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The number of `statistically independent' observations in a powder diffraction

pattern has been the topic of some discussion over the past few years. It is

argued that while this notion is tantalizing, it is illusory in principle, and it is

suggested that a more appropriate measure of the quality of the data is the

number of `good' re¯ections. By way of explanation, a tutorial on the underlying

concepts of correlation and covariance, which are a surprisingly common source

of confusion, is provided. A practical procedure for implementing the

theoretical ideas is proposed.

1. Introduction

In an ideal world, the vast majority of diffraction experiments

would be performed on single-crystal samples rather than

powdered ones, since experience has taught us that more

detailed structural information can usually be inferred from

the former. Although practical considerations can make the

use of powder data unavoidable, it sometimes comes down to

a matter of judgement: it may be possible to grow a suf®ciently

large single crystal, but only with considerable dif®culty; is it

worth the effort, or will a powdered sample suf®ce?

Such questions naturally prompt us to think about how the

`information content' in a powder diffraction pattern could be

quanti®ed, particularly with a view to comparing it with a

comparable set of single-crystal data. Indeed, a quality

measure of this type might also be useful for assessing the

expected merit of any proposed change in the experimental

procedure. The easiest way of addressing this problem is to

consider the reliability with which the intensities of the

structure factors, or the areas under the Bragg peaks, can be

estimated from the data. This approach has the advantage of

generality, in that it is largely independent of the details of the

structure being studied, but the corresponding drawback that

any resultant `®gure of merit' can only serve as a broad guide

for a given speci®c situation.

An intuitive argument, which forms the basis of an algo-

rithm for quantifying the impoverishment of powder data,

proposed by Altomare et al. (1995), is outlined and discussed

in x2. An account of the elementary concepts of correlation

and covariance, which are central to the reasoning in this

paper, but often a source of confusion for students and

professionals alike, is given in x3; familiarity with basic science

mathematics (Sivia & Rawlings, 1999), such as linear algebra

and calculus, is assumed. This leads us to suggest, in x4, that it

is better to think in terms of the number of `good' re¯ections

in a powder pattern rather than `statistically independent'

ones; a practical procedure for implementing the theoretical

ideas is put forward and discussed with reference to a closely

related proposal by David (1999).

2. An intuitive argument

If a certain region of a powder pattern consists of two well

separated Bragg peaks, pertaining to two distinct re¯ections,

then we can say that it contains exactly two independent

pieces of intensity information; let us denote this by Ni = 2 and

call the associated integrated intensities I1 and I2. A complete

overlap, on the other hand, reduces Ni to unity because then

only the sum I1 + I2 can be extracted reliably. For the general

case of partial overlap, there will be some intermediate degree

of correlation between the extracted intensities; this situation

can be quanti®ed by ascribing a suitable value to Ni that lies

somewhere between 1 and 2. If this idea is generalized to deal

with multiple overlaps and applied to the whole powder

pattern, then Ni can be regarded as a measure of the

equivalent number of statistically independent re¯ections

inherent in the data; as such, it can serve as a useful guide for

assessing the chances of successfully solving, or re®ning, a

crystal structure. This intuitively reasonable argument forms

the basis of a proposal by Altomare et al. (1995) for an algo-

rithm for estimating Ni; while their suggested procedure has

many appealing qualities, it also has some important short-

comings.

The most striking feature of the aforementioned proposal,

which is based solely on the amount of overlap between Bragg

peaks, is its insensitivity towards the quality of the data. This

seems quite odd since the intensities of even highly correlated

re¯ections can, in principle, be estimated to any arbitrary

accuracy, with enough counting statistics, as long as the

overlap is not complete; in practice, a limit is eventually set by

how well the experimental parameters (such as the peak

pro®le) have been modelled and calibrated. The point is

illustrated in Fig. 1 by computer-generated data from two

closely spaced Lorentzian peaks, of full width at half-

maximum (FWHM) 2 units, which are subject to a ¯at back-

ground signal and Poisson noise. Assuming that the pro®le and

positions of the peaks are known, a least-squares analysis of

the (X-ray or neutron) counts in Fig. 1(a) yields the following

estimates for their intensities: I1 = 10.06 � 0.50 and I2 = 6.47�



teaching and education in crystallography

1296 D. S. Sivia � Number of good reflections J. Appl. Cryst. (2000). 33, 1295±1301

0.46. A similar analysis of Fig. 1(b) gives: I1 = 9.97 � 0.07 and

I2 = 7.12 � 0.07. As expected, therefore, a 50-fold increase in

the number of counts reduces the 1 ÿ � error bars by a factor

of seven. This improvement is not re¯ected in the Altomare

et al. statistic, however, which has a value of Ni = 1.50 for both

cases.

An even more disconcerting phenomenon is observed when

the pro®le of the Bragg peaks is highly asymmetric. This is

illustrated in Fig. 1(c), where the peak shape is a sharp-edged

exponential (with FWHM = 2) rather than a Lorentzian, and

resembles (a slightly exaggerated version of) the situation

encountered at a pulsed-neutron source. In this case, a least-

squares analysis yields I1 = 10.04 � 0.10 and I2 = 7.00 � 0.10,

while the Altomare et al. statistic has a value of Ni = 1.00

(because the contribution to the signal from the peak on the

right is always less than that from the one on the left, albeit

only just so). Given that two signals can easily be distinguished

by eye, the latter clearly fails to take adequate account of the

shape of the Bragg peaks.

3. Correlations and covariance

In order to understand and overcome the dif®culties resulting

from the intuitive argument of the previous section, we need

to take a step back and focus more carefully on exactly what

we are trying to do. The most direct link between diffraction

data and crystal structure is through the measurement of the

intensities of the structure factors: the better we can estimate

the intensities, the less uncertainty there will be in the inferred

structure. Therefore, we need to consider how well the

diffraction data constrain the range of intensities that yield

reasonable agreement with them. How can we assess this

quantitatively?

The quality of the ®t to experimental measurements is often

speci®ed through the use of a �2 statistic:

�2 � PN
k�1

�Fk ÿDk�2=�2
k; �1�

where Dk is the kth datum, with error bar �k, and Fk is the

corresponding prediction given by a proposed model. If the

measurements pertain to counting statistics, then �2
k is usually

set to Dk or Fk to re¯ect the assignment of a Poisson uncer-

tainty (Sivia, 1996). In the simplest situation, if we had a model

de®ned by a single unknown parameter, x say, and its value

was suf®cient to evaluate the {Fk}, then a plot of �2 versus x

would give a graphical indication of the range of x values that

yield reasonable agreement with the data. Or, rather, this

would be so if we could interpret �2 in a probabilistic sense.

The �2 statistic is, in fact, related to the likelihood function,

or the probability of the data given the model, through an

exponential:

prob� fDkg j x ;G � / exp�ÿ�2=2�; �2�
where the G in the conditioning statement represents all the

relevant background information and analysis assumptions,

such as a knowledge of the experimental setup. For example,

the use of equation (2) re¯ects the common assertion that

each datum is subject to independent additive Gaussian noise

of known variance. If it was thought that the error bars were

uncertain to within a global multiplicative constant, � say, so

that all the �k should really be ��k, as might happen if the data

were only known to be proportional to the number of counts

rather than being on an absolute integer scale, then it can be

Figure 1
Computer-generated data from two closely spaced peaks, of known shape
and location, subject to a uniform background signal and Poisson noise.
(a) and (b) are for the same Lorentzian peaks, but with different counting
times; (c) pertains to a sharp-edged exponential, resembling a somewhat
exaggerated version of the situation encountered at a pulsed-neutron
source.



shown that the likelihood is proportional to a power of �2

instead of its exponential (Sivia, 1996):

prob� fDkg j x ;G � / ��2�ÿN=2: �3�
Whatever the assignment of the likelihood function, it is

usually convenient if the resultant plot of prob({Dk} |x ,G)

versus x can be summarized by a best-®t value, x0, and a

number, ", that indicates the range of the deviation of x from

x0 which gives a reasonable agreement with the measurements.

Such a speci®cation of x = x0 � " is, in turn, most useful if the

likelihood function can be approximated by a Gaussian:

prob� fDkg j x ;G � / exp�ÿ�xÿ x0�2=2"2�; �4�
a form that is readily ascertained if L = ln[prob({Dk} |x ,G)] is

expanded as a quadratic Taylor series about its maximum, so

that x0 and " are given by the ®rst and second derivatives of L:

dL

dx

����
x0

� 0 and " � ÿd2L

dx2

����
x0

 !ÿ1=2

: �5�

For x0 to be a maximum, of course, we also need to ensure that

d2L/dx2 < 0. Although equations (4) and (5) are only exact for

the likelihood assignment of equation (2), when L = ÿ�2/2,

and even then only when x is related linearly to the {Fk}, they

do usually provide a good approximation. A better experi-

mental design is simply one that reduces ", for a given amount

of time, money, effort, or whatever.

To avoid any subsequent confusion, we should emphasize

that x0 does not necessarily represent our best estimate of x: it

is merely the value of x which makes the data most probable.

Despite the sense that is conjured up by the technical term for

x0 as the maximum-likelihood estimate, our inference about x

is encapsulated in the posterior probability, prob(x | {Dk} ,G),

rather than the object of our current attention,

prob({Dk} |x ,G). These two entities are related, however, by

the Bayes theorem,

prob� x j fDkg ;G � / prob� fDkg j x ;G � prob� x jG �; �6�
but are only strictly proportional to each other for a uniform

assignment of the prior probability, prob(x |G) = constant for

all x. An obvious exception to an unquali®ed equivalence

arises when our prior knowledge tells us that x must be

positive on physical grounds, so that prob(x |G) = 0 for x < 0; in

that case, x0 cannot be the best estimate of x if x0 < 0. We leave

a further discussion of this point, with reference to the

intensities and amplitudes of structure factors, to Sivia &

David (1994), and return to the central theme of the likelihood

function, for it is this quantity which enshrines the constraints

imposed by the data themselves on the possible value of x.

Having set the stage by considering the most elementary

situation, in which there is only one unknown parameter, let us

move on to the more realistic multivariate case. For the sake of

clarity, we will highlight the salient points by focusing on a

bivariate problem and then indicate its straightforward

generalization. It is rather like meeting partial differentiation

for the ®rst time as undergraduates: there are important new

concepts to master in going from functions of one variable to

two, but nothing fundamentally different in the progression

from two to many.

Suppose we are interested in inferring the values of two

quantities, x and y say, from a pertinent set of data. For

example, the areas of two closely spaced Bragg peaks in an

isolated region of a powder diffraction pattern where, for the

moment, we will take it as given (in G) that the locations, peak

shapes and background are known. Then, the information

about x and y inherent in the experimental measurements is

encapsulated in the two-dimensional likelihood function,

prob({Dk} |x ,y ,G). A second-order Taylor series expansion of

L = ln[prob({Dk} |x ,y ,G)] now leads to the approximation of

the likelihood function as a bivariate Gaussian:

prob� fDkg j x ; y ;G � / exp�ÿQ=2�; �7�
where the scalar quantity Q is given by the quadratic form

Q � �xÿ x0 yÿ y0� A C

C B

� �
xÿ x0

yÿ y0

� �
; �8�

with the best-®t estimates of x and y, x0 and y0, being de®ned

by the condition

@L

@x

����
x0;y0

� 0 and
@L

@y

����
x0;y0

� 0; �9�

and the elements of the symmetric 2 � 2 matrix, A, B and C,

being given by the second partial derivatives of ÿL:

A � ÿ@
2L

@x2

����
x0;y0

; B � ÿ@
2L

@y2

����
x0;y0

; C � ÿ @
2L

@x@y

����
x0;y0

: �10�

To ensure that the stationary point at (x0, y0) is a maximum,

we also need A > 0, B > 0 and AB > C2. The easiest way of

visualizing the constraints imposed by the experimental

measurements on the values of x and y is to consider the

contours of constant Q, in equation (8), in a two-dimensional

x±y graph; these represent lines of equal likelihood, with the

probability of the data being higher for smaller values of Q.

The locus of Q = constant is, in fact, an ellipse centred on x = x0

and y = y0; its orientation and size are determined by the

second-derivative coef®cients in equation (10).

Four likelihood plots are shown in Fig. 2: (a) is for the case

of the data in Fig. 1(a); (b) and (c) are for equivalent sets of

measurements where the peaks are twice as far apart and

twice as close together, respectively; (d) is for the data in Fig.

1(b). As the separation between the two peaks is reduced, the

likelihood ellipses become increasingly skew and elongated

with respect to the I1 and I2 axes; this is an indication of the

correlation, or the dif®culty in the disentanglement of the two

intensities, that is inherent on the basis of the data being

analysed. A longer counting time for the diffraction spectrum

is helpful in that it gives rise to a more compact likelihood

function and leads to a tighter constraint on the range of

intensity values that yield reasonable agreement with the

measurements; this shrinkage is often proportional to the

square-root of the counting time.

The features illustrated in the examples above are common

to many multiparameter estimation problems, so let us
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continue our discussion in terms of our generic x±y notation.

When faced with the quadratic form of equation (8), its

analysis can always be made algebraically simpler by trans-

forming from the original x±y coordinates to a new set of basis

vectors, X and Y, that lie along the principal axes of the ellipse:

Q � �X�X ÿ X0�2 � �Y�Y ÿ Y0�2; �11�
a process called diagonalization. As such, the constants �X and

�Y, and the directions X and Y are the eigenvalues and

eigenvectors of the 2 � 2 real symmetric matrix in equation

(8). That is to say, they are given by the two solutions of the

eigenvalue equation

A C

C B

� �
x

y

� �
� � x

y

� �
: �12�

The substitution of Q from equation (11) into equation (7),

and a subsequent comparison with equation (4), leads to the

conclusion that the information inherent in the data with

regard to x and y can be summarized by the statement

X � X0 � ��X�ÿ1=2 and Y � Y0 � ��Y �ÿ1=2; �13�
where X and Y pertain to the two linear combinations of the

original parameters generated by the components of the

eigenvectors X and Y; explicitly, if X = (a, b) and Y = (c, d),

then X = ax + by and Y = cx + dy. The reformulation of the

problem in terms of X and Y is useful because they are the two

quantities, related to x and y, that are independently

constrained by the measurements: the likelihood function with

respect to X is the same no matter what the assumed value of

Y, and vice versa.

By contrast to X and Y, the equivalent speci®cation of

x � x0 � "x and y � y0 � "y �14�
would not generally be enough to capture all the salient

information in the data. For example, the uncertainties "x and

"y are given by (Sivia, 1996)

"x � �B=�ABÿ C2��1=2 and "y � �A=�ABÿ C2��1=2;

�15�
and become in®nitely large as C2 ! AB; for our powder

pattern, this would be the case when the two peaks became

coincident. While equation (14) then correctly warns us that

neither x nor y can be determined from the current data alone

with any degree of reliability, it fails to tell us that they must

satisfy a joint condition reasonably well in order to deliver

agreement with the measurements; for the overlapping peaks,

Figure 2
The two-dimensional likelihood plots for the areas under the two peaks, or Bragg intensities. (a) is for the data in Fig. 1(a); (b) and (c) are for equivalent
sets of measurements where the peaks are twice as far apart and twice as close together, respectively; (d) is for the data in Fig. 1(b).



it would be a constraint on the sum of the two intensities (I1 +

I2, or x + y). The point is that the permissible values of x and y

are not independent of each other, and this additional infor-

mation is conveyed through the covariance factor:

"2
xy � h�xÿ x0��yÿ y0�i � ÿC=�ABÿ C2�; �16�

where the angle brackets represent an expectation. If "2
xy > 0,

then x and y are both likely to be underestimated or over-

estimated; a negative covariance indicates that an under-

estimate of one is expected to be accompanied by an

overestimate of the other. The level of this type of inter-

dependence is often given in terms of a correlation coef®cient:

c � "2
xy="x"y; �17�

where ÿ1 � c � 1; complete correlation, or anticorrelation, is

marked by c = �1, whereas independence corresponds to

c = 0.

Whether we think in terms of eigenproperties or covariance

is largely a matter of personal preference, for they both re¯ect

the constraints imposed by the data. Nevertheless, we will

shortly see that the former offers some advantages in

providing a straightforward quanti®cation of the quality of the

measurements. Before that, however, let us consider one

further aspect of our two-peak example that will both aid a

better understanding of correlations and indicate how our

idealized situation can be relaxed towards a more realistic one.

Fig. 3 shows data for two well separated Bragg peaks and

the resulting likelihood function for their underlying areas. At

®rst sight, this looks very strange: we would have expected the

principal directions of the ellipse to lie along the axes of the

intensities, thereby re¯ecting the independence of I1 and I2.

The skewness arises from the fact that the analysis actually

only assumed that the background signal was uniform, or a

constant b, but not that its value was given. As such, the ®t to

the data is a function of I1, I2 and b, with the spread of the

likelihood ellipsoid being characterized by a 3 � 3 symmetric

matrix whose elements consist of the second partial deriva-

tives ofÿL. The inverse of this matrix (Sivia, 1996), along with

the condition rL = 0, yields the summary I1 = 9.73 � 0.42, I2 =

7.07 � 0.38 and b = 1.85 � 0.09, with correlation coef®cients

c�I1; b� � ÿ0:53; c�I2; b� � ÿ0:54 and c�I1; I2� � 0:25:

�18�
While the peaks in Fig. 3(a) are far enough apart for I1 and I2

to be independent in principle, they become linked through a

common uncertainty with regard to the value of b. Explicitly,

with the limited set of measurements available, there is some

dif®culty in distinguishing the signal from the background in

the neighbourhood of the peaks; the negative correlation of I1

and I2 with b, therefore, induces a positive one between the

two intensities.

The important thing about the illustration above is that it

shows how the uncertainties in the uninteresting, but neces-

sary, parameters in our model automatically ®lter through the

analysis, and are re¯ected in the covariance factors for the

relevant quantities that are returned. The likelihood functions

in Figs. 2 and 3(b) all pertain to 2 � 2 matrices, as in equation

(8), constructed from the purely intensity-related subset of

elements of the full 3 � 3 covariance matrix. Speci®cally, in

our x±y notation,

A C

C B

� �
� "2

x "2
xy

"2
xy "2

y

� �ÿ1

�19�

and conforms with equations (8) and (16).

4. The number of good data

We have now reviewed the basic concepts, and analytical

machinery, needed to address the question of the quality of

diffraction data with regard to the intensities of the structure

factors. The ®rst thing to note is that the preceding discussion

suggests that it is better to think in terms of the number of

`good' pieces of intensity information in a powder pattern,

rather than the equivalent number of `statistically indepen-

dent' re¯ections. To see this, consider again the likelihood

plots of Figs. 2 and 3. The principal axes tell us the linear
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Figure 3
(a) Computer-generated data from two well separated Lorentzian peaks,
subject to a uniform background signal and Poisson noise. (b) The
corresponding likelihood plot for the areas of the peaks.
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combinations of I1 and I2 which can be ascertained indepen-

dently of each other: there are always two of them, irrespec-

tive of the separation of the peaks! The widths along these

eigen-directions do vary with the degree of overlap, however,

and indicate the reliability of the corresponding information.

To be even more explicit, there are still two independent

intensity-related quantities when the Bragg peaks become

coincident: I1 + I2 and I1 ÿ I2. It is just that the sum is well

determined and can therefore be considered as being good,

whereas the difference is completely unconstrained by the

measurements (and so is bad, poor, or not useful). While the

above might seem to be largely a case of semantics, we will

shortly see that a failure to make a clear distinction can lead to

practical consequences.

The generalization of the analysis procedure explained in

the previous section is straightforward and essentially reduces

to a Pawley re®nement of the powder pattern (Pawley, 1981;

David et al., 1992; David, 1999). Given a good initial estimate

of the lattice constants, obtained from the locations of the low-

order re¯ections, we will have a pretty good idea of the

positions and number of Bragg peaks encompassed by the

data; indeed, we can even lump together those which we

expect to have little hope of separating to any extent as single

compound entities and, thereby, avoid the risk of coming up

against singular matrices. If there are M distinct intensity

parameters in the problem, and m uninteresting ones (such as

those pertaining to the background signal, peak shapes and

lattice constants), then a Pawley-type analysis will return M +

m best-®t values and a symmetric (M + m) � (M + m)

covariance matrix. A reduced M � M matrix, 
 say,

constructed from the purely intensity-related elements of the

full Pawley covariance matrix, then characterizes the relevant

information content of the data (within the usual context of

the model assumptions and simplifying approximations used,

of course). In formal terms,


ij � h�Ii ÿ I0i��Ij ÿ I0j�i; �20�
for i and j = 1, 2, 3, . . . , M, and I0j is the best-®t intensity for

the jth compound peak.

The quadratic form for the inverse of 
 in equation (20)

yields an N-dimensional ellipsoid for the logarithm of the

likelihood function, prob({Dk} | {Ij} ,G). Again, the eigenvec-

tors of 
ÿ1 give the N different linear combinations of the {Ij}

that can be ascertained independently of each other; the

corresponding widths along the principal directions, which are

inversely proportional to the square-root of the eigenvalues,

as in equation (13), tell us how well these intensity factors are

constrained by the measurements. The answer to the question

of how to quantify the quality of diffraction data, therefore,

lies in an examination of the eigenvalue spectrum, {�j}, of 
ÿ1:

large � values are associated with well determined (or good)

quantities, whereas poorly constrained ones are indicated by

�! 0. The eigenvalue procedure that we are advocating is, in

fact, nothing more than a classical singular value decomposi-

tion (SVD) analysis.

We should note in passing that 
 and 
ÿ1 share the same

eigenvectors and have eigenvalues related simply by a reci-

procal, as long as the matrices are not singular. This can always

be ensured by a suf®ciently conservative clumping together of

closely spaced re¯ections (i.e. making M, and possibly m,

smaller in the Pawley re®nement).

In order to specify the number of well determined pieces of

intensity information in a powder pattern, Ng, we need to

de®ne some form of threshold, �I, for discriminating between

good and bad; in the simplest case, we could just add up the

number of eigenvalues of 
ÿ1 that are bigger than �ÿ2
I . A

more sophisticated variant on this counting procedure might

be

Ng �
PM
j�1

��j=��ÿ2
I � �j��; �21�

where the contribution to the sum is unity if �j � �ÿ2
I and

zero if �j � �ÿ2
I , so that a sharp cutoff is avoided. There is

nothing fundamental about equation (21) [other than being

analogous to a statistic that appears in classical maximum-

entropy data analysis (Gull, 1989) which has a similar inter-

pretation] or in any particular choice for �I. The issue is rather

like that of having to decide which con®dence level to use for

quoting the results of a statistical analysis; the conventions of

70%, 90%, 95%, and so on, all tell part of the story but none

can be considered the complete answer. The same is true here

and, consequently, Ng will depend on �I since we are trying to

convey the characteristics of a whole spectrum of M eigen-

values with a single number.

A useful measure for putting �I on a physically meaningful

scale is probably the average value of the intensities, hIi, as

this is most likely to be estimated reliably. If �I = 0.85 for the

data in Fig. 1, or 10% of the average intensity, for example,

then equation (21) yields Ng = 1.53, 1.99 and 1.97 for Figs. 1(a),

1(b) and 1(c), respectively. As would be expected, a ten times

more stringent requirement, �I = 0.085, reduces these Ng

values to 0.07, 1.23 and 0.82, respectively. If the expectation

value of the intensities varies appreciably across the diffrac-

tion pattern, due to a strong Debye±Waller or form-factor

effect, then the analysis could be broken down into a series of

more-or-less isolated regions which have their own local �I.

This is equivalent to making the practical simpli®cation that

the covariance matrix is roughly block-diagonal, so that the

intensities of the re¯ections are handled sequentially from

contiguous chunks of the powder pattern.

Before concluding, we should mention a closely related

analysis put forward by David (1999). The main difference

from the proposal here is that David advocates the use of a

matrix of correlation coef®cients rather than the covariance

matrix itself. The former, ! say, is derived from 
 by a

straightforward generalization of equation (17),

!ij � 
ij=�
ii 
jj�1=2; �22�

and has the advantage that the eigenvalues of its inverse are

automatically on an absolute scale; namely, isolated peaks

have � = 1. By associating values of � less than unity with the

degradation caused by correlation, it can be argued that a



suitable measure of the effective number of independent

peaks, Nind, is

Nind �
PM
j�1

min�1; �j�: �23�

While David points out that this statistic has many desirable

properties, and demonstrates its usefulness with several

examples, we still harbour a couple of concerns. The ®rst is

purely conceptual: if � = 1 represents the ideal isolated case,

and � = 0 complete overlap, then, even though it is truncated

in equation (23), what does � > 1 mean? The second is more

serious: since the counting-time aspect of the data cancels out

in the ratio of equation (22), any procedure based on the

eigenvalues of !ÿ1, instead of 
ÿ1, will be oblivious to the

intrinsic quality of the measurements. Although the correla-

tion-matrix approach of David is markedly superior to the

Altomare algorithm, they share this common shortcoming.

5. Conclusions

We have discussed the information content of diffraction data

in terms of the constraints they place on the intensities of

structure factors. This involved a substantial account of the

basic, but often poorly appreciated, concepts of correlation

and covariance. It was argued that it is better to think in terms

of the number of good pieces of intensity information in a

powder pattern, rather than the effective number of inde-

pendent re¯ections, with the relevant analysis reducing to a

classical SVD exercise for the logarithm of the (marginal)

likelihood function.

We conclude with the obvious, but important, remark that

the information inherent in a powder pattern is only fully

propagated to the space of structure-factor intensities if due

account is taken of both the best-®t values and the covariance

matrix. Either to ignore the latter completely, or only to

consider its diagonal elements, is tantamount to assuming

more, or less, respectively, than is justi®ed by the measure-

ments.

Professor W. I. F. David is gratefully acknowledged for

repeated encouragement with regard to the topic of this paper

and for many related discussions.
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