
505

CIF APPLICATIONS

Authors o f any software that reads, writes or validates CIF data are invited to contribute to this series. Authors should state clearly
when submitting a manuscript to a Co-editor that the paper should be included as part o f the CIF Applications series. An
appropriate series number will be assigned by the Editorial O f lice.

J. Appl. Cryst. (1998). 31,505-509

CIF Applications. IX. A new approach for representing and manipulating STAR files

WELDER C H A N G a AND PHII.IP E. BOURNE b'':'a* at "Java Design Center, Sun Microsystems Inc., 55 Broad Street, New York N Y 10004,
USA, bSan Diego Supercomputer Center, PO Box 85608, San Diego CA 92186, USA, "Department o f Pharmacology, University o f
California, San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA, and aThe Burnham Institute, 10901 North Torrey Pines Road,
La Jolla CA 92037, USA. E-mail: bourne@sdsc.edu

(Received 20 August 1997; accepted 17 November 1997)

Abstract
The Self-defining Text Archival and Retrieval (STAR) format
provides a low-level data description from which Crystal-
lographic Information Files (CIFs) are derived. STAR is
independent of the two Dictionary Definition Languages
(DDLs) currently used in crystallography, is used to represent
scientific data beyond crystallographic data and is thus quite
general. This paper describes an object-oriented approach to
representing STAR files (0 0 S T A R) which is then used in
several applications of importance to crystallographers.
Applications are described for validating the integrity of
STAR-compliant files, extracting subsets of data from STAR
files and converting STAR files to HypcrText Markup
Language (HTML) for use with a Web browser. SunOS 4.1
binaries, Objective-C source code and instructions for
compiling and testing on other Unix-based hardware platforms
are available via the World Wide Web from http://
www.sdsc.edu/pb/cif/OOSTAR.html.

1. Introduction
The Self-defining Text Archive and Retrieval (STAR) file
format is a simple, easy to comprehend, extensible data
exchange format. The motivation for developing STAR and
the resultant syntax specifications has been described
previously (Hall, 1991; Hall & Spadaccini, 1994; Hall & Cook,
1995) and only a brief summary is given here. The basic STAR
format consists of a set of tag-value pairs. These tag-value pairs
are referred to as data items. Thus, a data item is identified by
its value and the unique tag that the value has associated with
it. Syntax and semantics are clearly separated since any
semantics associated with the data item are defined in separate
domain-specific dictionaries. Crystallographic dictionaries
include the core dictionary (Hall et al., 1991), the macro-
molecular dictionary (Bourne et al., 1997) and the powder
diffraction dictionary (Toby, 1997). Tag-value pairs are
enclosed in a data block. A data block starts with a d a t a _ -
b l o c k c o d e tag, where 'blockcode' is a unique identifier for the
data block, and is followed by the associated tag-value pairs. A
data block ends when another data block starts or at an end-of-
file. A STAR file consists of one or more data blocks and an
optional leading global data block, which contains information
that is applicable across multiple data blocks in a STAR file. A

~i~ 1998 International Union of Crystallography
Printed in Great Britain - all rights reserved

global data block is identified by the g l o b a l _ b l o c k c o d e
statement. A save frame is an optional referenced subcom-
ponent nested inside a data block. A save frame starts with a
s a v e _ s a v e c o d e where 'savecode' is an identifier used to
reference a save frame within a data block. A save frame ends
with the reserved word s a v e . The application of a save frame
in crystallography is currently restricted to the macromolecular
crystallographic information file (mmCIF) dictionary (Fitz-
gerald et al., 1997). Repetitive data items can be packaged into
a loop structure contained within a single data block. A data
loop structure consists of a loop_ statement followed by a list
of data names and then a repeated list of data values that can
be decomposed and matched to a corresponding data name. To
maintain the correct correspondence between tags and values,
values cannot be missing from the loop. If a data value is not
known it must be represented as either a period (.) to signify
that is is missing, or a question mark (?) to signify that it is not
relevant in the current context. A loop structure can be nested
inside another data loop structure to construct arbitrarily
complex data loop structures. Each level of loop must be
terminated by a s top_ statement, except the outermost loop,
which is terminated by the occurrence of a new data item, a
save frame, a data block, or an end-of-file. Nested loops are not
currently used by any crystallographic implementations of the
STAR format which leads to some unnecessarily awkward data
representations.

OOSTAR, written in the Objective-C programming
language (Pinson & Richard, 1991; Free Software Foundation,
1997), provides an object-oriented representation of these
STAR encoding rules. The advantages of Objective-C over the
more commonly used C++ language include: (i) looser data
typing; (ii) run-time type checking; and (iii) better message-
passing ability. Loose typing allows software designers to avoid
certain immutable design decisions and results in a flexible
software system capable of adapting to various applications.
The disadvantage of this approach relates to efficiency, but this
was not a problem in the applications described here. Loose-
typed languages like Objective-C query type information at
run-time. Objective-C provides a run-time library that enables
a software system to query the meta information of objects at
run-time while C++ provides relatively weak run-time typing
support.

Message passing between objects facilitating dynamic
binding, compared to functional calls (i.e. static binding) found

Journal of Applied Crystallography
ISSN 0021-8898 ~,. 1998

506 C I F A P P L I C A T I O N S

in structured programming languages, is one of the major
benefits of the object-oriented approach. C++ supports
message passing through the virtual method mechanism. In
order for this mechanism to work, a proper class inheritance
tree is a prerequisite. Objective-C dynamically interprets
messages using the run-time system and does not require a
supporting class inheritance tree. Flexible system design and
software adaptability were two of the objectives of this project;
therefore the Objective-C programming language was more
appropriate than the C++ programming language at the price
of being less familiar to potential application developers. It
should be noted that the Java programming language, the most
popular object-oriented language at the time of writing this
paper, was not available when this project began. It would be
straightforward, however, to apply the OOSTAR design when
writing Java code.

To reduce development effort, OOSTAR and the accom-
panying applications (jointly referred to as the tool set in this
paper) were built on top of two public-domain Objective-C
class libraries. These libraries are Thorup's Objective-C object
and run-time library (Thorup, 1996) and McCallum's collection
library (McCallum, 1997). The tool set is organized as two
groups of programs, a STAR file representation (i.e.
OOSTAR) and three application programs described below.

2. O O S T A R

A bottom-up design approach was applied by modeling STAR
syntax (Fig. 1). ltemAssoc is implemented as a class consisting
of two objects, an item and the value or a list of values asso-
ciated with the item. ItemAssoc can be used to represent any
relationship between two objects. StarAssoc is a class that is

derived from the basic ItemAssoc class. A _name data member
and additional methods which facilitate the manipulation of
STAR files were added to this class, for example
setltemName:, getltemName: and addvalue:. DataBlock is a
class that is derived from the StarAssoc class. The _name
attribute in the DataBlock class is interpreted as the data-block
identifier, blockcode, and the value is the first data item in the
data block. Methods were added to this class to provide STAR
data-block behavior, for example dataBlockName:, associa-
tedDictionaries: and getDataltem:, ltemAssoc contains pointers
to its previous and next elements and thus can be used to
represent one or more associations as well as being iterative.
Since StarAssoc and DataBlock are both derived from Item-
Assoc they are also iterative, making it a simple matter, for
example, to iterate over multiple data blocks. StarFile is a class
that is derived from DataBlock. The _name attribute of Star-
File is the STAR file name and the value is the first data block
in the file.

As a result of Objective-C's loose compile-time typing and
run-time meta information support, the design described above
provides sufficient power to represent various combinations of
STAR files while remaining a relatively straightforward design.
A set of rules, in keeping with STAR syntax rules, has been
developed to use the classes described. These rules are:

(i) A STAR file consists of one or more DataBlocks.
(ii) DataBlock consists of a data-block name and one or

more StarAssocs as its values.
(iii) StarAssoc consists of a name, a pointer to the data block

which provides the definition of the data item, and the value
associated with the name.

(iv) If the StarAssocs name is not loop_ then the value
attribute is either a string or a list of strings (LineBuffer).

Base Library

Object
Object and Run-time Classes

i Object 1

im ~.. ltemAssoc
_name _item _value

_next: _previous:
, 'k

StarAssoc
_name _item _value

setltemName: getltemName: addvalue:
- t

. . . . p~

DataBlock
_name _item _value

dataBIockName: associatedDictionaries:
~etDataltem:

StarFile
_name _item _value

Additional Libraries Containers and Navigation

I ACollection Classes
| i

I T il

]_.~t: _p~vious: . .[I

]['--IL

~etDefinitionBIockAtKey:-~
[l~etDefinitionBlockWhos: 1 1
II getAllUnique: 1 1

[l 11
is_a

has a

Fig. 1. OOSTAR classes. Classes are shown in rectangular boxes along with important attributes (bold) and methods (followed by colons). Classes
are organized into three columns representing their source libraries. Thick arrows indicate an 'is_a' relationship, thin arrows a "has_a'
relationship.

C I F A P P L I C A T I O N S 507

Otherwise, the value at t r ibute consists of a list of StarAssocs
and the data block is null.

(v) Rule (iv) can be applied recursively to represent S T A R

nested loop structures.
The above rules have been translated into a S T A R parser

based on Bison (a G N U version of yacc; Free Software
Foundat ion, 1997). The parser parses the token retr ieved from
a scanner, which was writ ten in Flex (a G N U version of lex;
Free Software Foundat ion, 1997), to construct the in-memory
O O S T A R representat ion. The scanner was deve loped inde-
pendent ly of the parser and can be used for any STAR
application.

A total of 18 classes have been deve loped for O O S T A R .
Beside the essential classes descr ibed above, o ther classes
including ListofObject, Iterator and LineBuffer have been
implemented as container classes and for navigation. Several
classes from McCallum's collection library were supplemented
to serve specific S T A R requirements. These classes include
String, Stack and Dictionary (Fig. 1).

Specialized query methods were added to the collection
library's Dictionary class to assist the s tudy of S T A R and
associated dictionaries using existing DDLs. These methods
include getDefinitionBlockAtKey:, getDefinitionBlocksWhos:,
is: and getAllUnique:. These methods are used in combinat ion
by the various applications. For example, a message of
getDefinitionBlocksWhos: '_category' is: 'atom_-
site' to a crystallographic information file returns a collec-
tion of data blocks which contain the CIF category a t o m _ s i t e .

data_Ex3

loop_
_display_id
_display_object
_display_symbol
_display_colour
_display_size
_display_coord_x
_display_coord_y
loop_

_display_conn_id
_display_coma_symbol

1 text BH blue 5 35 70 21b 7 lb 8 lb 12 lbstop_
2 text BH blue 5 10 60 31b 71b 81b 81bstop_
3 text BH blue 5 10 30 41b 8 lb 91bl01bstop_
4 text BH blue 5 35 20 5 lb 9 1 b l 0 1 b l l lbstop_
5 text BH blue 5 60 30 6 1 b l 0 1 b l l lb121bstop_
6 text BH blue 5 60 30 1 lb 11 lb 12 lb 7 lbstop_
7 text BH blue 5 35 57 9 lbstop_
15 text Me black 5 80 50 stop_
16 text Me black 5 100 50 stop_

(a)

%stargrep ex.3 data_Ex3 _display_conn_id

2
7
8
12

3. Applicat ions

Three applications have been deve loped using O O S T A R to
investigate the usefulness of this approach; they are StarHtml,
stargrep and startuple.

3.1. StarHtm!

StarHtml converts a set of S T A R files into HyperText
Markup Language (H T M L) files for use with a World Wide
Web browser , thus providing a useful viewer for exploring
STAR/CIF, including complex dictionaries. StarHtml generates
a set of in terconnected H T M L files based on the referential
information e m b e d d e d in the S T A R files. Currently, the
referential information is be tween a data i tem and the corre-
sponding definition as found in a S T A R (and hence CIF)
dictionary. Knowledge associating both S T A R syntax and
application semantic information with the H T M L syntax was
p rogrammed into the specialized StarHtml object. A set of
S T A R files and S T A R dictionaries are used as input to the
application and a comprehens ive in-memory representa t ion of
these S T A R files generated. The StarHtml object navigates the
O O S T A R network and generates H T M L files to represent the
associations that the object has encounte red in the network.
StarHtml is executed with the following command:

StarHtml dir dicl [dic2 [dic3]. . .] [filel

[file2]...]

where dir is the target directory to contain all H T M L files,
dicl., dicn are the paths to the S T A R dictionaries and file1..
filen are the paths to the S T A R data files.

Two H T M L files are genera ted for every S T A R file or
dict ionary that was passed to the StarHtml application and the
master H T M L file SFBrowser .h tml is genera ted to serve as the

1
12
7
9

(b)

% startuple ex.4 data_Ex3 _display_id _display_eolour _display_conn_id
_dlsplay_conn_symbol

1 blue 2 l b
1 blue 7 lb
1 blue 8 lb
1 blue 12 i b
2 blue 3 l b
2 blue 7 I b
2 blue 8 I b
2 blue 8 l b

5 blue 6 l b
5 blue 10 lb
5 blue I I Ib
5 blue 12 lb
6 blue I I b

6 blue 7 I b
7 blue 9 lb
15 black (null) (null)
16 black (null) (null)

(c)

Fig. 2. (a) A Molecular Information File (MIF). (b) Application of
stargrep: extracting values associated with the tag _ d i s p l a y _ -
conn_id from the data block Ex3 contained in the MIF called ex.3.
(c) Application of startuple.

508 C I F A P P L I C A T I O N S

entry point to all the HTML files. StarHtml has been used to
process STAR files from Molecular Information File (MIF;
Allen et al., 1996) and CIF applications using DDL1.4.
StarHtml was later enhanced to process the mmCIF dictionary
and data files developed using DDL2.1.1.

DDL2.1.1 extends DDL1.4 by providing a richer set of
definitions for relationships between data items and stronger
data typing. In the core CIF dictionary, which is based upon
DDL1.4, all data items are defined in a single data block
without the use of save frames. Save frames have been used in
DDL2.1.1 to delineate data items. Both of these situations are
STAR compliant; hence, the underlying OOSTAR repre-
sentation required only minor change to encompass DDL2.1.1
from a version starting with DDL1.4. The only modification
made to the basic structure was during the building of
Dictionary objects. Instead of creating a key table against
d a t a _ b l o c k c o d e , the Dictionary object builds the key table
against s ave_ f r amecode . Other minor modifications were
made at the application level. For example, StarHtml objects
were modified to reflect the alias mechanism developed in
DDL2.1.1. Similarly, instead of locating the information for
_list_link_parent in DDLI.4, _item_linked.
parent_name was searched when using DDL2.1.1. HTML
versions of several crystallographic dictionaries can be found
at http://www.sdsc.edu/pb/cif/dictionaries.html.

3.2. stargrep and startuple

Two applications that query STAR files (see Fig. 2a for an
example of a STAR-compliant file) have been developed. The
stargrep application is a query utility that enables a user to
query information associated with a specific data item within a
specific data block in a specific STAR file. The target item can
be either single- or multiple-valued. The result of the query is
presented as one value per line. The command for running
stargrep is:

stargrep starf ilename datablockname datai tenmame

The result of running stargrep on the STAR input file given in
Fig. 2(a) is shown in Fig. 2(b).

The startuple application is another query utility which
flattens the data loop structure in a STAR file and presents
data in a tabular form. The command to run startuple is:

startuple fileaame datablockname dataitenmamel

[datai tenmame2. . .]

The result of this query is presented as one row of the table per
line. An example of the use of startuple is given in Fig. 2(c)
using the STAR-compliant input file given in Fig. 2(a).

4. Discuss ion

Object-oriented languages are well suited for modeling STAR
and CIF encoding rules, and have the advantages of code reuse
and extensibility at the price of poorer performance and a
more limited audience of application developers capable of
using the code than for structured languages like Fortran and
C. Performance is not an issue in the simple translators
described here. Even the macromolecular CIF dictionary with
over 3200 data items can be processed in a few seconds on a
typical Unix workstation. Likewise, usability is less of an issue
as more crystallographers become familiar with object-

oriented programming. We think it unlikely that Objective-C
will become a popular object-oriented language among crys-
tallographers with the advent of Java (Java did not exist when
this project began). Hence, we offer the code described here as
more of a template for the object-oriented representation of
STAR files than for use in further application development.
Nevertheless, the applications themselves may prove useful.

Two other applications that convert CIFs to HTML beside
StarHtm! described here are known to exist. First, C I F L I B
(Westbrook et al., 1997), a C++ class library, has been used to
develop a convertor which operates on DDL2.1.1-compliant
files. Versions of the DDL and mmCIF dictionaries converted
to HTML with this tool are available at http://ndbserver.
rutgers.edu/mmcif. Second, Murray-Rust (1994) developed a
prototype convertor for DDL1.4-compliant CIFs written in the
interpretive language Tel. Each offers a somewhat different
view of a STAR/CIE but provides the same subset of hyper-
links since these are specified by STAR syntax rules rather
than the application developer.

The functionality of stargrep and startuple could be provided
in Fortran using CIFtbx (Hall & Bernstein, 1997) for both
STAR/CIF DDL1.4- and DDL2.1.1-compliant files, stargrep
and startuple have been incorporated into the Python
programming language to provide an interactive query envir-
onment. Python (Lutz, 1996) is an interpreted, interactive,
object-oriented programming environment. It incorporates
modules, exceptions, dynamic typing and classes. The Objec-
tive-C STAR representation was enclosed as a Python module.
Through Python's interpreter, we could interrogate the infor-
mation stored in STAR format interactively. This system has
been used to study, for example, the integrity of a STAR file
and derived parent/child relationships in STAR dictionaries.

This work was supported by the National Science Founda-
tion grant BIR 9310154 and the US Department of Energy.
This work owes much to the community of CIF and mmCIF
developers and users.

References

Allen, F. H., Barnard, J. M., Cook, A. F. P. & Hall, S. R. (1996). J. Chem.
Inf. Comput. Sci. 35, 412-427.

Bourne, P. E., Berman, H. M., McMahon, B., Watenpaugh, K.,
Westbrook, J. D. & Fitzgerald, P. M. D. (1997). Methods Enzymol.
277, 571-590.

Fitzgerald, P. M. D., Berman, H. M., Bourne, P. E., McMahon, B.,
Watenpaugh, K. & Westbrook, J. D. (1997). mmCIF, http://
ndbserver.rutgers.edu/N DB/mmcif/dictionary/.

Free Software Foundation (1997). GNU's Not Unix! - the GNU Project
and the Free Software Foundation (FSF), http://www.gnu.ai.mit.edu/.

Hall, S. R. (1991). J. Chem. Inf. Comput. Sci. 31, 326-333.
Hall, S. R., Allen, E H. & Brown, I. D. (1991). Acta Cryst. A47,

655-685.
Hall, S. R. & Bernstein, H. J. (1997). CiFtbx, Cyclops, cif2cif, http://

ndb.rutgers.edu/N DB/mmcif/software/ciftbx/.
Hall, S. R. & Cook, A. P. E (1995). J. Chem. Inf. Comput. Sci. 35,

819-825.
Hall, S. R. & Spadaccini, N. (1994). J. Chem. Inf. Comput. Sci. 34,

505-508.
Lutz, M. (1996). Programming Python. Sebastopol, California, USA:

O'Reilly.
McCallum, A. K. (1997). GNU Objective C Class Library Home Page,

http://www.cs.rochester.edu/u/mccallum/libobjects/horne.html.

C I F A P P L I C A T I O N S 509

Murray-Rust, P. (1994). CIF Resources at CBMT, http://www.seqnet.
dl.ac.uk/CBMT/cif/HOM E.html.

Pinson, L. J. & Richard, R. S. (1991). Objective-(? Object-oriented
Programming Techniques. Reading, Massachusetts, USA: Addison
Wesley (http://dcvworld.apple.com/techinfo/tcchdocs/rhapsody/
NextLibrary/Documcntation/NextDev/TasksAndConcepts/Objec-
tivcC/Welcome.html).

Thorup, K. K. (1996). User's Guide to the GNU Objective-C Class
Library-Table of Contents, http://www.math.utah.cdu/docs/info/
libobjects_toc.html.

Toby, B. (1997). (IUCr) Powder CIF Dictionary, http://www.iucr.org/cif/
pd/indcx.html.

Westbrook, J. D., Hsieh, S.-H. & Fitzgerald, P. M. D. (1997). J. Appl.
Cryst. 30, 79-83.

