SUPPLEMENTARY INFORMATION High-pressure properties of ${\rm TiP_2O_7},\,{\rm ZrP_2O_7}$ and ${\rm ZrV_2O_7}$

Stefan Carlson $^{a\,*}$ and Anne Marie Krogh Andersen b

^a European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble

Cedex, France, and ^bDepartment of Chemistry, Odense University, DK-5230 Odense

M, Denmark. E-mail: carlson@esrf.fr

(Received 17 May 2000; accepted 4 October 2000)

- Fig. 4. High-pressure diffraction patterns of TiP₂O₇. (a) 0.05-5.79 GPa. Pressure medium was methanol-ethanol (4:1). (b) 6.28-40.3 GPa. Pressure medium was nitrogen. Peaks that have a contribution from δ -N₂ (below 18.7 GPa) and ϵ -N₂ (18.7 GPa and higer pressures) are indicated with triangles.
- Fig. 5. High-pressure diffraction patterns of ZrP_2O_7 . (a) 0.14-8.34 GPa. Pressure medium was methanol-ethanol (4:1), and for clarity only every second collected pattern is shown. (b) 4.17-20.5 GPa. Peaks that have a contribution from δ -N₂ and ϵ -N₂ (20.5 GPa) are indicated with triangles. Stars represent peaks due to the stainless steel gasket.
- Fig. 6. Powder diffraction patterns for ZrV_2O_7 . The diagram should be viewed from bottom to top. The pressure induced transition, $\alpha \beta ZrV_2O_7$ is shown to be fully reversible.
- Fig. 7. Powder diffraction profile fits of TiP₂O₇. (a) At 0.05 GPa with methanolethanol (4:1) as pressure medium. (b) At 18.7 GPa with nitrogen as pressure medium.
- Fig. 8. Powder diffraction profile fits of ZrP₂O₇. (a) At 1.69 GPa with methanolethanol (4:1) as pressure medium. (b) At 11.0 GPa with nitrogen as pressure medium.
- Fig. 9. Powder diffraction profile fits of $\rm ZrV_2O_7$. Pressure medium was methanolethanol (4:1). (a) α -ZrV₂O₇ at 0.15 GPa. (b) β -ZrV₂O₇ at 2.97 GPa, fitted using the small tetragonal unit-cell. (c) β -ZrV₂O₇ at 2.97 GPa, fitted using the large orthorhombic supercell.

High-pressure properties of TiP_2O_7 , ZrP_2O_7 and ZrV_2O_7 . Stefan Carlson and Anne Marie Krogh Andersen

Figure 4.

4b

4a

High-pressure properties of TiP_2O_7 , ZrP_2O_7 and ZrV_2O_7 . Stefan Carlson and Anne Marie Krogh Andersen

Figure 5

5b

5a

High-pressure properties of TiP₂O₇, ZrP₂O₇ and ZrV₂O₇. Stefan Carlson and Anne Marie Krogh Andersen

Figure 6

SUPPLEMENTARY INFORMATION High-pressure properties of TiP_2O_7 , ZrP_2O_7 and ZrV_2O_7 . Stefan Carlson and Anne Marie Krogh Andersen

Figure 7

60K Intensity [cps] 40K 20K 0.0 6.0 7.0 10.0 11.0 8.0 9.0 2-theta (b)

SUPPLEMENTARY INFORMATION High-pressure properties of TiP_2O_7 , ZrP_2O_7 and ZrV_2O_7 . Stefan Carlson and Anne Marie Krogh Andersen

Figure 8

 $\begin{array}{l} \mbox{High-pressure properties of } TiP_2O_7, ZrP_2O_7 \mbox{ and } ZrV_2O_7. \\ \mbox{Stefan Carlson and Anne Marie Krogh Andersen} \end{array}$

Figure 9

(c)