
strand from 24 to 30;
turn from 30 to 31;
strand from 31 to 36;

cpk atom SG;

! For coil depth-cueing.

! Input coordinate file.

! Transform all atoms by
! centering all atoms and
! then rotate for good view.

! The command 'turn' gives a
! coil that goes through the
! CA atom positions.

! Cysteine sulphur atoms.

end_plot

(b)
Fig. 1. (a) Plot of the C-terminal fragment of ceUobiohydrolase I,

CT-CBH1 (Kraulis et al., 1989), using CPK representation for
the S atoms of the four cysteines in this 36-residue peptide. (b)
Input script file used to produce the picture in (a). No modifi-
cation by hand was made to any of the printed plots shown in
Figs. 1 or 2.

within the carboxylate groups when using the simple dis-
tance cut-off criterion. In M O L S C R I P T this problem is
solved by providing an alternative method to define which
bonds to draw. This uses two different sets of atoms and
requires that a drawn bond must connect an atom within
one set to an atom within the other set. By using different
cut-off distances with these two methods, any desired set of
bonds can be drawn.

Schematic drawings of protein structures use helical
ribbons for a helices, thick arrows for fl strands and
cylindrical coils for loops. These graphical objects are
created directly from the Ca-a tom coordinates of the
protein (see Fig. 3 and below), not by fitting ideal second-
ary structure elements onto the structure. Consequently,
irregularities in the secondary structure elements will be
visible to some degree in the schematic drawings. In most
cases this is actually a useful feature rather than a problem,
since the drawing is closer to reality while still being
simple. For example, in Fig. 2(c), the helix ribbon close to
residue Glu 204 is considerably wider than normal, reflec-
ting a real irregularity in the helix at this point.

The exact appearance of a graphical object is controlled
by a number of parameters, collectively termed the
graphics state. When M O L S C R I P T creates a graphical
object, it is given dimensions, gray scale and shading
according to the graphics state at that stage in the process-
ing of the input script file. Any parameter can be changed
at any point in the input script file. This allows the user
considerable scope for fine tuning a plot, since different
objects in the same plot can be given a different gray scale
or shading. The basic wire model, for example, can be
embellished by using different line widths, gray scale,
dashing or depth cueing for different parts. M O L S C R I P T
allows the use of colors defined either by the RGB (red-
green-blue) or by the HSB (hue-saturation-brightness)
system. Of course, the available printer or display device
determines how colors are rendered.

Shading of surface segments is used to emphasise the
three dimensionality of the objects used for the schematic
representations (helix, strand, coil). The surface color of a
graphical object is varied between black and the user-
specified color as a function of the angle between the
normal for each plane segment and the vector pointing
towards the viewer (Foley & Van Dam, 1982). The param-
eters controlling the shading function are part of the
graphics state, and hence can be changed by the user.
During tests of the program, it was found that the shading
of helix-ribbon plane segments became aesthetically more
pleasing if the shading angle was corrected for the angle
between the helix axis and the vector towards the viewer.
In effect, the shading angle is computed as if the helix axis
were in the plane of the paper (see Fig. 2).

For spheres (in CPK and ball-and-stick models) a very
simple, yet effective, shading method is used. This method,
which may be called Donald-Duck shading, uses three
concentric arcs and an idealized reflection of a window to
give the illusion of shadow and highlighting on a sphere
(see Fig. la).

An important feature of M O L S C R I P T is the atom and
residue selection mechanism by which a set of atoms or
residues is given as argument to a command that produces
graphical objects. This facility was inspired by a similar

948 COMPUTER PROGRAMS

feature in the refinement p rogram X - P L O R (Brfinger,
1988). It is, for example, possible to make C P K or ball-
and-stick models of any set of atoms, not just of predefined
subsets. This allows M O L S C R I P T to be of use also for
making plots o f non-prote in structures.

Text labels can be posi t ioned either at explicit coordi-
nates or at the positions of selected atoms. Labels can be
manipula ted in ways that allow output o f Greek characters
as par t of a label (e.g. in a tom names) and that allow the
residue name or type of a toms to be inserted into the label

for each specified atom. The size of label characters is
depth cued, so that a label is smaller at larger distances
f rom the viewer. The positions of labels can be fine tuned
to avoid overlaps with other parts of the plot.

The graphical objects created within M O L S C R I P T can,
in principle, be used as input for other rendering programs.
In particular, there is an option in M O L S C R I P T to create
files suitable for the R A S T E R 3 D program (written by
David Bacon), which renders ray-traced pictures composed
of spheres and t r iangular plane segments.

(a)

//

(b)

(c)

Fig. 2. (a) Plot of the B2 subunit of ribonucleotide reductase
(Nordlund et al., 1990) showing the shading of helices with the
two Fe atoms as black spheres. (b) Same as (a), but rotated 90 °
around the x axis for a view into the a barrel, showing the
location of the Fe atoms. Combined 90 ° views of a structure,
such as (a) and (b), are often more effective than stereo pictures
for conveying spatial relationships in a structure. (c) Close-up
view of the Fe atoms in B2 and residues interacting with them.
The residues are shown in ball-and-stick representation. The
helix in front is shown as a coil to avoid obscuring details. In
this plot it was necessary to use both methods available in
MOLSCRIPT for defining which bonds to draw (see the text).
White bonds use the single-atom-set method, while the gray
bonds use the two-atom-sets method with a larger cut-off
distance.

COMPUTER PROGRAMS 949

Implementation

The basic strategy in implementing M O L S C R I P T was to
use the facilities of the PostScript language to maximum
advantage. The PostScript imaging model states that any
marks (lines, surface color) applied to the display surface
completely obscures any previously Applied marks at that
position (Adobe Systems Inc., 1985). This is used in MOL-
SCRIPT to achieve hidden-surface removal by simply
depth sorting all graphical segments and then writing the
farthest segments first to the PostScript file. No special
hidden-surface removal algorithm has been implemented in
M O L S C R I P T beyond this trivial depth sort. Of course,
this requires that the graphical segments are small enough
not to overlap in complicated ways. Also, all graphical
segments have to be stored in an intermediate representa-
tion within the program until an entire plot has been
created.

The helix is created by first computing a curve using the
Hermite spline function (Foley & Van Dam, 1982) based
on the coordinate and helix tangent vector at each Ca
atom. The ribbon segments are then made by translating
this curve parallel to the helix axis. The helix tangent and
axis vectors at each Ca atom are constructed geometrically
from vectors involving the neighboring Ca atoms (see
Fig. 3a).

i-I

/~H ~ i + l :'

""'.. R ::
"'".... eL : C

i
(a)

i
O - .

o°°°" p • .. •

o ° ° °" ~[/V,, • " - • . O ~ O i + l i-1
Fig. 3. (a) Construction of helix vectors for the atom Ca(i). The

vector C is the vector from atom Ca(i - 1) to atom Ca(i +1).
Vector R is perpendicular to the plane formed by the atoms
Ca(/ 1), Ca(i) and Ca(i + 1). Both C and R are normalized.
The helix axis vector is then computed as H = (cosa)R +
(sina)C and the helix tangent vector as T = (cos/3)C - (sin/3)R.
The constants a - 32 and/3 = 11 were determined empirically
and are optimized for a regular a helix. Note that C and R are
perpendicular but H and T are not. (b) The definition of vectors
for atom Ca(i) used to create the fl-strand arrow. The vector S
is the strand-arrow direction vector for atom Ca(i). The arrow
normal vector P at atom Ca(i) is the vector from the midpoint
between atoms Ca(i -1) and Ca(i + 1) to atom Ca(i). The
vector W is used for creating the arrow planes and is simply
perpendicular to S and P. Subsequent P vectors must not have
an angle greater than 90' between them, otherwise they are
turned around.

The /3-strand arrow is made from direction and plane
vectors computed as described in Fig. 3(b). The path of the
arrow is a Hermite curve through the Ca-atom coordinates
smoothed using an algorithm described by Priestle (1988).
The number of smoothing iterations can be changed by the
user.

The coil is also a Hermite spline curve through the
Ca-atom coordinates which have been smoothed using
Priestle's algorithm. The smoothing step can be bypassed if
the user wishes the coil to pass through the real Ca atom
positions (see Fig. 2c).

The M O L S C R I P T program can be viewed as a special
computer language compiler. The 'source code' for MOL-
SCRIPT are the input script file and coordinate file, while
the output PostScript file is the 'object code'. The final
plot, produced by sending the PostScript file to, for
example, a laser printer, can be seen as the "executable'.
The input script file parsing module in M O L S C R I P T is
based on the principles for syntax definition and parsing as
described by Wirth (1976). The basic graphics algorithms
were taken from Foley & Van Dam (1982).

The program is written in Fortran77 and runs on a
Silicon Graphics IRIS-4D system. It has been ported to
other UNIX systems, such as the Alliant FX/40 and
DECstation 3100, as well as to VAX/VMS systems with
very few changes. The source code relies extensively on a
number of general Fortran subroutine packages which
were originally developed for other purposes (Kraulis,
1989).

The PostScript code produced by the program follows
the structuring conventions as laid down by Adobe
Systems Inc. (1985) and is suitable for direct output on, for
example, a laser printer or for viewing on a display using a
PostScript previewer program ('psview" on Silicon
Graphics IRIS-4D systems).

The M O L S C R I P T program, with a manual and a set of
example input script files, is available from the author.

The author thanks T. Alwyn Jones, Mats Kihl6n, Ylva
Lindqvist, Hans Eklund, Erling Wikman, Carl-lvar Brfin-
d6n and others at the Biomedical Centre, Uppsala, for
support, ideas and comments. Hans Eklund provided the
ribonucleotide reductase B2 coordinates. This work was
supported by Nordisk Industrifond and the Swedish
Natural Science Research Council (NFR).

References

ADOBE SYSTEMS INC. (1985). PostScript Language Refer-
ence Manual. Reading, MA: Addison-Wesley.

BR~.NDI~N, C.-I., JORNVALL, H., EKLUND, H. & FURUGREN,
B. (1975). In The Enzymes, edited by P. D. BOYER, Vol.
11, pp. 103-190. New York: Academic Press.

BRONO-R, A. T. (1988). X-PLOR. Version 1.5. Manual.
Yale Univ., New Haven, Connecticut, USA.

FOLEY, J. D. & VAN DAM, A. (1982). Fundamentals of
Interactive Computer Graphics. Reading, MA: Addison-
Wesley.

HOLBROOK, J. J., LILJAS, A., STEINDEL, S. J. & ROSSMANN,
M. G. (1975). In The Enzymes, edited by P. D. BOYER,
Vol. 11, pp. 191-292. New York: Academic Press.

KRAULIS, P. J. (1989). J. Magn. Reson. 84, 627-633.

950 COMPUTER PROGRAMS

KRAULIS, P. J., CLORE, G. M., NILGES, M., JONES, T. A.,
PETTERSSON, G., KNOWLES, J. 8/~ GRONENBORN, A. M.
(1989). Biochemistry, 28, 7241-7257.

LESK, A. M. & HARDMAN, K. D. (1982). Science, 216,
539-540.

LESK, A. M. 8/~ HARDMAN, K. D. (1985). Methods Enzymol.
115, 381-390.

NORDLUND, P., SJ()BERG, B.-M. & EKLUND, H. (1990).
Nature (London), 345, 593-598.

PRIESTLE, J. P. (1988). J. Appl. Cryst. 21, 572-576.
RICHARDSON, J. S. (1981). Adv. Protein Chem. 34, 16%339.
RICHARDSON, J. S. (1985). Methods Enzymol. 115, 359-380.
WIRTH, N. (1976). Algorithms + Data Structures = Pro-

grams. Englewood Cliffs, N J: Prentice-Hall.

J. Appl. Cryst. (1991). 24, 950-955

E P I T A X : a computer-assisted graphical representation of the bicrystallography of general interfaces.
By F. GUILLET* and S. HAGI~GE,* Ecole Nationale Supdrieure de Chimie de Paris, Laboratoire de Mdtallurgie
Structurale, 11 Rue P. et M. Curie, 75231 Paris, France

(Received 17 January 1991; accepted 10 April 1991)

Abstract

A program has been developed to help design a geometric
representation of the atomic structure of interfaces
between two crystalline structures. The C-language pro-
gram run on a graphics-oriented computer has proved to
be a simple precise tool to use. It provides a clear picture
of the atomic positions at the interface and, simultane-
ously, a stereographic projection and diffraction pattern
for each crystal and bicrystal. Examples of multiple
twinning in the sphalerite structure and of various metal-
ceramic interfaces are presented.

Introduction

The atomic structure of intergranular and interphase
boundaries has been extensively studied and reviewed peri-
odically (cf Bourret, 1990, for a most recent review). Every
analysis of a theoretical or experimental result has to go
through geometric modeling of the interface in which the
crystal structure of each phase, the mutual orientation
relationship (rotation, translation) between the two phases
and the orientation and position of the boundary plane has
to be fully determined and graphically represented. Rulers
and protractors on tracing paper are the tools usually used
for this representation. Furthermore, in non-cubic crystals,
the irrationality of the lattice parameters introduces a
supplementary imprecision in the drawing.

Traditionally, one has to represent each crystal by its
projection on a lattice plane, in order to have an 'end-on'
view of the boundary. Firstly, the projection often requires
several equivalent planes in order to have a full representa-
tion of the structure. Secondly, the two projections have to
be rotated and translated with great precision. Thirdly, on
this dichromatic pattern (i.e. the superimposition of the
two projections) the boundary plane has to be positioned,
and, fourthly, the excess atoms removed.

The logic of this procedure has never been questioned,
but its realization has always been tedious and time con-
suming. The purpose of the computer program is to carry

* Also at Centre National de la Recherche Scientifique, Centre
d'Etudes de Chimie M&allurgique, 15, Rue Georges Urbain,
94407 Vitry-sur-Seine Cedex, France.

0021-8898/91/050950-06503.00

out the same procedure in a prccisc, easy to use and
efficient way. Once installed on a routine basis, it can be
used on its own to provide a clear picture of the interface.
The input data (rotation axis and rotation angle) can
be provided, for instance, by a transmission-electron-
microscopy study. Eventually, the atomic position around
the interface could be used as a starting configuration for
relaxation calculation (static, dynamic, electronic).

Outline of the program

The procedure used by the program in order to build an
interface between two crystals is very similar to the one
followed by experimentalists.

Once the input data crystal files are created, the first step
of the procedure is to find the projection plane for each
crystal (a plane perpendicular to the interface plane).
Three-dimensional (3D) views of the two crystals, each
showing eight cells of the crystalline lattice, are displayed.
A view can be rotated around any crystallographic axis;
any crystallographic plane can be displayed; the indices of
the current plane on the screen can be calculated. A
stereographic projection and a simple diffraction diagram
(including systematic extinctions) of a current view can be
obtained on separate windows. These commands allow the
user to try different crystalline orientations if an exact
relationship has not been completely determined experi-
mentally.

The next step is the superimposition of the two projec-
tions. Since the number of atoms displayed in the 3D view
is small (64, excluding additional atoms inside the unit
cell), a larger 2D view has to be calculated. The program
determines two directions generating a plane and the
number of equivalent planes to display in order for the
projection to be complete. This procedure makes it pos-
sible to keep track of the first atomic plane built (which
can be arbitrarily placed at altitude zero) and therefore to
display the 2D unit cell of this plane. The number of atoms
displayed on a 2D view may vary from 100 to 2000 atoms
per crystal.

Once the projections are superimposed, any of them can
be rotated around any atomic position of the same crystal
or translated in any direction. Since the interface plane is

© 1991 International Union of Crystallography

