SHORT COMMUNICATIONS

Ba$_6$CoNb$_9$O$_{30}$ and Ba$_6$FeNb$_9$O$_{30}$: two new tungsten-bronze-type ferroelectrics. Centrosymmetry of Ba$_{3.2}$K$_{0.8}$U$_{2.4}$Nb$_{7.6}$O$_{30}$ at 300 K. Erratum

M. C. FOSTER, a G. R. BROWN, b R. M. NIELSON a AND S. C. ABRAHAMS b * at “Chemistry Department, Southern Oregon University, Ashland, OR 97520, USA, and bPhysics Department, Southern Oregon University, Ashland, OR 97520, USA. E-mail: sca@mind.net

(Received 24 September 1997)

Abstract

A printer’s error in the paper by Foster, Brown, Nielson & Abrahams [J. Appl. Cryst. (1997). 30, 495–501] is corrected. In §4.2 on p. 497, the displacement Δz(Fe1/Nb1) was given incorrectly as $0.5353 - 0.5063 = 0.1 (7)$ Å. The correct value for the displacement Δz(Fe1/Nb1) is $0.5353 - 0.5063 = 0.12 (7)$ Å.

Two-dimensional small-angle X-ray scattering investigation of stretched borosilicate glasses. Erratum

S. POLIZZI, a* P. RIELLO, a G. FAGHERAZZI, a M. BARK b AND N. F. BORRELLI c at “Dipartimento di Chimica Fisica, Università di Venezia, Dorsoduro 2137, I-30123 Venezia, Italy, bAbt. Experimentelle Physik, Universität Ulm & Hasylab, Hamburg, Germany, and cCorning Glass Research and Development, Corning, New York 14831, USA. E-mail: polizzi@unive.it

(Received 24 September 1997)

Abstract

Printer’s errors in the paper by Polizzi, Riello, Fagherazzi, Bark & Borrelli [J. Appl. Cryst. (1997). 30, 487–494] are corrected. In the Abstract, the value of the average of the volumetric particle distribution was given incorrectly as 22×70 nm. The correct value is 22×370 nm. In §5.1 on p. 491, the size of the particles whose dimensions are very close to the volumetric average obtained by the fitting method was given incorrectly as 22×80 nm. The correct value is 22×380 nm. In §5.2 on p. 491, the unit-cell edge of Ag determined was given incorrectly as 4.709 (6) Å. The correct value is 4.079 (6) Å. The TEM micrographs of Figs. 2 and 6 were transposed. These figures are printed correctly below.

Fig. 2. TEM micrograph of sample I.

Fig. 6. TEM micrograph of sample II.