
1998 International Union of Crystallography Journal of Applied Crystallography
Printed in Great Britain ± all rights reserved ISSN 0021-8898 # 1998

965

CIF APPLICATIONS

Authors of any software that reads, writes or validates CIF data are invited to contribute to this series. Authors should state clearly
when submitting a manuscript to a Co-editor that the paper should be included as part of the CIF Applications series. An
appropriate series number will be assigned by the Editorial Of®ce.

J. Appl. Cryst. (1998). 31, 965±968

CIF Applications. X. Automatic Construction of CIF Input Functions: CifSieve

J. R. Hester*² and F. P. Okamura at National Institute for Inorganic Materials, Namiki 1-1, Tsukuba, Ibaraki 305, Japan.
E-mail: jrh@nirim.go.jp

(Received 10 February 1998; accepted 30 June 1998)

Abstract

A software package for reading a list of CIF data into user-
speci®ed variable names in the DDL domain dictionary is
described. The customized function generated by this process
provides detailed error reporting and may be called from C or
Fortran programs.The package is small, simple to install andfast.
It runs on variants of the Unix operating system that have the
following utilities available: Bison/Yacc, Flex, Perl and C.

1. Introduction

Since the Crystallographic Information File (CIF) was origin-
ally proposed (Hall et al., 1991) for exchange and storage of
crystallographic data, a range of software tools have been
developed for manipulating this format (Hall & Bernstein,
1996; Westbrook et al., 1997). These tools provide functions for
checking, reading and writing CIFs, and reduce the complexity
of handling the ¯exible CIF and dictionary de®nition language
(DDL) syntax for programmers wanting to create a CIF-
literate application.

Even so, when using such tools, a programmer is still
required to specify the CIF name and destination data struc-
ture for every required item. This operation is both time
consuming and prone to transcription errors, particularly when
a large amount of data is involved. A simpler access route to
CIF data is needed for small in-house applications in order to
encourage the wider crystallographic community to use CIF in
place of less portable ®xed formats.

It is possible to reduce substantially the programming time
required to write an input CIF interface by using the DDL
domain dictionary as a simple template for the customized
software. This leads to the rapid creation of new CIF-conver-
sant software which can be easily added to existing programs.

In the following description, `domain dictionary' refers to a
CIF dictionary in DDL format.

2. Applying CifSieve

The program CifSieve may be used to generate a customized
CIF reader for addition to existing software by the following
two basic steps.

(i) Edit an existing domain dictionary ®le by inserting a new
attribute and value _variable_name variable-name in the
de®nition blocks of those items the application program needs

to read from the CIF. See Fig. 1 for an example of how this is
done. The de®nitions of items that do not need to be read
should be left unchanged. Note that the addition of _varia-
ble_name does not alter other uses of this dictionary. variable-
name is the name of the variable declared in the application
program for storing the read data item. If the items to be read
are part of an array (i.e. they exist in the CIF as a looped list)
then variable-name should be entered as a dimensional vari-
able, e.g. FCAL(2000).

(ii) For C applications the program BuildSiv is used to
create an object ®le for the function cifsiv_ and a separate
header ®le cifvars.h. These are invoked in an application
program as cifsiv_(CIF®lename, blockname) to read and
store items (as tagged in the domain dictionary) from the CIF
named CIF®lename and the data block named blockname. The
header ®le cifvars.h is included in subroutines which
manipulate the data input from the CIF. Examples of a
modi®ed dictionary ®le are shown in Fig. 1. This caused
BuildSiv to generate a cifsiv_ object ®le which may be

² Current address: ANBF, KEK-PF, Oho 1-1, Tsukuba, Ibaraki 305,
Japan. E-mail: jrh@anbf2.kek.jp. Fig. 1. A section of an edited DDL ®le.

invoked as shown in Fig. 2, and the header ®le cifvars.h as
shown in Fig. 3.

For Fortran applications the program BuildSiv is used to
create an object ®le containing the function cifsiv_ and an
include ®le forcif.inc specifying the common block
containing the input variable names. cifsiv_ is applied in a
Fortran program as call cifsiv(CIF®lename, blockname,
blockbeg) with an additional third argument, which is the

address of the beginning of this common block (this is
described further below).

3. Design

The CifSieve package comes in two parts: the DDL parser
program for the domain dictionary and the main BuildSiv
program responsible for constructing the cifsiv_ function

Fig. 2. An example C application program.

Fig. 3. The generated C variable declarations ®le cifvars.h.

966 CIF APPLICATIONS

source from the DDL parser output. CifSieve relies heavily on
freely available software, particularly from the Free Software
Foundation (Stallman, 1993).

3.1. DDL parser

Separate DDL parsers are provided for the original DDL
speci®cation (hereafter DDL1) (Hall & Cook, 1995) and for
DDL2 (Westbrook & Hall, 1995). The parsers are auto-
matically constructed from a restricted STAR grammar
speci®cation in Bison format (Donnelly & Stallman, 1995),
using a Flex-generated lexical analyser (Paxson, 1995). The
parser scans the dictionary and if the _variable_name attri-
bute occurs within a dictionary de®nition, a ¯ag is set, and
when reading of that de®nition ®nishes, variable type (the
value of de®nition attribute _type), item name (attribute
_name) and variable name are output in a simple tag-value
format and in a standard order. For DDL2 domain dictionaries,
values of _item_aliases.alias_name and _item_
linked.parent_name entries, if present, are also output. The
DDL parser thus transforms and simpli®es the dictionary
contents.

If the _name(DDL1)/_item.name(DDL2) attribute occurs
inside a loop, that is, a number of names appear in one de®-
nition block, the variable name for that particular de®nition
block will be given an extra array dimension by CifSieve, equal
to the number of items in the loop. When a CIF name from this
loop is found in a CIF ®le, the value will be read into the
respective array location. If an _item_aliases.alias_name
attribute is present (DDL2), the alias will also be recognized
in CIF input ®les. If this attribute occurs together with
looped item names in the domain dictionary, an attempt
is made to determine the parent _item.name in that
loop to which this _item_aliases.alias_name refers.
This is done within BuildSiv by examining _item_
linked.parent_name entries within the same de®nition
block.

3.2. Building cifsiv_: BuildSiv

The BuildSiv program, which is a shell-like script written in
Perl (Wall et al., 1996), creates four source ®les, which together
describe the ®nal input function. One ®le, cifvars.h, is a list
of declarations for the variables which will contain the CIF
data. The second ®le contains a short C-language wrapper
function which calls the parser generated by Bison and Flex.

The next two ®les, cifsiv.y and cifsiv.lex, are speci®ca-
tion ®les for the parser and its lexical analyser, which are
constructed from these ®les by Bison and Flex, respectively.

BuildSiv ®rst calls the DDL parser described above, which
returns a simpli®ed version of the domain dictionary. The
contents of this ®le are read and a Flex speci®cation ®le
constructed for lexical analysis of the CIF ®le. Variable
declarations are output to ®le cifvars.h as each variable
name and type is encountered.

At present, the correspondence between a DDL1 domain
dictionary _type attribute and the compiled function variable
type is as follows: numb becomes double (C) or REAL*8
(Fortran). char becomes char[84] (C) or CHARACTER*84
(Fortran). Multiple lines of text cannot be retrieved using the
present version of CifSieve.

Dictionaries written using DDL2, such as the mmCIF
dictionary, allow internal de®nition of the meaning of values
for _item.type tags. These type de®nitions are not presently
parsed by DDL2; instead, the types de®ned in mmCIF version
1.0.00 are recognized and mapped such that all numbers
(float, int) are treated identically to the DDL1 numb type,
and all character types become no more than 84 characters
long.

The Bison parser speci®cation ®le, cifsiv.y, is then
composed. The grammar is speci®ed such that, if a target item
name is encountered outside a loop, the item value is explicitly
copied to the variable name. Looped syntax is more complex.
A loop is divided into a looptop and loopbottom, where
looptop is a list of looped item names and loopbottom is a
list of their values. When one of the target CIF item names is
found in the looptop section, a pointer is set to the ®rst entry
in the user array variable corresponding to that CIF item.
Then, when the bottom part of the loop is being input, data
values corresponding to that data item are copied into the
position speci®ed by this pointer, and the pointer incremented
to point to the next location. If the programmer-speci®ed
variable name does not contain an array speci®cation, it will
not be included in this section of the grammar speci®cation ®le,
and an error message will therefore be generated if it is
encountered inside a loop during CIF ®le input.

BuildSiv then runs Bison and Flex to generate the C source
code for the parser. Finally, the C wrapper program is created
and compiled together with the parser source code to produce
the ®nal object ®le containing the cifsiv_ function.

If BuildSiv is called with the -e option, variable declarations
for e.s.d.s are also output and e.s.d.s for requested items are

Fig. 4. The example Fortran include ®le forcif.inc.

CIF APPLICATIONS 967

read in if they appear after numerical values in the CIF ®le.
Variable names for the e.s.d.s are created by appending the
letters `esd' to the user variable name.

The generated function is robust relative to syntax and type
errors within the CIF ®le. If an error occurs, variable errornum
is set to a nonzero value and an error message is inserted into
string errormes. These variables are declared together with
the user variables. The parser then discards CIF data until it
reaches an understandable set of input values. So, for example,
if three numbers appear after an item name instead of one, the
second two will be ignored, after the error variables have been
set and parsing will continue. Similary, if a serious error occurs
within a loop, such as the appearance of an item name not
matching an array variable, the entire loop is normally ignored.
If a new packet of looped data exceeds the speci®ed array
limits, further data in that loop are ignored.

3.3. Fortran interface

When the -f option is given to BuildSiv, a Fortran interface
is generated. The automatically generated ®le forcif.inc
de®nes a common block containing the user-speci®ed variable
names.

The Fortran interface is implemented by de®ning both a C
structure, for use within cifsiv_, and an identically
constructed Fortran common block, for use by application
programs. When cifsiv_ is called from Fortran with the ®rst
element of this common block, BLOCKBEG, as a third argument,
the cifsiv_ function receives a pointer to that argument and
consequently to the beginning of the Fortran common block.
This pointer value is used as the address of the beginning of the
C structure and item values are thus read into the proper
positions within this structure by cifsiv_. After cifsiv_
returns, Fortran application programs can read variable values
from this common block.

4. Example

The following example shows the various stages of processing
of the edited dictionary. Fig. 1 shows an edited dictionary with
_variable_name attributes. Fig. 2 shows a short test program
demonstrating the use of the cifsiv_ function. Fig. 3 shows
the C header ®le generated, cifvars.h, which should be
included in any routines using the variables.

The Fortran include ®le, together with a simple program, are
given in Figs. 4 and 5. The cifvars.h ®le generated in this
case (not shown) is different to that in Fig. 2, as all variables
are now de®ned as members of a structure.

5. Availability

The program, with installation and detailed operating
instructions, is freely available by ftp at ftp://anbf2.kek.jp/pub/
cif/cifsieve_1.2.tar.gz. GNU software is available from the Free
Software Foundation at ftp://prep.ai.mit.edu/pub/gnu.

The authors are grateful for helpful discussions with Syd
Hall and thank Timo Vaalsta for conceiving the idea behind
the Fortran interface. We owe a debt of gratitude to the
programmers who have contributed to the GNU project.

References

Donnelly, C. & Stallman, R. (1995). The Bison Manual. Free Software
Foundation, 59 Temple Place Suite 330, Boston MA 02111, USA,
http://www.fsf.org.

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). Acta Cryst. A47, 655±
685.

Hall, S. R. & Bernstein, H. J. (1996). J. Appl. Cryst. 29, 598±603.
Hall, S. R. & Cook, A. P. F. (1995). J. Chem. Inform. Comput. Sci. 35,

819±825.
Paxson, V. (1995). The Flex Manual. Free Software Foundation, 59

Temple Place Suite 330, Boston MA 02111, USA, http://www.fsf.org.
Stallman, R. (1993). The GNU Manifesto. Free Software Foundation,

59 Temple Place Suite 330, Boston MA 02111, USA, http://
www.fsf.org.

Wall, L., Christiansen, T. & Schwartz, R. L. (1996). Programming Perl,
2nd ed. California, USA: O'Reilly.

Westbrook, J. & Hall, S. R. (1995). A Dictionary Description Language
for Macromolecular Structure, Draft DDL V2.1.0. IUCr-COMCIFS,
Chester, England.

Westbrook, J. D., Hsieh, S. & Fitzgerald, P. M. D. (1997). J. Appl. Cryst.
30, 79±83.Fig. 5. An example Fortran program using cifsiv.

968 CIF APPLICATIONS

