Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method

A. Boultif and D. Louër
INDEXING OF POWDER DIFFRACTION PATTERNS FOR LOW SYMMETRY LATTICES
BY THE SUCCESSIVE DICHTOMY METHOD

BY A. BOULTIF AND D. LOUÈR*

Laboratoire de Cristallochimie (URA 254), Université de Rennes I,
Avenue du Général Leclerc, 35042 Rennes cedex, France.

* To whom all correspondence should be addressed.
APPENDIX

ANALYSIS OF BOUNDS \(Q_{\pm} \) FOR MONOCLINIC SYMMETRY WHEN THE PRODUCT \(hl \) IS NEGATIVE

\(Q_{hkl}(=1/d_{hkl}^2) \) is related to the direct parameters of the unit cell \((a, b, c, \beta)\) through

\[
Q = f(A, C, \beta) + g(B),
\]

where

\[
f(A, C, \beta) = \frac{k^2}{A^2} + \frac{l^2 - 2 \chi \cos \beta}{C^2} \quad \text{and} \quad g(\beta) = \frac{k^2}{B^2},
\]

with \(A = a \sin \beta, B = b \) and \(C = c \sin \beta \).

The variable of the \(g\)-function is independent of the variables in the \(f\)-function. The bounds \(Q_- \) and \(Q_+ \) are then:

\[
Q_- = f_{\min} + g_{\min} \quad \text{and} \quad Q_+ = f_{\max} + g_{\max}.
\]

\(f_{\min} \) and \(g_{\min} \) are the smallest values taken by \(f \) and \(g \) in their respective defined ranges \(F = [A, A_+] \times [C, C_+] \) and \(G = [B, B_+] \); \(f_{\max} \) and \(g_{\max} \) are their greatest values.

I. Values of \(g_{\min} \) and \(g_{\max} \)

For the \(g\) function, it is clear that:

\[
g_{\min} = \frac{k^2}{B^2} \quad \text{and} \quad g_{\max} = \frac{k^2}{B^2}.
\]

II. Determination of the values of \(f_{\min} \) and \(f_{\max} \)

II.1 Generalities

The determination of \(f_{\min} \) and \(f_{\max} \) is particularly laborious. First, note that the partial derivative

\[
\frac{\partial f}{\partial \beta} = \frac{2 \chi \sin \beta}{AC}
\]

is always negative. Then, \(f_{\max} \) corresponds to \(\beta = \beta \), and \(f_{\min} \) to
$\beta = \beta_+$ and also the f-function has no extremum in its domain F. Indeed, the value of A and C which should give these extrema must satisfy the following equations:

$$
\begin{align*}
\frac{\partial f}{\partial A} &= 0, \\
\frac{\partial f}{\partial C} &= 0
\end{align*}
\quad \iff
\begin{align*}
\frac{h}{A} &= \frac{l \cos \beta}{C} \\
\frac{l}{C} &= \frac{h \cos \beta}{A}
\end{align*}
$$

(4)

(5)

It is evident that these β values have no physical sense. Consequently, f_{min} and f_{max} necessarily correspond to points on the boundaries $M_1M_2M_3M_4$ and $N_1N_2N_3N_4$, respectively, of the domain F (Fig. 1).

![Fig. 1. Boundaries of the domain F.](image)

Figs. 1. Boundaries of the domain F: (a) $\beta = \beta_+$, the point of the maximum is located on the full line $N_1N_2N_3N_4$; (b) $\beta = \beta_0$, the point of the minimum is located on the full line $M_1M_2M_3M_4$.

The extrema located on each of the segments M_1M_2, M_3M_4, N_1N_2 and N_3N_4 (Fig. 1) have coordinates A, C, β which satisfy equation (5). Then:

$$
\beta = \beta_0 = \beta_+; \quad A = A_0 = A_+; \quad C = C_0 = \frac{l A_\pm}{h \cos \beta_\pm} \quad (\text{if } \beta_\pm \neq 90^\circ).
$$

(6)

Likewise, if $\beta_\pm \neq 90^\circ$, the coordinates of the extrema on the segments M_1M_4, M_2M_4, N_1N_4 and N_3N_4 are:

$$
\beta = \beta_0; \quad A = A_+ = \frac{h C_\pm}{l \cos \beta_\pm} \quad [\text{see (4)}]; \quad C = C_0 = C_\pm.
$$

(7)
At these points, the respective extrema have the value:

\[f_A = f(A_+, C_+, \beta_+), \quad f_C = f(A_-, C_-, \beta_-) = \frac{h^2 \sin^2 \beta_-}{A_-^2} \quad \text{and} \quad f_C = f(A_+, C_+, \beta_+) = \frac{h^2 \sin^2 \beta_+}{A_+^2}. \]

If \(\beta_\pm = 90^\circ \) (only possible for \(\beta_+ \) because \(\beta \) is an obtuse angle), the extrema \(f_A \) and \(f_C \) do not exist, since the equations (4) and (5) are not satisfied (\(h \) and \(l \) not equal to zero). In these cases, \(f_{\text{min}} \) corresponds to one of the four corners \(M_1, M_2, M_3, M_4 \) (Fig. 1a) and \(f_{\text{max}} \) to one of the four other corners \(N_1, N_2, N_3, N_4 \) (Fig. 1b).

Let us show that \(f_A \) (or \(f_C \)) is a minimum and not a maximum. When \(C \) and \(\beta \) are fixed, \(f \) becomes a single-variable function: \(f(A, C_\rho, \beta_\rho) = \Phi(A) \). Then:

\[\frac{d\Phi}{dA} = -\frac{2h^2}{A^3} + \frac{2hl \cos \beta_\rho}{A^2 C_\rho}. \]

\(\frac{d\Phi}{dA} \) has the same sign as \(\frac{A^3}{2h^2} \frac{d\Phi}{dA} \). Since \(A_\rho \) is given by (7), it follows that:

\[\frac{A^3}{2h^2} \frac{d\Phi}{dA} = \frac{A}{A_\rho} - 1 \Rightarrow \frac{dF}{dA} > 0 \quad \text{when} \quad A > A_\rho \quad \text{and} \quad \frac{dF}{dA} < 0 \quad \text{when} \quad A < A_\rho. \]

It can be seen that \(f_A \) is thus a minimum. The minimum \(f_A \) (or \(f_C \)) has only to be taken into account when \(A_\rho \) (or \(C_\rho \)) is included in the range \([A_-, A_+] \times [C_-, C_+]\).

It is now necessary to demonstrate that the values \(A_\rho \) and the values \(C_\rho \) [see (6) and (7)] cannot belong simultaneously to the domain \([A_-, A_+] \times [C_-, C_+]\). Indeed, in the reverse case, one should have:

\[\frac{h C_\pm}{l \cos \beta_\rho} \leq A_+ \]

and

\[\frac{1 A_\pm}{h \cos \beta_\rho'} \leq C_+. \]

where \(\beta_\rho = \beta_+ \) or \(\beta_\rho = \beta_- \) and \(\beta_\rho' = \beta_+ \) or \(\beta_\rho' = \beta_- \). (9) and (10) imply that:
\begin{align*}
\left(\cos \beta \right) \left(\cos \beta' \right) & \geq \frac{C_+}{C_+} \frac{A_+}{A_+} \\
\Rightarrow \left| \cos \beta \right| & \geq \min \left(\frac{C_+}{C_+}, \frac{A_+}{A_+} \right). \tag{11}
\end{align*}

Let the minimum values of \(\frac{C_+}{C_+}, \frac{A_+}{A_+} \) be \(\varphi(X) \), where \(\varepsilon \) is the dichotomy step (the initial value is 0.4 Å). Then, to determine the smallest value of \(\varphi(X) \),

\[\frac{d\varphi}{dX} = \frac{\varepsilon}{(X + \varepsilon)^2} > 0 \Rightarrow \left(\frac{X}{X_{+ \text{min}}} \right) = \frac{x_{\text{min}} \sin \beta}{x_{\text{min}} \sin \beta + \varepsilon} = \frac{x_{\text{min}}}{x_{\text{min}} + \varepsilon \sin \beta}, \]

where \(x_{\text{min}} \) is the minimum value of the dimensions of the direct unit cell. In the program, this value is fixed at 2.5 Å and the maximum value of the \(\beta \) angle is fixed at 140°; then

\[\left(\frac{X}{X_{+ \text{min}}} \right) = 0.8007 \Rightarrow \beta > 143°. \]

Condition (11) is not possible for \(\beta < 140° \), therefore \(A_+ \) and \(C_+ \) cannot both be in the domain \([A_-, A_+] \times [C_+, C_+]\). Note that inequalities (9) and (10) are not compatible.

After these general considerations, \(f_{\text{min}} \) and \(f_{\text{max}} \) will be determined for the different possible cases. It should be remembered that:

a) the product \(hl \) is negative;
b) the parameter \(A \) is always greater than, equal to, parameter \(C \);
c) the inequality (11) is impossible if \(\beta < 140° \);
d) the inequalities (9) and (10) are inconsistent if \(\beta < 140° \);
e) the \(\beta \) coordinate of \(f_{\text{min}} \) is \(\beta_+ \); likewise, the \(\beta \) coordinate of \(f_{\text{max}} \) is \(\beta \);
f) because the extrema \(f_A \) and \(f_C \) considered above are minima, it can be deduced that:

(i) \(f_{\text{min}} \) is either one of these extrema or the \(f \) value at one of the four corners \(M_1, M_2, M_3 \) and \(M_4 \) (Fig. 1a),

(ii) \(f_{\text{max}} \) necessarily occurs at one of the four corners \(N_1, N_2, N_3 \) and \(N_4 \) (Fig. 1b).

Let the boundaries be \(M_1M_2M_3M_4 \) and \(N_1N_2N_3N_4 \) (Fig. 1). The different possible cases will now be analysed.
II.2 Calculation of f_{min} and f_{max} for the different cases

II.2.1 Existence of the minimum point on the M_2M_3 segment

Let f_{A+} be this extremum: $f_{A+} = \frac{l^2}{c^2} \sin^2 \beta_+$. By taking into account the above derivations, extremum points cannot exist on the segments M_1M_2, M_3M_4, N_1N_2 and N_1N_4. Consequently, f_{min} is equal to f_{A+}, since the other extremum $f_{A-} = \frac{l^2}{c^2} \sin^2 \beta_-$ located on the line M_1M_4 is greater than f_{A+} (f_{A+} and f_{A-} are directly comparable):

$$f_{min} = \frac{l^2}{c^2} \sin^2 \beta_+$$

Moreover the extremum point on M_2M_3 is located between M_2 and M_3; consequently:

$$\frac{h \cdot c}{l \cos \beta_+} \leq A_+ \Rightarrow \cos \beta_+ \leq \frac{h \cdot c}{l A_+} \Rightarrow \cos \beta_+ \geq \frac{l A_+}{h \cdot c}$$ \quad \text{[see II.1(d)]}

$$\Rightarrow C_+ \leq \frac{l A_+}{h \cdot \cos \beta_+}$$

It can be concluded that the value of f-function at N_1 is greater than at N_2 (Fig. 2); in the same way its value at N_3 is greater than at N_4. Therefore f_{max} corresponds to C_-.

Fig. 2. Choice of the value of the maximum of f-function: $C_+ = \frac{lA_+}{h \cdot \cos \beta}$ being the minimum point on line N_1N_2, the value of the f-function at N_1 is greater than at N_2.

\[\text{\small 0 c_- c_+ $2c_-$ $2c_+$} \]
In order to compare the values of the function f at the points N_1 and N_4, a change in the variable $X = \frac{1}{A}$ can be made: $X_+ = \frac{1}{A}$ and $X_- = \frac{1}{A_+}$. At a point M, between N_1 and N_4 and having a coordinate A, it follows that:

$$f(A, C, \beta) = \frac{h^2}{A^2} + \frac{l^2}{C^2} - \frac{2hl \cos \beta}{AC} = h^2X^2 + \frac{l^2}{C^2} - \left(\frac{2hl \cos \beta}{C}\right)X = T(X).$$

If X_o is the minimum point of this parabolic function $T(X)$, then:

- for $X_o > \frac{X_+ + X_-}{2}$, the maximum of f is obtained for X_- (dotted line in Fig. 3),
- for $X_o < \frac{X_+ + X_-}{2}$, the maximum of f is obtained for X_+ (full line in Fig. 3).

With the original variable A, it follows that:

$$X_o = \frac{1}{A_o} = \frac{l \cos \beta}{hC} = \frac{X_+ + X_-}{2} - \frac{1}{2} \left(\frac{1}{A} + \frac{1}{A_+}\right).$$

$$f_{max} = f(A_+, C, \beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{A} + \frac{1}{A_+}\right) < \frac{l \cos \beta}{hC}$$

and $$f_{max} = f(A_-, C, \beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{A} + \frac{1}{A_+}\right) \geq \frac{l \cos \beta}{hC}.$$
II.2.2 Existence of the minimum point on the M_1M_4 segment (and no extremum on M_2M_3)

Let A_{ε} be the coordinate A of this extremum and $\chi(C) = f(A_{\varepsilon}, C, \beta_\varepsilon)$ (Fig. 4).

Then:

$$\frac{d\chi}{dC} = \frac{\partial f}{\partial C} \bigg|_{A_{\varepsilon}, \beta_\varepsilon} = \frac{2l^2}{C^2} \left(\frac{l}{C} \frac{\cos^2 \beta_\varepsilon}{A_{\varepsilon}} \right) = \frac{2l^2}{C^2} \left(\frac{l}{C} \frac{C}{C_+} \cos^2 \beta_\varepsilon \right)$$

$$\frac{d\chi}{dC} = 0 \Rightarrow C = C_1 = \frac{C}{\cos^2 \beta_\varepsilon} \quad (l \neq 0),$$

where C_1 is a minimum point for the function χ. Moreover, C_+ is lower than C_1, otherwise

$$C_+ > C_1 \Rightarrow C_+ > \frac{C}{\cos^2 \beta_\varepsilon} \Rightarrow \cos^2 \beta_\varepsilon > \frac{C}{C_+} \Rightarrow k \cos \beta_\varepsilon > \frac{C}{C_+} \quad (k \cos \beta_\varepsilon < 1).$$

This inequality is impossible, as is the inequality (11) [see II.1(c)]. It follows that

$f(A_{\varepsilon}, C_+, \beta_\varepsilon) > f(A_{\varepsilon}, C_+, \beta_\varepsilon)$, which means that the minimum corresponds to C_+ and not to C_-. This minimum is either $f(A_{\varepsilon}, C_+, \beta_\varepsilon)$ or $f(A_{\varepsilon}, C_+, \beta_\varepsilon)$, depending on whether the value

$$A_{\varepsilon} = \frac{h C_+}{l \cos \beta_\varepsilon}$$

is lower than A_- or greater than $A_+.$

Fig. 4 - Comparison of $\chi(C_+)$ and $\chi(C_-).$ On the line $(A): A = A_{\varepsilon}$ constant, the minimum of $\chi(C)$ is obtained from $C_1: C_1 > C_+.$; then $\chi(C_+) > \chi(C_-).$
Now, the minimum point on M_1M_4 is located between M_1 and M_4; then:

\[
\frac{h \cos \beta_+}{l \cos \beta_+} > A \quad \Rightarrow \quad \frac{h C_+}{l \cos \beta_+} > A
\]

A graphical representation, as in Fig. 2, of the function $H(A) = f(A, C_+, \beta_+)$, should show that:

\[
f_{min} = f(A_+, C_+, \beta_+).
\]

The same demonstration as in case II.2.1, gives:

\[
f_{max} = f(A_+, C, \beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{A_+} + \frac{1}{A} \right) < \frac{l \cos \beta}{h C_+},
\]

and \[
f_{max} = f(A_+, C, \beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{A_+} + \frac{1}{A} \right) \geq \frac{l \cos \beta}{h C_+}.
\]

II.2.3 Existence of the minimum point on the M_3M_4 segment (and no extremum on M_2M_3 and M_1M_4)

The value of this extremum is \(f_{C_+} = \frac{h^2 \sin^2 \beta_+}{A_+^2} \); this is lower than the extremum \(f_C = \frac{h^2 \sin^2 \beta_+}{A^2} \), which exists on the line M_1M_2. \(f_{C_+} \) and \(f_C \) are lower than the values of the function at the points M_1, M_2, M_3 and M_4, because \(f_{C_+} \) and \(f_C \) are the minimum quantities on the segments M_1M_2 and M_3M_4, respectively. Consequently, \(f_{min} = f_{C_+} \), i.e.:

\[
f_{min} = \frac{h^2 \sin^2 \beta_+}{A_+^2}.
\]

Due to the symmetry of \(C \) and \(A \) in equation (1), a similar demonstration as in case II.2.1, applied to the parameter \(C \), gives:

\[
f_{max} = f(A_+, C_+, \beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{C_+} + \frac{1}{C} \right) < \frac{h \cos \beta}{l A_+},
\]

and \[
f_{max} = f(A_+, C, \beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{C_+} + \frac{1}{C} \right) \geq \frac{h \cos \beta}{l A_+}.
\]
II.2.4 Case where the minimum point exists only on M_1M_2

The same demonstration as in case II.2.2 can be applied here. The results are:

\[f_{\min} = f(A_+, C_+, \beta_+) \]

\[f_{\max} = f(A_-, C_+, \beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{C_+} + \frac{1}{C_+} \right) < \frac{h \cos \beta_+}{lA} \]

and

\[f_{\max} = f(A_+, C_+, \beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{C_+} + \frac{1}{C_+} \right) \geq \frac{h \cos \beta}{lA} \]

II.2.5 Case where no minimum point exist on the line $M_1M_2M_3M_4$

To select between the points (corners) giving the lowest and the greatest value of f, two conditions have to be tested:

II.2.5.1 Case where $\cos \beta < \frac{lA_+}{hC}$

In this case, the following inequalities occur simultaneously:

\[C_+ > \frac{lA_+}{h \cos \beta_+} \quad \text{[see (12)]} \]

\[C_+ > \frac{lA_+}{h \cos \beta} \quad (A_- < A_+) \]

\[C_+ > \frac{lA_+}{h \cos \beta_+} \quad (|\cos \beta| > |\cos \beta_+|) \]

\[C_+ > \frac{lA_+}{h \cos \beta_+} \quad (A_+ < A_+) \]

The two last expressions show that the minimum points on the lines M_1M_2 and M_3M_4 have coordinates $\frac{lA_+}{h \cos \beta_+}$ and $\frac{lA_+}{h \cos \beta_+}$ and lower than C_+. The graphic representations of $f(A_-, C_+, \beta)$ and $f(A_+, C_+, \beta_+)$, similar to Fig. 2, confirm that f_{\min} corresponds to C_+ and f_{\max} to
Moreover, the relation \(A_+ = \frac{hC_+}{\cos \beta_+} < A_+ \) is inconsistent with inequality (12) [see II.1(d)].

\(A_+ \) is not within \([A_-, A_+]\) and is greater than \(A_- \); consequently, \(A_+ \) is greater than \(A_+ \). Then

\[
\sigma'_{\text{min}} = f(A_+, C_+, \beta_+).
\]

Also, it follows that \(\frac{hC_+}{\cos \beta_+} > A_+ \) and consequently

\[
\sigma'_{\text{max}} = f(A_+, C_+, \beta_+).
\]

II.2.5.2 Case where \(\cos \beta_+ \geq \frac{IA_+}{hc} \)

1) If \(\cos \beta_+ \leq \frac{IA_+}{hC_+} \Rightarrow \cos \beta_+ \leq \frac{IA_+}{hC_+} \Rightarrow C_+ \geq \frac{IA_+}{h \cos \beta_+} \[
\]
 \(\Rightarrow C_+ \geq \frac{IA_+}{h \cos \beta_+} \) [in the inverse case the minimum point \(\frac{IA_+}{h \cos \beta_+} \) is on the segment \(M_1M_2 \) (Fig. 1)]

\[
\Rightarrow C_+ \geq \frac{IA_+}{h \cos \beta_+} \) [because \(C_+ > \frac{C_+}{A_+} \) given by II.1(b)]

\[
\Rightarrow C_+ \geq \frac{IA_+}{h \cos \beta_+} \) [in the inverse case the minimum point is on the segment \(M_3M_4 \) (Fig. 1)].

In other respects, hypothesis (i) imposes the condition \(\cos \beta_+ \geq \frac{hC_+}{IA_+} \) [see II.1(d)]. Then, \(A_+ < \frac{hC_+}{\cos \beta_+} \). Consequently, \(\sigma'_{\text{min}} \) corresponds to \(A_+ \) and \(\sigma'_{\text{max}} \) to \(A_- \). This results combined with the hypothesis (i), gives

\[
\sigma'_{\text{min}} = f(A_+, C_+, \beta_+),
\]

\[
\sigma'_{\text{max}} = f(A_-, C_+, \beta_+).
\]
ii) If \(\cos \beta_+ \rightarrow \frac{IA}{hC_+} \Rightarrow \cos \beta_+ \geq \frac{IA_\pm}{hC_\pm} \) (because \(\frac{IA_\pm}{hC_\pm} \leq \frac{IA}{hC_+} \))

\[\Rightarrow C_\pm < \frac{IA_\pm}{h \cos \beta} \]

The coordinates of the minimum points on the segment \(N_1N_2 \) and \(N_3N_4 \) (\(\frac{IA_+}{h \cos \beta_+} \) and \(\frac{IA_-}{h \cos \beta_-} \)) are greater than \(C_+ \). Then \(f_{\text{max}} \) corresponds to \(C_- \). In order to see if it is \(A_- \) or \(A_+ \) which gives this maximum, it is necessary to proceed as in II.2.1:

\[f_{\text{max}} = f(A_+, C_+, \beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{A_+} + \frac{1}{A_-} \right) < \frac{\cos \beta_+}{hC_+} \]

and \(f_{\text{max}} = f(A_-, C_-, \beta) \quad \text{if} \quad \frac{1}{2} \left(\frac{1}{A_-} + \frac{1}{A_+} \right) \geq \frac{\cos \beta_-}{hC_-} \)

a) If \(\cos \beta_+ < \frac{hC_+}{IA_+} \Rightarrow \cos \beta_+ \geq \frac{IA_\pm}{hC_\pm} \) [see II.1(d)]

it follows that \(f_{\text{min}} \) corresponds to \(A_+ \), i.e.

\[f_{\text{min}} = f(A_+, C_+, \beta) \]

b) If \(\cos \beta_+ \geq \frac{hC_+}{IA_+} \Rightarrow A_\pm \leq \frac{hC_+}{\cos \beta_+} \)

\[\text{-- if } \cos \beta_+ < \frac{IA_\pm}{hC_-} \Rightarrow \cos \beta_+ \geq \frac{hC_\pm}{IA_\pm} \] [see II.1(d)]

(13)

then \(f_{\text{min}} \) corresponds to \(A_+ \). Taking into account this hypothesis, it follows that:

\[f_{\text{min}} = f(A_+, C_+, \beta_+) \]

Note: In this latter case, it is possible to deduce \(f_{\text{max}} \) directly without a supplementary test.

Indeed, from (13), \(f_{\text{max}} \) corresponds to \(A_- \):

\[f_{\text{max}} = f(A_-, C_-, \beta_-) \]
\[
\text{if} \quad \cos \beta_+ \geq \frac{1A_+}{h C_+} \quad \Rightarrow \quad C_+ \leq \frac{1A_+}{h \cos \beta_+} \quad \text{(because the extremum} \quad \frac{1A_+}{h \cos \beta_+} \in [C_-, C_+])
\]

(14)

\[
\Rightarrow C_+ \leq \frac{1A_+}{h \cos \beta_+} \quad [\quad \frac{C_+}{A_+} < \frac{C_+}{A_+} \quad \text{given by II.1(b)}]
\]

(15)

\[
\Rightarrow C_+ \leq \frac{1A_+}{h \cos \beta_+} \quad \text{[in the inverse case, the minimum point is on the segment } M_1M_2 \text{ (Fig. 1)]}
\]

From (14) and (15), \(f_{\text{min}} \) corresponds to \(C_+ \). This result used with the hypothesis (b) shows that \(f_{\text{min}} \) corresponds to \(A_+ \):

\[
f_{\text{min}} = f(A_+, C_+, \beta_+).
\]

To conclude, from the \(f_{\text{min}} \) and \(f_{\text{max}} \) expressions, rigorously derived for all possible cases when \(h \ell < 0 \) (§ II), and from the \(q_{\text{min}} \) and \(q_{\text{max}} \) expressions (§ I), the bounds \(Q_+(h\ell t) \) and \(Q_+(h\ell t) \) are calculated according to equations (2). The results of these mathematical calculations are summarised elsewhere in Table 1 and have been incorporated in the computer program DICVOL91.