
482

J. Appl. Cryst. (1993). 26, 482-494

C1F Applications. IV. CIFtbx: a Tool Box for Manipulat ing CIFs*

BY SYDNEY R. HALL

Crystallography Centre, University of Western Australia, Nedlands 6009, Australia

(Received 12 December 1992; accepted 15 January 1993)

Abstract
CIFtbx is a subroutine library which provides simple com-
mands for reading and writing CIF data. This library is
referred to as the CIF (software) tool box. CIFtbx routines
may be applied to any Fortran program. The library is writ-
ten in Fortran77 and may be installed without modification
on most computers. CIFtbx is public-domain software.

Introduction

This paper is part of a series on CIF applications. Other
programs in this series are QUASAR (Hall & Sievers,
1993) for generating a requested CIF from existing CIF
data; CIFIO (Hall, 1993a) for reading and writing CIFs
in a custom application and CYCLOPS (Hall, 1993b) for
validating CIF data names in an ASCII file. The purpose
of the CIFtbx software is similar to CIFIO, i.e. it may
be used to convert ASCII CIF data into an internal bi-
nary representation and the reverse. It differs in that it is
designed for use with external software applications.

CIFtbx i s intended for use by programmers develop-
ing software to access and generate CIFs. The application
of CIFtbx requires only a rudimentary knowledge of the
CIF syntax. Typically, a single CIFtbx command may be
used to move a data item to or from a local program
variable. No prior knowledge of the CIF content or struc-
ture is needed. The recovery of looped data, text lines or
looped text packets is easily controlled by the program-
mer. In addition, the CIFtbx routines automatically Check
the structure of the input and output CIFs. It is anticipated
that CIFtbx will make access to data stored in CIF format
easier than for any other format.

In addition to data access commands, CIFtbx will val-
idate data against one or more CIF dictionaries. This fea-
ture is useful for checking data conformance (using stan-
dard dictionaries such as eifdic.C91) or for local cus-
tomized applications such as CIFIO (Hall, 1993a).

CIFtbx overview

The CIFtbx routines are applied in the same way as Fortran
library functions. The CIFtbx commands are identified
by names that have a trailing underline character. Here
is a brief summary of the CIFtbx commands. Additional

* This paper is one of a series of papers on CIF applications. Offprints
are available from The Technical Editor, 5 Abbey Square, Chester CH1
2HU, England. See text of paper for availability of program(s) by email.

0021-8898/93/030482-13506.00

control variables are detailed in the next section.

General
i n i e _ initialize input/output device numbers
d i e t _ use dictionary to validate data names

Read CIF data
o p e n open input CIF
d a t a _ select data block containing requested data
t e s t : _ get data type and loop number of item
name_ get data name of next data item
numb_ get numerical data item and its e.s.d.
c h a r _ get character string or text data item

Write CIF data
p f i l e _ open output CIF
pda t : a_ output data block line
ploop_ output data name in a loom_ structure
pnumb_ output data name and number with its e.s.d.
pchar_ output data name and a character string
p t : e x t _ output data name and text line
c l o s e _ close output CIF.

The CIFtbx commands are in three categories: general
commands, which apply to reading and writing CIFs;
commands to read data from a CIF; and commands to
write CIF data. Note that the read and write commands are
logically independent and may be applied simultaneously
to copy and update CIFs.

Most of the ClFtbx routines are defined as Fortran
LOGICAL functions. This means that on invocation they
are returned with a value of either true or false depending
on whether the invocation is successful or unsuccessful.
For example, the function open_ is returned as true if the
input CIF exists and has been opened, and is returned as
false if the CIF cannot be opened. It is the responsibility
of the programmer to test these functions and take action
appropriate to the truth state.

The CIFtbx commands will now be described in detail.
To assist in this description, a listing of a test Fortran ap-
plication is provided in Table 1. This program contains
four separate examples of how the commands are applied.
These are trivial applications but they adequately illus-
trate how these commands may be applied for more com-
plex situations. Other files used with this test application
are an input CIF named t e s t . e i f (see Table 2); an in-
put request file t e s t . r e q (see Table 3); the output CIF
test .new (see Table 4) and the output listing test. ist
(see Table 5).
© 1993 International Union of Crystallography

SYDNEY R. HALL 483

Table 1. An example application of the CIFtbx tools

CIF'Fool Box Application 'tbxex.f'
........................

include 'ciftbx.f'

include 'ciftbx.cmn'

logical fl,f2,f3

character*4 type

character*32 name

character*80 line

character*4 label(6)

character*26 alpha

real cela,celb,celc,siga,sigb,sigc

real x,y,z,u,sx,sy,sz,su

real n,Jmb,sdev,dum

real xf(6),yf(6),zf(6),uij(6,61

integer i,j,nsite

data alpha/'abcdefghijklmnopqrstuvwxyz'/

C
C Example 1

C
C This example illustrates how to extract non-loop and loop items. Note carefully how the logical functions

C numb and char_ signal if the request has been successful or not. Note how the logical variables text_ and

C loop_ are used to control the text lines and the data loops.

C

C Assign the CIFtbx files

C
fl = init_(l, 2, 3, 6)

C
C Request dictionary validation check

C
if(dict_('cifdic.C91','valid')) goto I00
write(6,'(/a/)') ' Requested Core dictionary not present'

C
C Open the CIF to be accessed

C
i00 name:'test.cif'

' Read data from CIF ',name write(6,'(/2a,')')

if(open_(name}) goto 120
write(6,'(a///)') ' >>>>>>>>> CIF cannot be opened'

stop

C
C Assign the data block to be accessed

c
120 if(data_(' '}) goto]30

write(6,'(/a/)') ~>~>~> No data_ statement found'

stop
130 write(6,'(/a,a/)') ' Access items in data block ',bloc_

C
C Extract some cell dimensions; test all is OK

C
fl : numb_('celi_iength_a', ceia, siga)

f2 = numb (' ceil_]ength_b', celb, sigb)

f3 : numb('cei!_length_c', celc, sigcl

if(.not.([l.and.[2.and.f3})

* write(6,'(a)') ' Cell dimension(s) mlssing!'

write(6,'(/a,3fl0.4)') ' Cell ',cela,celb,celc

write(6,'(a,3f]0.4/)') ' ',siga,sigb,sigc

C
C Extract space group notation (expected char string)

C
f! : char('symmetryspacegroupnameHa]i', name)
wr[te(6,'(a,a/)') ' Space group ',name(l:long)

C
C List the a,:dit record (possible text line sequence)

C
write(6,'(a/)') ' Audit ~ecord'

140 f] : char_('_audit_update_record', line)

write(6,'(a)') line

if(text) goto 140

C

C Extract atom site data in a loop

C
write(6,'I'a,')'; ' Atom sites'

]60 fl = char (' atom_site_label', name)

f2 numb (' atom_slte_[ract_x', x, sx}

f2 numk) (' atom_site_fract_y', y, syl

484 CIF APPLICATIONS. IV

Table 1 (cont. 1)

f2 = numb_('_atom_sitefract_z', z, sz)

f3 : numb_('_atomsite U iso_orequiv', u, su)
write(6,'(ix,a4,8f8.4)') name,x,y,z,u,sx,sy,sz,su

if(loop_) goto 160

........................... Example 2

In this example, two separate data blocks are accessed. The first contains looped publication authors and text

addresses. The second part of this example shows how data from two different loops may be merged. Data items

from different loops may NOT be accessed simultaneously as this causes the CIFtbx loop counters to be reset to
the start of the loop (see Example 3).

C List the author addresses from publication data block
C

if(data_('publication'))

* write(6,'(//a,a/)') ' Access items in data block ',bloc
write(6,'(/a)') ' Author list'

C

210 fl = char_('_publauthorname', line)

write(6,'(/Ix, a)') line(l:long_)
C

220 fl = char('_publauthoraddress', line)

if(line(l:10).eq.' ') goto 230

write(6,'(Ix,a)') line(l:50)
230 if(text) goto 220

if(loop_) goto 210
C

C Read and store the atom site data from other data block
C

fl : data_('mumbo_jumbo')

write(6,'(///a,a/)') ' Access items in data block ',bloc
C

240
nsite = 0

nsite = nsite+l

fl = char('atomsitelabel', label(nsite))

f2 = numb('atomsitefractx', xf(nsite), sx)

f2 = numb('atomsite_fract_y', yf(nsite), sy)

f2 = numb_('_atom_site_fractz', zf(nsite), sz)
do 250 i=1,6

250 uij(nsite,i)=0.0

if(loop_) goto 240
C

C Read the Uij loop and store in the site list
C

260 fl = char('atomsiteanisolabel', name)
do 270 i=l,nsite

if(label(i).eq.name) goto 280
270 continue

write(6,'(a)')

280 fl = numb_('atomsiteaniso U ii'

fl = numb_('atomsiteaniso U 22'

fl = numb_('_atom_site_aniso U 33'

fl = numb('atomsiteaniso U 12'

fl = numb('atomsiteanisoUl3'

fl = numb_('atomsiteaniso U 23'
if(loop_)

C

C List the atom site data
C

285

write(6,'(/a/)')

do 290 i=l,nsite

if(uij(i,l).gt.0.0001)

write(6,'(Ix,a,3f8.4)')
goto 290
write(6,'(ix, a,9f8.4)')

' Label mismatch between atom lists'

uij i,l) dum)

uij i,2) dum)
uij i,3) dum)

uij i,4) dum)

uij i,5) dum)
uij i,6) dum)

goto 260

' Atom coordinates and Uij'

goto 285

labe!(i),xf(i),yf(i),zf(i)

label(i),xf(i),yf(i),zf(i),

(uij (i,j), j=l, 6)
290 continue
C

C Example 3
C

C This example serves to illustrate how a general list of data requests may be handled. The logical function

C test_ is used to identify the nature of the requested data item and then numb_ and char_ are invoked when

C applicable. The supplied list of requests on 'test.req' is not of particular significance. The requests are

C intentionally jumbled up to show what happens if a non-loop item is called within a loop. [WARNING: CIFtbx

C interprets this as a signal to end the loop and the next call for a loop i[em will extract data from its first
C packet! Look at the output listing to see what happens.]

SYDNEY R. HALL 4 8 5

Table 1 (cont. 2)

C

C Loop over the data request file

C

300 read(S,' (a) ' ,end=400)

C

C
320

C

340

350

fi = test(name)

write(6,'(/a,3x,a,it)')

if(type_.ne.'numb')

fl = numb(name, numb

write(6,'(2fl0.4)')

goto 300

name,type_,!ong_

sdev)

if(type_.ne.'char')

fl : char_(name, line

write(6,'(a)')

goto 300

goto 320

numb,sdev

goto 340

!ine(l:long_)

if(type.ne.'text') goto 300

fl = char_(name, llne)

write(6,'(a)') line

if(text_) goto 350

goto 300

C
C

C

C

C

C

C
C Open a new CIF

C

400 if(pfile_('test.new'))

wrize(6,'(//a/)')

goto 500

C
C Insert a data block code

C

450 fl = pdata_('whoopsa_daisy')

C

........................... Example 4

In this example, a new CIF is created. Note that it will not overwrite an existing CIF of the same name. Note

also that reading an existing CIF and writing a new Clf' is possible at the same time, so that it is feasible

to use these tools to update or modi[y an existing CIF.

goto 450

' Output CIF by this name exists already!'

C Enter

C

fl

fl

fl

fl

various single data items to show how

= pchar_(

= pchar_{

= pchar (

= pchar_(

fl = ptext (

fl = ptext(

fl : ptext(

auditcreationmethod','using CIFtbx')

auditcreation_extral','uslng_CIFtbx')

_ auditcreation_extra2',"Terry O'Connell")

_audit_creationextra3','Terry O"Conneil')

_ _auditcreation_record',' Text data may be ')

auditcreation_record',' entered like this')

_audit_creation_record',' or in a loop.')

fl : pnumb (' cell measurementtemperature', 293., 0.)'

fi = pnumb_('_cell_volume', 1;59.0, 13.)

fil : pnumb (' celi_length_3unk', 8./5.35355]524313,0.)

fl = pnumb (' cell_length_c', 19.737, .003)

C
C Enter some looped data

C
fl = ploop('atomtype_symbol')

fl = p!oop_('atomtypeoxidation_number')

fl = ploop('atomtypenumber in cell')

do 470 i=l,10

fl : pchar_(' ',alpha(!:i))

fl : pnumb_(' ',float(i),float(i)*0.1)

470 fl = pnumb_(' ',float(i)*8.64523,0.)

C
C Do it again but as contiguous data with text data

C
fl = pioop_('_atomtypesymbol'}

fl = ploop('atomtypeoxidationnumber')

fl = ploop_('_some_silly_text')

do 480 i:I,3

fl , pchar_(' ',alpha(l:i))

I = pnumb_(' ',float(i),float(i)*0.1)

480 fl = ptext(' ',' Hi Ho the diddly oh!')

C
500 ca!! close_

stop
end

486 CIF APPLICATIONS. IV

Table 2. The test CIF input to the program t b x _ e x , f

data_mumbo_jumbo

auditcreationdate 91-03-20
_auditcreationmethod from_xtal_archive_file_using_CiFiO

_audit_update_record
; 91-04-09 text and data added by Tony Willis.

91-04-15 rec'd by co-editor with diagram as manuscript HL7.
91-04-17 adjustments based on first referee's report.
91-04-18 adjustments based on second referee's report.

_chemical_namesystematic
trans-3-Benzoyl-2-(tert-butyl)-4-(iso-butyl)-l,3-oxazolidin-5-one

_chemical_formula_moiety 'C18 H25 N 03'

_chemical_formulasum
_chemical_formula_weight
_chemical_melting_point

####_cell_!ength_a
cell!ength_b
_cell_length_c
cellangle_alpha
cellanglebeta
_cell_anglegamma
_cell volume

_cell_formula_unitsZ
_cell_measurement_temperature
_cell_measurement_reflns_used
cell_measurement_theta_min
_cell_measurement_theta_max

_symmetry_cell_setting
_symmetry_space_group_name_H-M
_symmetry_space_group_name_Hall

loop_
_atom_type_symbol

atomtypeoxidationnumber
_a~om_type_number in cell
_atom_type_scatdispersion_REAL
_atom_type_scat_dispersion_imag
_atom_typescat_source
S 0 6 .319 .557
O 0 6 .047 .032
C 0 20 .017 .009
RU 0 1 -.105 3.296

loop_
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
atom_site U iso_or_equiv
atom_site_thermaldisplacetype
_atom_site_calc_f!ag
_atom_site_calc_attached_atom
_atom_site_type_symbol
s .20200 .79800
o .49800 .49800
cl .48800 .09600

loop_
_a~om_site_aniso_!abel
_atom_site_aniso U Ii
_atom_site_aniso U 22
_atom_site_aniso U 33
_atom_site_aniso U 12
_atom_site_aniso U 13
_atom_site_aniso U 23
_atom_siteaniso_type_symbol

.91667

.66667
.03800

'C!8 H25 N 03'
303.40
?

5.959(1)
14.956(1)
!9.737(3)
90
90
90
1759.0(3)
4
293
25
25
31

orthorhombic
'P 21 21 21'
P2ac2ab

#<< capitals to test case insensitivity

'Int Tab Vol Ill p202 Tab. 3.3.1a'
'Cromer,D.T. & Mann,J.B. 1968 AC A24,321.'
'Cromer,D.T. & Mann,J.B. 1968 AC A24,321.'

'Cromer,D.T. & Mann,J.B. 1968 AC A24,321.'

.030(3

.02520
.03170

s .035(4) .025(3) .025(3) .013(1) .00000 .00000 s

loop. blatl _blat2 1 2 3 4 5 6 a b c d 7 8 9 0

u i j ? ? s

Uiso ? ? o
Uiso ? ? c

SYDNEY R. HALL 487

dat a_publ icat ion

ioop_
_pubi_author_name
_pubi_author_address

'Furber, Mark'

Research School of Chemistry

Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601

'Mander, Lewis N.'

Research School of Chemistry
Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601

'Patrick, Graham L.'

Research School of Chemistry
Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601

'Willis, Anthony C.'

Research School of Chemistry
Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601

Table 2 (cont.)

#ActaC
#ActaC

CIFtbx tools

Here is detailed description of the CIFtbx tool box. Each
command and control variable has been applied in the test
application shown in Tables 1 to 5. Use these tables as a
guide when reading the descriptions below.

init_

A logical function for setting the device numbers of
the four CIFtbx files. This is an optional function that is
always returned with a value of true. It need be invoked
only if the default device numbers must be changed. The
arguments are:

input CIF dev number Set input CIF device (default=l)
output CIF dev number Set output CIF device (de-

fault=2)
direct access dev number Set formatted scratch device

number (default=3)
error dev number Set error message device (default=6).

dict

A logical function which requests a CIF dictionary to be
used for data validation. The function is returned as true if
the named dictionary is opened, and if the entered check
codes are recognizable. The command d i e t _ may be used
more than once if multiple dictionaries are required (the
dictionary data-name lists will be concatenated). There are
two arguments:

file name CIF dictionary file name
checking code Codes specifying checks to be applied to

CIF data
v a l i d data-name validation check
dtype data-type check.

open_

A logical function which opens an input CIF. This
function is returned as true if the named CIF has been
opened. There is one argument:

file name CIF file name.

data_

A logical function to select the data block from which
data will be extracted. The function is returned as true
if the named data block is found. The function has one
argument. If this argument is entered as blank, the next-
encountered data block (in the sequential processing of
the CIF) is selected as the requested data block and the
data-block name is stored in the character variable b l o c _
(see description below).

data block name Identity of data block containing the
requested data.

test_

A logical function to identify the data type and loop
block number of the named data item. The function is

488 CIF APPLICATIONS. IV

Table 3. The test request file used by the program tbx_ex, f

_audit creation_date
_audit_creation_method
_audit_update_record
_chemical_name_systematic
_chemical_formula_moiety
_chemical_formula_sum
chemical_formula_weight
_chemical_melting_point
_cell_length_a
_cell_length_b
_cell_length_c
_cell_angle_alpha
_cell_angle_beta
_cell_angle_gamma
_cell_volume
_cell_formula_units_Z
_cell measurement_temperature
_cell_measurement_reflns_used
_cell_measurement_theta_min
_cell_measurement_theta_max

_blat2
_blatl
_blat2
_blatl
_blat2
_blatl
_blat2
_blatl
_blat2
_blatl

_symmetry_cell_setting
_symmetry_space_group_name_H-M
_symmetry_space_group_name_Hall

_atom_type_symbol
_atom_type_oxidation_number
_atom_type_number in cell
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
_atom_type_symbol
_atom_type_oxidation_number
_atom_type_number in cell
_atom_type_number in cell
_atom_type_oxidation_number
_atom_type_scat_dispersion_real

_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_thermal_displace_type
_atom_site_calc_flag
_atom_site_calc_attached_atom
_atom_site_type_symbol
_atom_site_type_symbol
_atom_site_type_symbol
_atom_site_type_symbol
_rubbish_here
atom_site_type_symbol
_atomsite_type_symbol
_atom_site_type_symbol
_symmetry_space_group_name_Hall
_atom_site_type_symbol
_atom_site_type_symbol
_atom_site_type_symbol
_atom_site_type_symbol

_atom_site_aniso_label
_atom_site_aniso U ii
_atom_site_aniso U 22
_atom_siteaniso_U_33
_atom_site_aniso U 12
_atom_site_aniso U 13
_atom_site_aniso U 23
_atom_site_aniso_type_symbol
_atom_site_aniso_U_12
_atom_site_aniso U 12
_atom_site_aniso U 12

returned as true if the data name is present. The data
attributes are stored in the system variables t y p e _ and
l i s t _ (see descriptions below). The function has one
argument:

data name Identity of the data item to be tested.

D . a l l l e

A logical function that returns the data name of the
next item in the CIF. The function is returned as true if
a new data name is present in the data block and false
if the end of the data block is reached. The function has
one argument:

data name Returned name of the next data item in the
data block.

numb_
A logical function for extracting a number and its

standard deviation if present. The function is returned as
true if a number is present. There are three arguments. If
the function is returned as false, the variables representing

arguments 2 and 3 are unaltered. If a standard deviation
is not attached to the number, argument 3 is unaltered.

data name Identity of the number to be returned
real variable Returned number (type REAL)
real variable Returned standard deviation (type REAL).

char_

A logical variable for extracting a character string or a
text line from a CIF. This function is returned as true if a
character or text string is present. Note that if this string
is of type text, this function should be called repeatedly
until the logical variable t e x t _ is false (see below for
more details). There are two arguments:

data name Identity of the string to be returned
character variable Returned string is of length l o n g _

(details below).

pfile_
A logical function for opening an output CIF. The

function is returned as true if a new file is opened and

SYDNEY R. HALL 489

Table 4. The output CIF generated by the program t b x _ e x , f

data_whoops_adaisy

_auditcreationmethod
_audit_creation_extral
_audit_creation_extra2
_audit_creation_extra3
_audit_creation_record

Text data may be
entered like this
or in a loop.

cell measurement temperature
cellvolume
_cell_length_junk
_cell_lengthc

loop_
atomtypesymbol
atomtypeoxidation_number
atomtypenumber in cell

a 1.0(i) 8.645230
ab 2.0(2) 17.290460
abc 3.0(3) 25.935691
abcd 4.0(4) 34.580921
abcde 5.0(5) 43.226150
abcdef 6.0(6) 51.871383
abcdefg 7.0(6) 60.516613
abcdefgh 8.0(8) 69.161842
abcdefghi 9.0(9) 77.807075
abcdefghij i0(i) 86.452301

loop_
_atom_type_symbol
_atomtype_oxidationnumber
_some_silly text

a 1.0(i)

Hi Ho the diddly oh!

ab 2.0(2)

Hi Ho the diddly oh!

abc 3.0(3)

Hi Ho the diddly oh!

'using CIFtbx'
using_CIFtbx
"Terry O'Conne]l"
'Terry O"Connell'

#< not in dictionary
#< not in dictionary
#< not in dictionary
#< not in dictionary

293
1759(13)
8.753535
19.736(3)

#< not in dictionary

< not in dictionary

false if the requested file name already exists. There is
one argument:

file name File name of the output CIF.

pdata_

A logical function for putting a data-block line into the
output CIF. The function is returned as true if the block
is output and .false if the specified block name already
exists. There is one argument:

block name Name concatenated to the ' d a t a _ ' com-
mand.

ploop_

A logical function for putting a data name into a loop
structure. The function is returned as true if the invoca-
tion conforms with the CIF logical structure. A sequence
of these functions is used to specify data names in a com-
mon loop structure (the first p l o o p _ causes the ' l o o p _ '

command to be inserted). The invocation of any other
command will signal that data items are to be entered.
There is one argument:

data name Name to be placed in a loop structure.

pnll/tlb_
A logical function for putting a data name and number

into the output CIF. The standard-deviation number is ap-
pended in parentheses if present. The function is returned
as true if the name is unique; and if d i c t _ is invoked,
the name is defined in the dictionary; and if the invoca-
tion conforms to the CIF logical structure. If any of these
conditions are not met, the function will be returned as
false. For looped data, the data name is entered as blank
and the order and number of invocations must match that
of the ploop_ invocations. There are three arguments:

data name Requested name of the output number
real variable Number to be output
real variable Standard deviation to be appended in

parentheses.

pchar_

A logical function for putting a data name and character
string into the output CIF. The function is returned as true
if the name is unique; and if d~ c t _ is invoked, the name
is defined in the dictionary; and if the invocation conforms

490 CIF APPLICATIONS. IV

Table 5. The output listing from the program t b x _ e x , f

Read data from CIF test.cif
Warning: data name _atom_typescat_dispersionREAL
Warning: data name _blatl
Warning: data name _blat2

Access items in data block mumbo_jumbo

Cell dimension(s) missing!

Cell 0.0000 14.9560 19.7370
0.0000 0.0010 0.0030

Space group P_2ac2ab

Audit record
91-04-09 text and data added by Tony Willis.
91-04-15 rec'd by co-editor with diagram as manuscript HL7.
91-04-17 adjustments based on first referee's report.
91-04-18 adjustments based on second referee's report.

Atom Sites
s 0.2020 0.7980 0.9167 0.0300 0.0000 0.0000
o 0.4980 0.4980 0.6667 0.0252 0.0000 0.0000
cl 0.4880 0.0960 0.0380 0.0317 0.0000 0.0000

Access items in data block publication

Author list

Furber, Mark
Research School of Chemistry
Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601

Mander, Lewis N.

Research School of Chemistry

Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601

Patrick, Graham L.
Research School of Chemistry
Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601

Willis, Anthony C.
Research School of Chemistry
Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601
Warning: data name _atom_type_scat_dispersion_REAL
Warning: data name _blat!
Warning: data name blat2

Access items in data block mumbo_jumbo

Atom coordinates and Uij
s 0.2020 0.7980 0.9167 0.0350 0.0250 0.0250
o 0.4980 0.4980 0.6667
cl 0.4880 0.0960 0.0380

_audit_creationdate char 8
91-03-20

_audit_creation_method char 34
from_xtal_archivefi!e_using_CIFIO

_audit_update_record text 80
91-04-09 text and data added by Tony Willis.
91-04-15 rec'd by co-editor with diagram as manuscript HL7.
91-04-17 adjustments based on first referee's report.
91-04-18 adjustments based on second referee's report.

chemical_name_systematic char 65
trans-3-Benzoyl-2-(tert-buty!)-4-(iso-buty!)-l,3-oxazoiidin-5-one

not in dictionary!
not in dictionary!
not in dictionary!

0.0000 0.0030
0.0000 0.0030
0.0000 0.0030

not in dictionary[
not in dictionary[
not in dictionary!

0.0130 0.0000 0.0000

SYDNEY R. HALL 491

Table 5 (cont. 1)

_chemical_formula_moiety
el8 H25 N O3

_chemical_formula_sum
Cl8 H25 N O3

chemicalformulaweight
303.4000 0.0000

_chemical_meizing_point

_cell_length_a

_ceil_length_b
14.9560 0 0010

_cell_length_c
19.7370 0 0 0 3 0

_celi_anglealpha

90.0000 0 0 0 3 0

_cell_angle_beta

90.0000 0 0030

_cell_angle_gamma
90.0000 0 0030

_celi_volume
!759.0000 0 3000

_cell_formu!a_units_Z
4.0000 0 3000

_cell_measurement_temperature
293.0000 0 3000

_cell_measurement_refins_used
25.0000 0 3000

_cell_measurement_theta_min
2 5 . 0 0 0 0 0 3000

_celi_measurement_theta_max
31.0000 0 3000

_ b l a t 2

_blat]

_blat2

_blatl

_blat2

_ b i a L i

_bla:2
b

_blatl
a

_blat2
d

_blatl
c

2 0000

1 0000

4 0000

3 0000

6 0000

5 0000

0 3000

0 3000

0 3000

0 3000

0 3000

0 3000

c h a r l 2

cnal 12

numb 6

null 1

null]

n u m b 9

numb 9

numD 2

n u m b 2

numb 2

n u m D 9

numb i

n u m b 3

n u r n b 2

n u m b 2

n u m b 2

null 1

numb 1

numb 1

numb]

numb 1

numb 1

numb i

char 1

char 1

char 1

char]

Table 5 (cont. 2)

_ s y ~ m e L r y _ c e l i _ s e t L ! r :g

o t t h o r h o m b t c

_sy~metry_space_group_name_H-M

> 21 21 21

_symmetry_space_group_name_Hall
P_2ac_2ab

atomtypesymbo!
S

atomtypeoxidationnumber
0.0000 0.3000

_atom_type_number_in_ceil
6.0000 0 . 3 0 0 0

_a t om_t ype_s ca t_d i spe r s i on_r ea I

_atom_type_scat_dispersion_imag
0.5570 0.3000

atom:ype_scat_source

':nt Tab Vol]:I p202 Tab. ;.3.:a'

_atom_type_symbol
O

_atom_type_ox!datlon_number
0 . 0 0 0 0 0 . 3 0 0 0

_atom_type_number_in_cell
6.0000 C.7(;Of)

_atom_type_number_Ln_ce!i
20.0000 0.3000

_atom_type_oxidation_number
0.0000 0.3000

atomtypescatdispersionreal

_atom_site_label
s

_atom_slte_fract_x
0.2020 0.3000

anom_slte_fract_y
0.7980 0.3000

_atom_site_fract_z
0.9167 0.3000

_atom_slte U iso_or_equiv
0 . 0 3 0 0 0 . 0 0 3 0

_atom_s:te_thermal_dispiace_type
Ui:

_atom_slte_calc_f]ag

_atom_sJte_calc_attached_atom

_atom_site_type_symbol
s

_atom_site_type_symbol
o

null l

o r ; a t LO

c f : o r 9

n u J L l

char]

n u m b i

.'-: u P':rJ l

nul] l

numb 4

char 32

c h a r]

numb]

r; J Inb]

numb 2

n u m b]

n u - i]

: . . i L 1

c h a r]

r. ~ y.,r,, 6

n u m b 6

r . , ,mb 6

n ~rnb 7

c n d : 3

: : . i , L

n ~ i i i

croat L

char 1

492 CIF APPLICATIONS. IV

Table 5 (con~ 3)

_atom_site_type_symbol
c

~tum~ite_type_symbo!
s

rubbish_here

_atom_site_type_symbol
o

_atomsitetype_symbol
c

atomsite_type_symbol
s

_symmetry_space_group_name_Hall

P2ac_2ab

_atomsite_type_symbol
s

_atom_site_type_symbol
o

_atom_site_type_symbol
c

_atomsite_type_symbol
s

_atom_site_aniso_label
s

_atom_site_aniso U ii
0.0350 0 O040

_atom site_aniso U 22
0.0250 0 0030

_atom_site_aniso U 33
0.0250 0 0030

_atom_site_aniso U 12
0.0130 0 0010

_atom_site_aniso U 13
0.0000 0 0010

_atom siteaniso U 23
0.0000 0 0010

_atom_site_aniso_type_symbol
s

_atom_site_aniso U 12
0.0130 0.0010

_atom_site_aniso U 12
0.0130 0.0010

_atom_site_aniso U 12
0.0130 0.0010

char 1

char !

null 1

char 1

char 1

char 1

char 9

char 1

char 1

char 1

char 1

null 1

char 1

numb 7

numb 7

numb 7

numb 7

numb 6

numb 6

char 1

numb 7

numb 7

numb 7

to the CIF logical structure. If any of these conditions are
not met, the function will be returned as false. For looped
data, the data name is entered as blank and the order and
number of invocations must match that of the ploop_
invocations. There are two arguments:

data name Requested name of output character string
character variable Character string to be output.

ptext_

A logical function for putting a data name and text line
into the output CIF. This function is invoked repeatedly
until the text is finished. Only the first invocation will
insert a data name. The function is returned as true if the
name is unique; and if d i c t _ is invoked, the name is
defined in the dictionary; and if the invocation conforms
to the CIF logical structure. If any of these conditions are
not met, the function will be returned as false. For looped
data, the data name is entered as blank and the order and
number of invocations must match that of the p l o o p _
invocations. There are two arguments:

data name Requested name of the output text string
character variable Text line of up to 80 chars to be

output.

close

Subroutine for closing the output CIF. This routine must
be called if p f i l e _ is used.

Control variables

text

A logical variable that signals if a text line is the next
data item in the input CIF. This variable is true if the
next line in the CIF is part of the same text sequence
being accessed with a c h a r _ function. It is used as a
branching variable to access all lines in a text sequence
(see examples in Table 1).

loop_
A logical variable that signals if another ' loop packet"

is present in a data sequence being accessed with numb_
or c h a r _ functions. A loop packet is a set of data items
that match a set of data names at the head of the loop
structure. The variable will be set to true if another packet
exists in the current loop structure. Not all data items in a
loop packet need be accessed to reset the value of loom_.
Each access of the same data item will cause the packet
counter to advance. Note that if a data item outside the
current loop structure is accessed it will cause the value
of l o o p _ to be set to false. This variable is used as a
branching variable (see examples in Table 1).

t y p e _

A character*4 variable containing the data type of the
data item identified in a t e s ~ _ command.

numb for number data
c h a r for character data
t e x t for text data
n u l l if data missing or value "~'

list_

An integer variable containing the sequential number
of the loop block (in the current data block) of the data
i tem identified in a t e s t _ command. If the data item is
not in a loop structure, this will be zero.

SYDNEY R. HALL 493

bloc_

A character*27 variable containing the name of the data
block currently set via the last d a t a _ invocation.

strg_

A character*80 variable containing the current data-
item string.

long_

An integer variable containing the length of the data
string in s t r g _ .

file_

A character*80 variable containing the file name of the
current input CIF.

long f_

An integer variable containing the length of the file
name in file.

align_

A logical variable that is set by the programmer to
specify the alignment of loop data output via the p c h a r _ ,
pnumb_ and p t e x t _ commands. If the variable is set to
true, each packet of data items starts at a new line. If it
is set to false, data items will be output continuously (i.e.
independent of the packet boundary). The default is true.

Implementation

The procedure for adding the CIFtbx routines to a For-
tran application is straightforward. The tool box comes in
three parts: the source file (labelled c i f i b × . f), the system
common definition file (labelled c i f t b x . s y s) and the ap-
plication common definition file (labelled c i f t b x , cmn).
The implementation steps are:

1. Every program or subroutine that employs CIFtbx
commands must contain the following statement in
the data definition area: i n c l u d e ' c i f t b x . cmn' or
an equivalent compiler statement for inserting the file
ci ftbx. cmn.

2. The CIFtbx routines may be added to an application
in one of two ways.

(i) Insert the statement i n c l u d e ' c i f t b x . f ' at
the start of the application source (before the first non-
comment line) or at the end of the application source (af-
ter the last END line). If i n c l u d e is not recognized by a
compiler, the editor may be used to add the source code
directly. Note that when the application is compiled with
the included source c i f t b x , f, the file c i f t b x , s y s will
be automatically included. This latter file must be avail-
able in the current directory.

(ii) Compile the source file c i f t b x , f separately from
the application. The ciftbx.sys common file will be
included automatically. Add the object file c i f t b x . o
when linking the application object files. This is the most
efficient approach when developing an application, as the
CIFtbx source need only be compiled once.

3. During the compilation of an application using
CIFtbx functions, warning messages may be issued about
unused variables. These are prevented by removing the
unused data declarations from the c i f t b x . cmn file with
an editor.

4. Programmers should be aware of the following
C1Ftbx requirements.

(i) The pfile_ command will not overide an existing
CIF of the same file name. This is a protection facility.

(ii) Make sure that the correct directory path informa-
tion is included with file names declared in the open_,
d i c t _ and p f i 1 e_ commands.

(iii) Always apply the CIFtbx commands in such a way
as to allow for 'missing' or incorrectly ' typed' data. Never
assume that the requested data are present in a CIF.

(iv) Take care when reading character data items
that can be either type char or type text (e.g.
_ c h e m i c a l _ n a m e _ s y s t e m a t i c) . In such cases, always
use c h a r _ within a loop controlled by the logical vari-
able t e x t _ .

Error messages

The CIFtbx commands are designed so that most run-time
errors are signaled by a returned false value of a logical
function. However, some types of errors will cause data
processing to halt. If these occur, CIFtbx issues an error
message with the line number of the CIF (or dictionary
file) and then stops. Here is a summary of error messages
and brief description of the likely cause of failure.

dict_ must precede open_

The dictionary, files must be loaded before an input CIF
is opened because some of the data-name checking occurs
during the CIF loading process.

cifdic names > i000

The number of data names loaded from the dictionary
or dictionaries exceeds 1000. These limits may be changed
by increasing the array sizes of DICNAM() and DICTYP()
in c i f t b x . s y s .

_type line is missing

The DDL definition of _ t y p e is missing from the
specified dictionary definition.

Item miscount in loop

The input CIF contains a loop structure in which the
number of data items does not match an integer multiple
of the number of items in a single loop packet.

Number of loop_s > 50

CIFtbx only allows for 50 separate loop structures in a
data block. This may be changed by increasing the array
size of LOOPNI() and LOOPNP() in c i fLbx . s y s .

Number of data names > 500

CIFtbx only allows for 500 data names in an input CIF
data block. This may be changed by increasing the array
size of seven array variables in c i f t b x , s y s .

494 CIF APPLICATIONS. IV

Items per loop_ packet > 20

CIFtbx only allows for 20 items per input loop packet.
This may be changed by increasing the array sizes of
LOOPCH0, LOOPLN0 and LOOPRD0 in the routine
GETITM.

Syntax construction error

An illegal construction has been detected in the input
CIF.

Unexpected end of data

An unexpected end to text data encountered. This is
probably due to a missing semicolon at the end of a text
string.

Distribution

CIFtbx is distributed as the file ciftbx containing the
Fortran source, the two common files, a test applica-
tion file and test files. The standard CIF dictionary file

cifdic.C91 may be needed for use with the com-
mand dict_. The files ciftbx and cifdic.C91 may
be obtained free of charge in several different ways.
The simplest and fastest approach is to use anonymous
FTP to get the file from the directory cif on the host
130.95.232.12. Alternatively, send an email containing
the lines send ciftbx and send cifdic.C91 to
sendcif@crystal.uwa.edu.au or sendcif@iucr.ac.uk. As a
last resort, airmail a floppy disk to the author stating the
mode of copy required.

References

HALL, S. R. (1993a). J. Appl. Cryst. 26, 474-479.
HALL, S. R. (1993b). J. Appl. Cryst. 26, 480-481.
HALL, S. R., ALLEN, F. H. & BROWN, I. D. (1991). Acta Cryst.

A47, 655-685.
HALL, S. R. & SIEVERS, R. (1993). J. Appl. Cryst. 26, 469-

473.

