
THE PHENOMENOLOGICAL FUNCTION USED FOR THE SIZE-RELATED STRAIN 
 
We adopted a phenomenological function to model size-related strain effects, rather than directly 

linking the strain curve to basic physics, because of the following reasons: 

 

1. the main aim of this manuscript is to propose a quite general approach available for any 

monoatomic fcc-derived non-crystallographic nanoclusters. Strain - in the approximation of 

uniform strain - is important in these structures and it is very likely to have a strong dependence on 

cluster size due to the major importance of surface energy at small sizes.  

2. Little is known about the strain-size dependence for small nanoclusters, from the physical point 

of view. On one side, there is little reliable experimental information; at least, we are not aware of a 

precisely determined description of strain-size dependence for any specific system.  On the other 

side, theoretical calculations (as in D'Agostino et al.) are rare and difficult to generalize to different 

combinations of materials with surfactants and substrates. Therefore it is not presently possible to 

introduce one function (or a set thereof for various known cases) depending on physically 

meaningful parameters which can give direct information on the system. It is plausible - and there 

are indications given in cited literature - to have a smooth monotonic dependence of the lattice 

parameter with the NP size which asymptotically becomes constant at large sizes. Tiny hints are 

found in literature about possible step-like effects at some critical size (see Vogel, for Au clusters 

with a threshold of 575 atoms), possibly due to interaction with bulky surfactants or lock-in for 

composite crystals.  

3. Needing to be adaptable to a wide range of sample materials and conditions and due to the 

poorness of the theoretical information available, our only choice was to try to extract from 

diffraction data an approximate knowledge of a set of physically meaningful strain values at 

different sizes. These can be useful to who studies specific systems in order to test and improve his 

physical model. Two possible choices were in front of us.  

The first would be to use one average strain parameter for every cluster dimension (and structure 

type). It was discarded as it would increase tenfold the number of free model parameters - and 

decrease the reliability of the results especially for broad distributions, where the smaller sizes 

would be strongly penalized as the scattering power goes with the sixth power of the diameter. The 

second was to find a flexible function depending on few parameters which could acceptably 

approximate plausible physical dependences for most system according to the general 

considerations above reported.  



4. According to the aforesaid considerations, we chose a form with 4 free parameters (Ξ, Ω, n0, w, 

Eqs. 9,10) which can be bent to reproduce acceptably many plausible behaviours. It is evident that 

we can distinguish three main cases: 

I) constant strain with respect to cluster size (as expected for narrow size distributions),  

II) a smooth asymptotic behaviour as shown in the papers of Palozs and Vogel,  

III) a step-like form as for more complex situations (composite nanoparticles). 

In fact, we have performed tests to see that the chosen function approximates fairly well different 

realistic behaviours for all three cases. Case I) is trivial: set Ξ=Ω and the function becomes a 

constant. About case III) our function is intrinsically suited (see Fig. 2). Case II is more delicate 

because it includes a vast class of functions. We report now two examples of how we can closely 

approximate at least two different classes of functions of physical interest, with a convenient 

parameter choice. In both examples we consider a log-normal distribution (with parameters as from 

Tab. 3) of icosahedral-type particles. No noise and no background were introduced. Diffraction 

patterns were simulated with different strain-size functions and the best approximation by our 

function was determined.  

 

 Consider a rational strain function  

a = 1 - 0.097887 (2n2+3n+1) / (7.618034 n2 + 6 n + 2.723607), 

which is typical for quadratic first-neighbour interactions (see Eq.29 of our manuscript). Setting 

in Eqs.9,10 n0=0, w= 4.918087, Ω = 0.976849, Ξ = 0.964244 we obtain an excellent 

approximation, shown in Fig. 1a,b. In particular, the diffraction profiles coincide to over 6 

digits, the strain values to three digits.  

 As another example, consider an exponential strain function,  

a = 0.974301 - 0.012509 exp(-n/5). 

Setting in our function n0=0, w= 1.789804, Ω = 0 .974147, Ξ= 0. 964592, again we get an excellent 

approximation, as shown in Fig. 2a,b. The strain curves differ more than the 3rd digit only in the 

region (n>12), where the considered distribution is already zero.  
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Fig.1. a), the strain-size dependence: red, the function used to generate the simulation (rational 
strain behaviour a = 1 - 0.097887 (2n2+3n+1) / (7.618034 n2 + 6 n + 2.723607)); black, the fit with 
our function, see text. The mark at n=12 shows the upper limit for the size distribution in the 
relative calculated diffraction patterns.  
b) the corresponding diffraction patterns and their difference (calculated for I-type clusters of Au, 
lambda=0.15418 nm, size distribution as from Tab. 3 of the manuscript; no noise or background 
added). The same colour code (red for the original function, black for our fit) is used (upper half). 
Difference plot (below) is magnified by 106. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. a), the strain-size dependence: red, the original function (an exponential strain, a = 0.974301 
- 0.012509 exp(-n/5)), black, the fit with our function, see text. The mark at n=12 shows the upper 
limit for the size distribution in the relative calculated diffraction patterns.  
b) the corresponding diffraction patterns and their difference (calculated for I-type clusters of Au, 
lambda=0.15418 nm, size distribution as from Tab. 3 of the manuscript; no noise or background 
added). The same colour code is used (red for the original function, black for our fit). Difference 
plot (below) is magnified by 106. 
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