
598

CIF APPLICATIONS

Authors of any software that reads, writes or validates CIF data are invited to contribute to this series. Authors should state clearly
when submitting a manuscript to a Co-editor that the paper should be included as part o f the CIF Applications series. An
appropriate series number will be assigned by the Editorial Office.

J Appl. Cryst. (1996). 29, 598-603

C I F A p p l i c a t i o n s . V. C I F t b x 2 : e x t e n d e d too l box fo r m a n i p u l a t i n g CIFs*

SYDNEY R. HALL a AND HERBERT J. BERNSTEIN b at "Crystallographic Centre, University o f Western Australia, Nedlands 6009,
Australia, and t'Bernstein + Sons, 5 Brewster Lane, Bellport, NY 11713, USA. E-mail: syd@crystal.uwa.edu

(Received 18 January 1996; accepted 14 May 1996)

Abstract

CIFtbx2 is a new version of a Fortran subroutine library for
programmers developing CIF applications. The functions for
reading and writing CIF data in CIFtbx [Hall (1993). J Appl.
Cryst. 26, 482-494] have been expanded and facilities for
handling macromolecular CIF data and dictionaries have been
added. The CIFtbx2 library facilitates applications involving all
current versions of the dictionary definition language.

1. Introduction

This paper is part of the continuing series on CIF applications.
The first papers in the series appeared in this journal in 1993,
and included a description of a Fortran subroutine library for
programmers developing CIF applications, CIFtbx (Hall, 1993).
Since that time, the CIF approach has been applied to new areas
such as nuclear magnetic resonance (NMR) data and macro-
molecular structural data. The dictionary that defines the
macromolecular structural data (Fitzgerald, Berman, Bourne,
McMahon, Watenpaugh & Westbrook, 1995) uses an extended
dictionary definition language (DDL2) with stronger relational
attributes than that of the DDL (Hall & Cook, 1995) used for
the core crystallographic dictionaries. The extended DDL2
(Westbrook & Hall, 1995) is not supported by the dictionary
functions in CIFtbx and this was the primary motivation for
creating the new CIFtbx2 library. This library, which is equally
applicable to the macromolecular CIF (mmCIF) dictionary in
DDL2 and to other dictionaries in DDL, is the subject of this
paper.

The initial impetus for this work was to support one of us
(HJB) in the use of CIF data derived from Protein Data Bank
(Bernstein et al., 1977) files. CIFtbx2 was used to map
hundreds of CIF data names embedded in existing software into
the mmCIF name format and to check the existence and
application of these items. As a result, code for conversion of
Protein Data Bank entries to mmCIF format was developed in
the form of an awk script, pdb2cif (Bourne, Bernstein &
Bernstein, 1996). CIFtbx2 is also used in the recent release of
the XTAL3.4 System (Hall, King & Stewart, 1995).

With minor exceptions, CIFtbx2 is a fully upward-compatible
extension of CIFtbx. The presentation of this paper will,

* This paper is one of a series on CIF applications. Offprints are available
from The Managing Editor, 5 Abbey Square, Chester CH1 2HU,
England. See text of paper for availability of program(s) by
e-mail.

© 1996 International Union of Crystallography
Printed in Great Britain - all rights reserved

therefore, focus on the differences at the user level and the
changes to those algorithms that facilitate greater generality.

2. CIFtbx2 overview

The user interface to CIFtbx2 consists of Fortran functions,
subroutines and common variables. The user-accessible func-
tions, subroutines and variables are identified by a trailing
underscore (' ') character. The functions and subroutines, otten
referred to as 'commands', may be divided into three basic
groups: set-up commands that initialize data handling, read
commands that input data from a CIF and write commands that
output CIF data. The read and write commands are logically
independent and may be applied simultaneously to copy and
update CIFs.

Here is a summary of the functions, subroutines and
variables.

2. I. Set-up

init_(devcif, devout, devdir, deverr)
Set the device numbers of files

d i c t (f n a m e , c h e c k s)
Select a dictionary for data checks

2.2. Read CIFdata

ocif_(fname)
data_(name

test_(name
name_(name

Open an input CIF
Select data block containing requested
data
Get data type and other information
Get data name of next data item in the
block

numb_ (name, numb, s d e v)
Get numerical data item and its esti-
mated standard deviation (e.s.d.)

c h a r _ (n a m e , s t r g)
Get character string or text data item

p u r g e_ [new]

2.3. Wri~ CIFdam

pfile_(fname)
pdata_(bname)
ploop_(name)

Subroutine to reset all input data and
dictionary pointers

Open output CIF
Output data block header line
Output data name into a loop structure

pchar_(name, strg)
Output data name and character string

Journal of Applied Crystallography
ISSN 0021-8898 © 1996

CIF A P P L I C A T I O N S 599

pnumb_(name, numb, sdev)
Output data name and number with its
e.s.d.

ptext_(name, strg)
Output data name and text line

c lose_ Subroutine to close output CIF

2.4. Common variables

CIFtbx2 supplies variables in the common block file
c i f t b x , s ys so that the programmer can test and control
how the functions are applied to specific data-handling tasks.
Variables that are new to CIFtbx2 are flagged below with
'[new]'.

text_

loop_

bloc_

strg_

type_

list_

long_

file_

longf_

align_

save_ [new]

a 1 i a s _ [new]

aliaso_ [new]

t agname_ [new]

dicname_ [new]

diccat_ [new]

dictype_ [new]

i ine_ [new]

Logical variable returned true if another
text line is present
Logical variable returned true if another
loop packet is present
Character variable containing the cur-
rent block (data_ or save_) name
Character variable containing the cur-
rent data item
Character variable containing the data
type code
Integer variable containing the loop
block number
Integer variable containing the length of
the data string in st r g_
Character variable containing the file-
name of the current file
Integer variable containing the length of
the filename in f i i e_
Logical variable controlling column
alignment of data lists during writing
of a CIE The preset default is true.
Logical variable returned true if the
current data block is a save frame
Logical variable set true if data-name
aliases are searched by the read func-
tions. The preset default is true.
Logical variable set true if the alias data
name dicname_ is output by the
write functions. The preset default is
false.
Character variable containing the tag
name found in the input CIF
Character variable containing the pre-
ferred alias specified in the first-entered
dictionary
Character variable containing the cur-
rent category code
Character variable containing the ex-
plicit data type code
Integer variable specifying the expected
CIF input line length. Nonblank lines
exceeding this limit will cause a warn-
ing message to be issued. The default
value of l i n e _ is 80. This variable
may be set by the program up to a
maximum value not exceeding
MAXBUF, which has a default value
of 200.

3. Other changes to CIFtbx

Because the dictionary definition languages DDL and DDL2
both serve the same function, it is relatively straightforward to
have one piece of software handle the manipulation of
associated dictionaries in a way that is transparent to the user.
The amount of recoding needed to convert the CIFtbx
subroutines to CIFtbx2 subroutines has been minimal and, as
a consequence, the user interface remains virtually identical.

The major differences in CIFtbx2 cater to much larger
dictionaries (e.g. the mmCIF dictionary), the more rigorous use
of data categories in DDL2 and the addition of aliases to
provide compatibility of the data names between DDL and
DDL2 dictionaries. Other matters addressed are the use of save
frames in DDL2 dictionaries (in place of data blocks) and the
acceptance of data names that exceed 32 characters (a
concession to recent CIF data naming). The following details
summarize how CIFtbx2 has been modified to accommodate
these requirements.

3.1. Improved hash-table look-up

The efficient handling of larger dictionary and data files has
been achieved by improved algorithms for identifying and
processing data names. New parameters have been introduced
for the size-dependent changes and these will enable future
changes to be made smoothly. Improvements were achieved by
extensive use of hash-table-controlled lists, which are handled
by routines in the hash_funcs, f. Ordinarily, the user will be
unaware of hash-table operations, but these can be adjusted via
the parameter NUMHASH in c i f t b x , s y s . The default value is
53, which means that, for lists of up to 2500 names, searches for
name matches would look at sublists of fewer than 50 names.
Faster look-ups are possible if the value of NUMHASH is
increased. A prime number is recommended for the highest
efficiency. For a discussion of the choices and implications of
hash-table-controlled lists, see Knuth (1973).

3.2. PARAMETER defined array sizes

Additional PARAMETER variables may be adjusted in the
CIFtbx2 source code if optimal efficiency is needed in
particularly large calculations. They are:

NUMCHAR

NUMDICT

NUMBLOCK

NUMLOOP

NUMITEM

MAXBUF

The maximum number of characters in
a name (default 48)
The maximum number of names in all
dictionaries (default 2500)
The maximum number of names in a
data block (default 500)
The maximum number of loops in a
data block (default 50)
The maximum number of items in a
loop (default 50)
The maximum number of characters in
a line (default 200)

The maximum number of categories is also controlled by
NUMDICT, but these do not compete for space with ordinary
names.

3.3. New dictionary checks
The most extensive differences between CIFtbx and CIFtbx2

are in the dictionary processing function d i c t . The category

600 CIF A P P L I C A T I O N S

codes of data items, if present, are now used to check
consistency within CIF save frames, data blocks and loop
structures. In order to accommodate both DDL and DDL2
dictionaries, the checking routines accept all the current
approaches to categories. For example, the original core
dictionary c ifdic, c91 does not define categories, the more
recent core dictionary c i f d i c , c94 lists them explicitly, and
the mmCIF dictionary contains category codes as explicit
definitions and embedded into the data name as a character
string preceding a period character (' . '). These variations in
usage means that d i c t will only proceed with category
checking if these are specified in the input dictionary.

In addition to accepting the flags d t y p e and v a l i d , which
specifiy checking level when given as the second argument of
d i c t_ , CIFtbx2 accepts the new flags r e s e t and c 1 o s e,
which specify dictionary conditions. When either of these new
flags is used, the first argument of d i c t _ must be blank. The
r e s e t flag resets the checking levels and disables the
dictionary checks without affecting the stored definitions and
the aliased name facilities. The dictionary checking functions
are restarted by the input of either d t y p e or v a l i d as
argument 2, with argument 1 blank. The c l o s e flag switches
off the dictionary functions completely and these may only be
restarted with a new d i c t command to specify a dictionary
file.

3.4. Chained applications

Additional controls in CIFtbx2 allow for a sequence of
applications in a single program involving different dictionaries
and different CIFs. Two such controls, reset and close, are
described above for the d i c t _ function. The p u r g e _
command enables a program to switch off all file access and
table pointers. This can be important when different CIFs need
to be entered into the same calculation and must be validated
against different dictionaries. Each invocation of the p u r g e _
subroutine resets all tables to their ab initio status.

3.5. Warning messages

The improved checking facilities in CIFtbx2 have necessi-
tated more extensive run-time error messages. These are
detailed in the next section.

3.6. Name aliases

The dictionary definition language DDL2 permits data names
to be aliased or made equivalent to other data names. DDL2
enables aliases for two purposes: to make data names equivalent
to DDL dictionaries and to link equivalent data names within
the same dictionary. It allows for the use of synonyms
appropriate to the application. CIFtbx2 is capable of handling
aliased data names transparently. Input CIFs may use any of the
equivalent aliases, as may the application software processing
the file. In addition, output CIFs may be written with the data
names specified in the putting functions, or with names that are
automatically converted to preferred dictionary names. If more
than one dictionary is used, the first one loaded is assumed to
carry the preferred names, even if the alias declarations are in
dictionaries loaded later. The default behaviour of CIFtbx2 is to
accept all combinations of aliases and to produce output CIFs
with the exact names specified in the user calls.

The interpretation of aliased data names is modified by
setting of the logical variables a l i a s _ and a l i a s o _ . When
a l i a s is set false, the automatic recognition and translation

of aliases stops. When aliaso_ is set true, the automatic
conversion of user-supplied names to dictionary-preferred alias
names in the writing of data to output CIFs is enabled. The
preferred alias name is stored in the variable d i c n a m e _
following any invocation of a getting function, such as numb_
or t e s t . If a l i a s _ is set false, d i c n a m e will agree with
the called name. The variable t a g n a m e _ is always set to the
actual name used in an input CIE

For example, the data name _ a t o m _ s i t e _ a n i s o U 11
from the core dictionaries c i f d i c , c91 and c i f d i c , c94 is
the alias o f _ a t o m s i t e a n i s o t r o p . u [1] [1] in the
mmCIF dictionary c i f d i c .m95. In the following application
of CIFtbx2 function t e s t _ , the input DDL name
a t o m _ s i t e _ a n i s o U 11 is used to inquire as to the names
used in an input CIF:

read(8,'(a)',end=400
fl = test_(name)
write(6,'(2(3x,a32)'
name=dicname_
fl = test_(name)
write(6,'(2(3x,a32)'

This gives the following printout.

name

name,dicname_

name,tagname_

_atom_site_aniso U Ii
_atom_site_anisotrop.u[l] [i]

_atom_site_anisotrop.u[l][l]
_atom_site_aniso U ii

3.7. Save frames
CIFtbx2 handles save frames, whereas CIFtbx does not. The

logical variable s a v e _ is set to true if the data currently being
accessed exist in a save frame rather than a data block. The
CIFtbx function d a t a _ is responsible for setting s a v e _ to true
at the start of a save frame and to false at the end of a save
frame. A warning is issued if save-frame statements are not
matched.

3.8. Input line lengths

The way in which input lines are tested has been changed.
CIFtbx clips all lines at 80 characters.

CIFtbx2 issues a warning message if the length of a line (i.e.
the column position of the last nonblank character) exceeds the
integer variable line_. Characters exceeding line_ are
processed provided they do not exceed MAXBUF (the
PARAMETER specification of the input buffer array length).
The default setting of l i n e _ is 80.

3.9. Data typing

CIFtbx2 supports a much wider range of data types than
CIFtbx. This is because DDL2 provides for two tiers of data
type: primitive and precise. Primitive-type codes are c h a r ,
numb, t e x t and n u l l and these are returned as the character
variable t y p e _ . Precise-type codes such as i n t , f l o a t ,
y y y y - m m - d d , u c h a r etc. are, if available, stored in the
character variable d i c t yp e_

4. Error-message glossary

The CIFtbx2 functions are designed so that a program can, via
the returned true or false values, detect and respond to run-time
abnormalities without interference from the checking algo-

CIF A P P L I C A T I O N S 601

rithms. However, some types of errors, such as the dimensions
of critical arrays being exceeded, require processing to cease. In
addition, the processing of dictionaries of the size and
complexity of mmCIF is greatly simplified if there are
independent warning messages. This is because functions such
as d i e t _ or d a t a , while trivial to invoke, actually initiate a
complex sequence of processes and checks that make the
notification of run-time errors difficult in terms of single true or
false values. For these reasons, the repertoire of system error
messages, fatal and nonfatal, has been increased in CIFtbx2.

System error messages have a common format. Each begins
with either a 'warning' or 'error' header line with the name of
the file being processed, the current data block or save frame
and the line number. The next line contains the text of the
message. For example, the following warning message is issued
by the test program t b x _ e x , f when it finds that the file
t e s t . c i f contains the unknown data item name
_dummy_test, in the data block data_mumbo_jumbo:

ciftbx warning: test.cif
data_mumbo_jumbo line: 12

Data name _dummy_test not in dictionary[

4.1. Fatal errors: array bounds

The following messages are issued if the CIFtbx2 array
bounds are exceeded. Array bounds can be adjusted by
changing of the PARAMETER values in c i f t b x , s y s . If the
value of MAXBUF needs to be changed, the file c i f t b x , cmn
must also be updated.

Input line_ value > MAXBUF
Number of categories > NUMBLOCK
Number of data names > NUMBLOCK
Cifdic names > NUMDICT
Dictionary category names > NUMDICT
Items per loop packet > NUMITEM
Number of loop_s > NUMLOOP

4.2. Fatal errors: data sequence, syntax and file construction

Diet_ must precede ocif_

Dictionary files must be loaded before an input CIF is opened
because some checking occurs during the CIF loading process.

Illegal tag/value construction

Data name (i.e. a 'tag') and data values are not matched
(outside a looped list). This usually means that a data name
immediately follows another data name, or a data value was
found without a preceding data name. The most likely cause of
this error is the failure to provide a ' . ' or ' ? ' for missing or
unknown data values, or a failure to declare a loop when one
was intended.

Item miscount in loop

Within a looped list, the total number of data values must be
an exact multiple of the number of data names in the l o o p _
header.

Prior save-frame not terminated
Save-frame terminator found out of context

Save frames must start with save_<frame code> and
end with s a v e _ . These messages will be issued if this does not
O c c u r .

Syntax construction error

Within a data block or save frame, the number of data values
does not match the number of data names (ignoring loop
structures).

Unexpected end of data

When processing multiline text the end of the CIF is
encountered before the terminal semicolon.

4.3. Warnings. input errors

Category <cat-code> first implicitly
defined in cif

The category code in the DDL2 data name is not matched by
an explicit definition in the dictionary. This may be intentional,
but it more likely indicates a typographical error in the
dictionary or the CIE

Data name <name> not in dictionary:

The data item name <name> was used in the CIF but could
not be found in the dictionary.

Duplicate data item <name>

There were two or more identical data names <name> in a
data block or save fi'ame.

Heterogeneous categories in loop <new

cat-code> vs <old cat-code>

Looped lists should not contain data from different
categories. This message is issued if the category of new data
items fails to match the old category of prior data items. A
special category (n o n e) is used to denote item names for which
no category has been declared. No warning is issued on this
level for a loop for which all data items have no category
declared.

Input line length exceeds line_

Nonblank characters were found beyond the value given by
the variable 1 i n e _ The default value for 1 i n e _ is 80, which is
the upper bound for lines in a valid CIE The extra characters
will be processed but the input file should be reformatted for
input to other CIF-handling programs.

Missing loop items set as DUMMY

During writing of an output CIF, a looped list of items was
truncated with an incomplete loop packet (i.e. the number of
items did not match the number of loop data names). The
missing values were set to the character string 'DUMMY'.

Numb type violated <name>

The data item <name> has been processed with an explicit
dictionary type numb, but with a nonnumeric value. Note that
the values ' ? ' and ' . ' will not generate this message.

Quoted string not closed

Character values may be enclosed by bounding quotes. The
strict definition of a 'quoted string' value is that it must start
with a <wq> digraph and end with a <qw> digraph, where w
is a white-space character blank or tab and q is a single or
double quote. This message is issued if these conditions are not
met.

602 CIF A P P L I C A T I O N S

4.4. Warnings: dictionary checks

Aliases and names in different loops; only
using first alias

When a DDL2 dictionary contains a loop of alias declara-
tions, the corresponding dam name declarations are expected to
be in the same loop. This message is issued if separate loops are
used. Only the first alias name is used, but processing continues.

Attempt to redefine category for item
Attempt to redefine type for item

If a DDL2 dictionary contains a category or type for a data
item that conflicts with an earlier declaration, these warnings
are issued. The redeclaration is ignored.

Categories and names in different loops

When a DDL2 dictionary contains a loop of category
declarations, the corresponding data name declarations are
expected to be in the same loop. This message is issued if
separate loops are used. Only the first category name is used,
but processing continues.

Category id does not match block name

In a DDL2 dictionary, the save-frame code is expected to
start with the category name. If a category name within the
frame is not within a loop, it is checked against that in the frame
code and a warning is issued if these do not match.

Conflicting definition of alias

When a DDL2 dictionary contains a new declaration of an
alias for a data name that is in conflict with a previous alias
definition, this warning is issued. The second alias declaration
is ignored.

Duplicate definition of same alias

When a DDL2 dictionary contains a new declaration of an
alias for a data name that duplicates a previously defined alias
pair, this warning is issued.

Item type <type-code> not recognised

In CIFtbx2, DDL2 dictionary precise-type codes are
translated to the DDL primitive-type codes numb, c h a r and
t e x t . If an unrecognised type code is found for which CIFtbx
does not have a translation, this warning is issued.

Multiple DDL 1 and 2 category definitions
Multiple DDL 1 and 2 name definitions
Multiple DDL 1 and 2 type definitions

These messages are issued if both DDL and DDL2 style
declarations for categories, data names or data types are used in
the same data block or save frame.

Multiple categories for one name
Multiple types for one name

These messages are issued if a dictionary contains a loop of

category or type definitions and an unlooped declaration of a
single data name. The first category or type definition is used
and processing continues.

NO category defined in block <name> and

name <name> does not match

This message is issued if a DDL2 dictionary contains no
category for the defined data item and it was not possible to
derive an implicit category from the block name. This message
usually indicates a typographical error in the dictionary.

No category specified for name <name>

This warning is issued if a dictionary contains categories but
none for the named data item.

No name defined in block
No name in the block matches the block

name

These messages are issued if a dictionary save frame or data
block contains no name definition or if all the names defined
fail to match the block name.

No type specified for name <name>

This message is issued if a type code is missing from a
dictionary and type checking was requested in the d i c t _
invocation.

One alias, looped names, linking to first

Types and names in different loops

A DDL2 dictionary may contain a list of data names and a
single alias outside of this loop. In this case, the correct name to
which to link the alias must be derived implicitly. If the save-
frame code matches the first name in the loop, no warning is
issued, because the use of the block name was probably the
intended result, but, if no such match is found, this warning is
issued.

5. Distribution

The latest version of this software is available from the World
Wide Web servers http://ndbserver.rutgers.edu/software and
http://www.crystal.uwa.edu.au/Soflware/cittbx/ or from the
anonymous tip site 130.95.232.12 in directory/cif.

CIFtbx2 is distributed as the file c i f t b x , c s h a r containing
the Fortran sources ciftbx.f and hash_funcs.f, two
common files c i f t b x . s y s (used by c i f t b x . f internally)
and c i f t b x , cmn (used by applications), test files and other
useful files. The structure of this file permits automatic
unpacking in UNIX systems having the C shell csh, but, unlike
the more commonly used 'shar' format, also allows unpacking
with a text editor. A c i f t b x , s h a r version is also available.
The mmCIF dictionary c i f d i c , m95 and CIF core dictionary
c i f d i c , c91 or c i f d i c , c94 may also be needed.

For further information, e-mail Syd Hall at syd@crystal.
uwa.edu or Herbert Bernstein at yaya@aip.org.

We thank Frances C. Bemstein of the Protein Data Bank at
Brookhaven National Laboratory for helpful comments and
suggestions.

References

Bernstein, E C., Koetzle, T. E, Williams, G. J. B., Meyer, E. E Jr, Brice,
M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M.
(1977). J Mol. Biol. 112, 535-542.

Bourne, P., Bernstein, E C. & Bernstein, H. J. (1996). pdb2cif."
Translating PDB Entries into mmCIF. CIF Workshop, XVII Congress
of the International Union of Crystallography, Seattle, USA.

C I F A P P L I C A T I O N S 603

Fitzgerald, P., Berman, H., Bourne, P., McMahon, B., Watenpaugh,
K. D. & Westbrook, J. (1995). Macromolecular CIF Dictionary,
Version 0.7.28. IUCr COMCIFS, International Union of
Crystallography, Chester, England.

Hall, S. R. (1993). J. Appl. Cryst. 26, 482-494.
Hall, S. R. & Cook, A. P. C. (1995). J Chem. Inform. Comp. Sci. 35,

819-825.

Hall, S. R., King, O. S. D. & Stewart, J. M. (1995). XTAL3.4 Users
Manual. University of Western Australia, Australia.

Knuth, D. E.. (1973). The Art of Computer Programming, Volume 3:
Sorting and Searching. Reading, MA: Addison-Wesley.

Westbrook, J. & Hall, S. R. (1995). A Dictionary Description Language
for Macromolecular Structure. Draft DDL V 2.1.0, IUCr COMCIFS,
Chester, England.

