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Powder pattern matching techniques, using all the experimentally measured

data points, coupled with cluster analysis, fuzzy clustering and multivariate

statistical methods are used, with appropriate visualization tools, to analyse a set

of 27 powder diffraction patterns of alumina collected at seven different

laboratories on different instruments as part of an International Center for

Diffraction Data Grant-in-Aid program. In their original form, the data factor

into six distinct clusters. However, when a non-linear shift of the form

� 2�� � � a0 � a1 sin � (where a0 and a1 are re®nable constants) is applied to

optimize the correlations between patterns, clustering produces a large 25-

pattern set with two outliers. The ®rst outlier is a synchrotron data set at a

different wavelength from the other data, and the second is distinguished by the

absence of K�2 lines, i.e. it uses Ge-monochromated incident X-rays. Fuzzy

clustering, in which samples may belong to more than one cluster, is introduced

as a complementary method of pinpointing problematic diffraction patterns. In

contrast to the usual methodology associated with the analysis of round-robin

data, this process is carried out in a routine way, with minimal user interaction or

supervision, using the PolySNAP software.

1. Introduction
In three previous papers (Gilmore et al., 2004, subsequently

referred to as I; Barr et al., 2004a, subsequently referred to as

II, and Storey et al., 2004), we have presented a series of

techniques for processing and matching powder diffraction

data generated from high-throughput experiments using the

full pattern pro®les. We have shown that the data may be

partitioned into sets by generating a correlation matrix

derived from matching all the powder patterns with each

other, and then applying the relevant techniques of multi-

variate statistics and classi®cation. In this way unusual or

unexpected patterns can be readily identi®ed, even if there are

more than 1000 patterns present for a wide rage of poly-

morphs and solvates. However, the methods are equally

applicable to other data, and we present here an analysis of a

small set of 27 patterns collected on alumina in a Grant-in-Aid

program organized by the International Center for Diffraction

Data (ICDD) using the computer program PolySNAP (Barr et

al., 2004b,c). Although such a data set could be processed

manually, this process points the way to handling large data

sets.

There is a continuing effort by the ICDD to ensure that new

patterns being added to the powder diffraction ®le (PDF)

contain a signi®cant proportion of phases that represent

current needs and trends in industry and research. The effort

is implemented, in part, by sponsoring a Grant-in-Aid (GiA)

program, which is a competitive ®nancial assistance package

designed to encourage scientists working on new phases to

submit high-quality diffraction data for inclusion in the PDF,

and also for the production of new patterns of phases of

current interest or the preparation of the phases themselves.

In 2002, GiAs were awarded to �60 universities and research

laboratories from 23 different countries for the collection of

new and improved data on compounds currently under study.

This has created a continual ¯ux of new and potentially

technologically relevant entries (approximately 800±1000

patterns) in the PDF.

As an additional support feature in the GiA program, NIST

1976 corundum plate samples are distributed to all GiA

recipients. The ICDD requests that a protocol be established

to submit NIST 1976 reference material results along with

submission data. Digitized diffraction data are received by the

ICDD and reviewed on a periodic basis. The historical records

are used to track instrument alignment, instrumental resolu-

tion etc. The 27-sample set used here was chosen arbitrarily

from these reference records.



2. The method

A brief summary of the method may be useful at this point.

Papers I and II contain full details.

Data can be imported in a variety of formats. Each pattern

is interpolated, if necessary, to give increments of 0.02� in 2�
using local ®fth-order polynomials and Neville's algorithm

(Press et al., 1992). Background removal is optional and, where

used, employs local nth-order polynomial functions (where n

is selected by the algorithm), which are ®tted to the data and

then subtracted to produce a pattern with a ¯at baseline.

Smoothing of the data is carried out using wavelets via the

SURE (Stein's unbiased risk estimate) thresholding proce-

dure (Donoho & Johnstone, 1995). Peak positions are found

using Savitsky±Golay ®ltering (Savitzky & Golay, 1964).

Powder patterns are treated as bivariate samples with n

measured points [(x1, y1), . . . , (xn, yn)]. Patterns are compared

with each other using a weighted mean of parametric and non-

parametric correlation coef®cients (the Pearson and

Spearman coef®cients, respectively) using every measured

intensity data point. The Pearson coef®cient is de®ned as

rxy �
Pn
i�1

xi ÿ x� � yi ÿ y� �
Pn
i�1

xi ÿ x� �2 Pn
i�1

yi ÿ y� �2
� �1=2

; �1�

where xi and yi are the measured data points for the two

patterns. In contrast, the Spearman coef®cient is de®ned as

�xy �
Pn
i�1

R�xi�R�yi� ÿ n n�1
2

ÿ �2

Pn
i�1

R�xi�2 ÿ n n�1
2

ÿ �2

� �1=2 Pn
i�1

R�yi�2 ÿ n n�1
2

ÿ �2

� �1=2
; �2�

where R(xi) and R(yi) are the ranks of the data points rather

than their values. From these two coef®cients a weighted

mean, rw, is calculated, and from this a correlation matrix, q,

can be derived in which every pattern is correlated with every

other. This matrix can be converted to a distance matrix, d,

using the relationship

dij � 0:5 1:0 ÿ �ij

ÿ �
; 0:0 � dij � 1:0; �3�

or a similarity matrix, s, where

sij � 1:0 ÿ dij

�
dij

ÿ �
max
; 0:0 � sij � 1:0: �4�

In this way, highly correlated patterns with large correlation

coef®cients give small corresponding distances or high simi-

larity coef®cients and vice versa. We then use the matrices d, r

and s as input to a set of clustering and multivariate data

analysis methods with associated visualization tools:

(i) Cluster analysis, which partitions the patterns into indi-

vidual clusters or sets de®ned by their similarity.

(ii) Estimation of the number of clusters present.

(iii) Three-dimensional data plots derived from either

metric multidimensional scaling (MMDS) or three-dimen-

sional score plots from principal-components analysis (PCA).

Each sphere in this plot represents a powder diffraction

sample; the further the distance apart of the spheres the

greater the corresponding distance as measured by (3) and the

lower the corresponding correlation.

3. Data

The data comprised 27 patterns for corundum. In terms of

background and peak noise levels, they were of relatively high

quality and consequently no wavelet smoothing or back-

ground subtraction was carried out. The data were collected in

Bragg±Brentano geometry. Every sample used 0.02� incre-

ments in 2�, and so no data interpolation was used. This

minimal data pre-processing is ideal; trials involving the

removal of backgrounds and/or smoothing resulted in no

signi®cant difference in the results. Table 1 summarizes the 2�
measurement ranges of the data, including details of the

investigator and other relevant experimental options. Six

investigators were involved over a period of three years; all

the data come from laboratory sources, except data set 10,

which comes from a synchrotron using a wavelength of

0.7907 AÊ . All non-synchrotron data were collected without a
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Table 1
Summary of the 27 data sets used in the analysis.

The initial cluster number is the cluster to which the pattern is assigned before
non-linear shifts are applied to the data. The cluster number after shifting is in
column 5. Relevant details concerning individual data sets are in column 6.

Sample
number

Start
2� (�)

Finish
2� (�)

Initial
cluster
No.

Cluster
No. after
shifts Comments

1 4 100 1 3 Investigator A
2 4 100 2 3 Investigator A
3 4 100 2 3 Investigator A
4 4 100 2 3 Investigator A
5 4 100 2 3 Investigator A
6 4 100 2 3 Investigator A
7 4 100 2 3 Investigator A
8 4 100 1 3 Investigator A
9 4 100 1 3 Investigator A

10 9 71 3 2 Investigator B;
synchrotron
data set, � =
0.7907 AÊ

11 10 159 4 3 Investigator C
12 2 158 4 3 Investigator C
13 2 158 4 3 Investigator C
14 5 75 5 3 Investigator D
15 5 75 5 3 Investigator D
16 2 150 4 3 Investigator E
17 2 150 4 3 Investigator E
18 2 150 4 3 Investigator E
19 2 150 4 3 Investigator E
20 2 150 4 3 Investigator E
21 2 150 4 3 Investigator E
22 2 150 4 3 Investigator E
23 2 150 4 3 Investigator E
24 2 150 4 3 Investigator E
25 2 150 4 3 Investigator E
26 5 95 1 3 Investigator C,

3 years later
than 11±13

27 2 100 6 1 Ge monochro-
mator; only
K�1 radiation



monochromator, except for set 27, which was collected with a

Ge monochromator with only K�1 radiation present. Cu

radiation was used throughout (except for sample 10).

4. Results

We present two sets of results. The ®rst uses the data without

any optimal 2� shift, and in the second analysis each pattern is

optimally shifted with respect to every other.

4.1. Unshifted data

The 27 patterns were used to generate a correlation matrix

q(27�27) using the unweighted mean of the Spearman and

Pearson correlation coef®cients computed using every

measured data point in the pro®le, not just the peaks. Where

the measurement ranges of the two patterns being correlated

were not the same, only the overlapping 2� range was used.

The results are summarized in Tables 1 and 2(a) and in Fig. 1.

To examine the results, we commence with the dendrogram

shown in Fig. 1(a). Each of the 27 diffraction patterns begins at

the bottom of this plot in a separate class, and these amalga-

mate in stepwise fashion and become linked by horizontal tie

bars. The height of the tie bar represents the similarity

between the samples as measured by the relevant distance

statistic. Sample 10 in this case is the least tightly linked,

whereas, in complete contrast, patterns such as 12 and 13 are

very tightly coupled and thus very similar. The dendrogram

technique used was the group average link method (paper II)

which was chosen automatically by the PolySNAP program

using the maximal consistency algorithm also described in the

same paper.

It is useful to be able estimate the number of clusters

present and thus `cut' the dendrogram in an optimal way, so

that all the tie lines above the cut line are ignored and only the

connections below this line are retained. This process results

in the partitioning of the data into clusters. Accurately

determining cluster numbers is dif®cult (see, for example,

Meloun et al., 2000). We used estimates based on the eigen-

analysis of the correlation and related matrices integrated with

techniques based on cluster analysis, developed by Goodman

& Kruskal (1954), CalinsÏki & Harabasz (1974) and Milligan &

Cooper (1985) (see paper II). The individual estimates of

cluster numbers are shown in Table 2(a). Only those methods

that yielded an optimum value are listed; several of the tests

gave no usable indication. The proposed cut line is shown on

the dendrogram in Fig. 1(a) as a horizontal yellow line and

results in the de®nition of six clusters. The tie bars in the
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Table 2
Estimating the number of clusters (a) before applying non-linear pattern
shifts and (b) after the non-linear shifts have been applied.

(a) The maximum estimate of the number of clusters is 7; the minimum
estimate is 3; the combined weighted estimate of the number of clusters is 6,
and the median value is 7. Only the tests that were able to ®nd suitable
estimates are quoted; missing test values result from the lack of optimum
points using the tests. CH is the CalinsÏki±Harabasz statistic (CalinsÏki &
Harabasz, 1974).

Principal-components analysis (non-transformed matrix) 4
Principal-components analysis (transformed matrix) 3
Metric multidimensional scaling 5
CH statistic using single linkage 7
CH statistic using group averages 7
CH statistic using Ward method 7
CH statistic using complete linkage 7

(b) The maximum estimate of the number of clusters is 6; the minimum
estimate is 2; the combined weighted estimate of the number of clusters is 3,
and the median value is 3.

Principal-components analysis (non-transformed matrix) 3
Principal-components analysis (transformed matrix) 2
Metric multidimensional scaling 6
CH statistic using single linkage 3
CH statistic using complete linkage 3

Figure 1
(a) Dendrogram for unshifted powder diffraction data. The optimum cut
level partitions the data into six clusters. Pattern 10 is the least well joined
pattern. (b) The MMDS plot; each sphere in this plot represents a powder
diffraction sample; the greater the separation of the spheres, the smaller
the corresponding correlation. (c) The three-dimensional PCA plot. The
distance properties mirror those of the MMDS plot, although the shape is
different. The colour of each sphere in (b) and (c) is taken from the
dendrogram to allow comparison of the methods.



dendrogram lie at low levels, indicating a high degree of

similarity between the samples, even when they are in

different clusters. The one exception involves pattern 10,

which is minimally connected to the rest of the data.

The data can also be summarized using three-dimensional

plots derived from either metric multidimensional scaling

(MMDS) or three-dimensional score plots from principal-

components analysis (paper II). These act independently of

the dendrogram. The MMDS plot is shown in Fig. 1(b). Each

sphere in this plot represents a powder diffraction sample; the

greater the separation of the spheres the greater the corre-

sponding distance as measured by (1) and the lower the

corresponding correlation. The colour of each sphere is taken

from the dendrogram, but there is no other interdependence.

It can be seen that the patterns form natural clusters, some

of which correspond to the investigator. Thus patterns 14 and

15 form a natural set and this can also be seen in the MMDS

plot. The MMDS calculation correlates well with the observed

distance matrix from pattern matching, with a correlation

coef®cient of 0.98. The PCA plot (Fig. 1c) is less clear,

however; it tends to one-dimensionality. This is not always the

case with the method, however, and it still clusters the data in

an appropriate way. Patterns 2±7 also form a set and these all

come from investigator A. The remaining three patterns from

this researcher are numbers 1, 8 and 9; in the MMDS and PCA

plots these lie close to the 2±7 set. Patterns 16±25 belong to

investigator E, and these also form a set with the addition of

patterns 11±13 from investigator C. The rationale of this

clustering can be seen by visual inspection of the diffraction

data: the patterns are almost identical.

The dendrogram also presents strong evidence that pattern

10 is less well linked than the others, and in both three-

dimensional plots the sphere corresponding to this pattern is

wholly isolated from other patterns. This result is discussed

further in x6.

In general, the partitioning of the data using these different

methods is remarkable, given the very close similarities

between the pattern pro®les.

4.2. Pattern shifts

One of the commonest sources of systematic error in

matching powder patterns is a consequence of � shifts arising

from variability of the zero point, instrumental setup, sample

height, transparency etc. There is a full discussion of this topic

by Wilson (1963), Zevin & Kimmel (1995, ch. 3) and Jenkins &

Snyder (1996). PolySNAP provides three possible corrections,

although this by no means encompasses all the possible

correction geometries that can arise. These take the form

� 2�� � � a0 � a1 cos �; �5�

which corrects for the zero-point error via the a0 term and for

varying sample heights in re¯ection mode via the a1 cos�
contribution, or

� 2�� � � a0 � a1 sin �; �6�

which corrects for transparency errors or, for example,

transmission geometry with constant specimen±detector

distance, and

� 2�� � � a0 � a1 sin 2�; �7�
which provides transparency and thick-specimen error

corrections. The parameters a0 and a1 are constants that can be

determined by maximizing the correlation between patterns

(paper I, x4; Barr et al., 2003, 2004). It is of course possible to

combine equations (5)±(7) into a single expression involving

four constants and the trigonometric functions cos�, sin� and

sin2�. This poses problems of computer times and potential

high correlations between coef®cients, which will be explored

in later versions of the PolySNAP computer program. Given

the complexities of this problem, an argument can be made for

selecting a suitable function on the criterion of improving

pattern±pattern correlations. It is dif®cult to obtain suitable

expressions for the derivatives @a0=@rw and @a1=@rw for use in

the optimization, so we use the downhill simplex method

(Nelder & Mead, 1965) to obtain values of a0 and a1 in all the

cases (5)±(7).

This process does not require the calculation of derivatives.

Both a0 and a1 were constrained to lie between �0.4. There

can be problems with the high correlations between a0 and a1.

The use of the downhill simplex method with full-pattern

correlation coef®cients seems to be robust in this respect.

For the 27 patterns under study, there was an increase in

peak separation with increasing 2�, which indicates a correc-

tion using either (6) or (7). Before the application of (6), the

mean correlation coef®cient (excluding pattern 10) between

the 26 patterns was 0.75. Again excluding pattern 10, re®ne-

ment of a0 and a1 via the downhill simplex method gave

ÿ0:21 � a0 � 0:07 and ÿ0:21 � a1 � 0:28, and the mean

correlation coef®cient increased to 0.83. For (7) there was very

little change in the correlation or the associated clustering, and

visual inspection of the pattern matching con®rmed that the

use of (6) was optimal.

Before any shifts were applied, the mean correlation coef-

®cient for pattern 10 with the other 26 patterns was 0.097, with

a maximum value of 0.13 and a minimum value of ÿ0.067.

After optimal shifts were calculated, the mean correlation

coef®cient for pattern 10 was 0.13, with a maximum value of

0.19 and a minimum value of 0.032. This result indicates the

unique status of this pattern, its lack of linkage to the other 26

patterns in the data and the fact that the problem does not

arise from the experimental setup.

The resulting dendrogram is shown in Fig. 2(a); all the

patterns now belong to a single cluster, except numbers 10 and

21. Table 2(b) shows the available estimates of the number of

clusters present; the median value is now three, with a varia-

tion from 2 to 6.

The MMDS plot is shown in Fig. 2(b) and the three-

dimensional PCA score plot is shown in Fig. 2(c). The two

plots have a very similar form, and the data are clustered much

closer than in the unshifted case. 25 patterns are deemed to

belong to a single cluster, with only patterns 10 and 27 in

clusters of their own. Pattern 19 is the most representative
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sample of the large cluster, as de®ned as that pattern having

the minimum mean distance from all other patterns in the

same cluster (paper II).

It is possible to modify the dendrogram cut line manually

from its initially calculated position. It should be remembered

that this is a perfectly valid procedure since the estimation of

the number of clusters present is at best an imperfect proce-

dure, and the program estimates vary from 2 to 6 for this

calculation. When the cut line is lowered to a similarity level

of ca 0.88 the data are partitioned into 6 sets, as shown in

Fig. 3(a). The ®rst set includes patterns 1±9 from investigator

A; the second contains 13 patterns comprising all those from

investigators C and E; the patterns from D are also clustered,

and patterns 10, 26 and 27 are isolated. Pattern 26 comes from

investigator C three years after the measurements composing

11±13. The partitioning is now almost perfect. The MMDS and

PCA plots in Figs. 3(b) and 3(c) also show this to be a natural

partition of the data.

It now remains to investigate the relationship of patterns 10

and 27 to the remainder of the data. Whereas for simple cases

like this visual inspection of the patterns will suf®ce, for large

data sets visual inspection could be dif®cult. In addition, this

case provides an excellent opportunity to use another classi-

®cation technique: fuzzy sets and clusters.

5. Fuzzy sets

In standard clustering methods we partition a set of n objects

(or patterns) into c disjoint sets or clusters. We can express this

partitioning via a cluster matrix, U(n�c), where uik represents

the membership of pattern i of cluster k and is equal to unity if

i belongs to c and zero otherwise, i.e.

uik 2 0; 1� � �i � 1; . . . ; n; k � 1; . . . ; c�: �8�
If we relax these constraints and insist only that

0 � uik � 1 i � 1; . . . ; n; k � 1; . . . ; c� �; �9�

0<
Pn
i�1

uik < n k � 1; . . . ; c� � �10�

and Pc

k�1

uik � 1; �11�

then we have the concept of fuzzy clustering or fuzzy sets, in

which we have the possibility that a pattern can belong to

more than one cluster (see, for example, Gordon, 1999; Sato et

al., 1966). Such a situation is quite possible in the case of

powder diffraction when mixtures can be involved.

If the restraint represented by (11) is omitted then the uik

values are sometimes referred to as `possibilities'. We will use

this option in this paper.

The calculation of the U matrix is not simple, and we have

explored two methods as discussed in detail by Sato et al.

(1966) for ordinal data, as follow.

(a) Additive clustering in which the U matrix is determined

by minimizing

�2
1 �

Pn
i 6�j�1

sij ÿ �
Pc

k�1

uikujk

� �2

Pn
i 6�j�1

sij ÿ s
ÿ �2

; �12�

where

s � �1=n nÿ 1� ��ÿ1 Pn
i6�j�1

sij

ÿ � �13�

and � is a scaling constant that scales s and U; s is the similarity

matrix de®ned via (4). Sato et al. (1966) recommend random

values of uij as a starting point, followed by a form of steepest

descents to obtain optimal values. With powder diffraction

data, we have found that it is much faster in terms of

computing time to use the initial cluster assignments from the

dendrogram: if powder pattern i is deemed to belong to cluster

j the initial value of uij is 0.8; otherwise it is given a random

value scaled such that, for cluster j,Pn
i�1

uij � 1:0; �14�

although this normalization condition is not imposed in the

subsequent calculations. A steepest-descents method is used

for minimizing (12).
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Table 3
The results of fuzzy clustering calculations after non-linear shifts to
maximize the correlations between patterns.

The entries are the membership or possibility values, uij, where i is the pattern
number and j the cluster number; i = 1, . . . , 27; j = 1, . . . , 3. Two fuzzy clustering
methods are employed: additive and using aggregation operators. All values of
uij > 0.7 are highlighted.

Using additive clustering Using aggregation operators

Pattern
number,
i

Cluster
k = 1
(ui1)

Cluster
k = 2
(ui2)

Cluster
k = 3
(ui3)

Cluster
k = 1
(ui1)

Cluster
k = 2
(ui2)

Cluster
k = 3
(ui3)

1 0.02 0.05 0.84 0.05 0.04 0.99
2 0.02 0.05 0.83 0.06 0.02 0.97
3 0.02 0.05 0.84 0.06 0.02 0.99
4 0.02 0.05 0.84 0.06 0.02 0.98
5 0.02 0.05 0.85 0.06 0.03 1.00
6 0.02 0.05 0.84 0.06 0.03 0.98
7 0.02 0.03 0.85 0.06 0.00 0.99
8 0.02 0.05 0.82 0.06 0.03 0.96
9 0.02 0.05 0.84 0.06 0.04 0.98

10 0.00 0.97 0.10 0.00 1.00 0.11
11 0.00 0.00 0.90 0.04 0.03 0.98
12 0.00 0.00 0.91 0.05 0.02 1.00
13 0.00 0.00 0.91 0.04 0.04 0.99
14 0.00 0.01 0.81 0.04 0.05 0.93
15 0.00 0.00 0.80 0.04 0.03 0.92
16 0.00 0.00 0.94 0.04 0.00 1.00
17 0.00 0.00 0.95 0.06 0.00 1.00
18 0.03 0.00 0.96 0.06 0.01 1.00
19 0.02 0.00 0.94 0.06 0.00 1.00
20 0.01 0.00 0.94 0.06 0.01 1.00
21 0.01 0.00 0.94 0.06 0.01 1.00
22 0.00 0.01 0.95 0.05 0.02 1.00
23 0.00 0.00 0.93 0.04 0.00 0.99
24 0.02 0.00 0.95 0.06 0.00 1.00
25 0.00 0.00 0.91 0.03 0.02 0.99
26 0.01 0.01 0.86 0.05 0.03 0.98
27 0.97 0.03 0.73 0.89 0.00 0.80



(b) The use of a more general algorithm using aggregation

operators. In this case we minimize

J � Pc

i6�j�1

sij ÿ
Pc

k�1

min uik; ujk

ÿ �� �
�15�

to obtain the membership or possibility values uik. We use the

same starting point as (a), and again use a steepest descents

method in the optimization of J in (15).

The results of both calculations are shown in Table 3, using

a similarity matrix derived from the optimally shifted data.

These results are highly informative. Pattern 10 has cluster

membership {0.00, 0.97, 0.1} from additive clustering and {0.00,

1.00, 0.11} from aggregation methods, i.e. it belongs almost

exclusively to cluster number 2. (Small values of uik, less than

0.25, have only marginal signi®cance.) No other pattern has

any signi®cant membership, uj2, for cluster number 2, rein-

forcing the point that this sample constitutes an isolated data

set. All the other patterns, except 10, have values of uj3 > 0.70,

indicating that they all belong to a single cluster (in this case

cluster 3 and no other). The exception to this rule is pattern 27;

the membership values are {0.97, 0.03, 0.73} and {0.89, 0.00,

0.80} from the two clustering methods. This result indicates

that 27 belongs both to the large cluster and to a cluster of its

own, no other pattern having a signi®cant value of u for cluster

1. In other words, while having similarities to the large cluster,

it also has some unique features not displayed by other

diffraction patterns, and these are discussed in x6.

Fuzzy clustering is an easily calculated semi-independent

way of assessing patterns that do not conform to the dominant
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Figure 3
(a) Dendrogram where an optimum shift has been calculated and the cut
line has been reduced to a similarity level of 0.87, thus partitioning the
data into six clusters. (b) The MMDS plot. (c) The three-dimensional
PCA plot.

Figure 2
(a) Dendrogram where an optimum shift has been calculated. The
optimum cut level partitions the data into three clusters. The red cluster
contains all but two of the diffraction patterns. (b) The MMDS plot. (c)
The three-dimensional PCA plot. The colour of each sphere in (b) and (c)
is taken from the dendrogram.



trend of the data. The method will be discussed thoroughly

with other, more complex, examples in a future paper in this

series.

6. Patterns 10 and 27

We now visually inspect the individual patterns that appear to

behave anomalously. Pattern 10 is easily dealt with; it is

measured on a synchrotron with an incident X-ray wavelength

of 0.7907 AÊ . The difference is shown in Fig. 4, where pattern 10

is superimposed on the most representative pattern, number

19, and there is no point of correspondence whatsoever. There

are two reasons for including pattern 10: (a) it demonstrates

that the mathematical methods retain their sensitivity to

pattern differences even in the presence of outliers, and (b)

the use of fuzzy clustering.

The situation regarding pattern 27 is more subtle. The

PolySNAP computer program permits the comparison of two

patterns on a peak-by-peak basis; this process was carried out

for patterns 19 and 27, and typical results are shown in Fig. 5.

The source of the discrepancy is now clear and lies in the

monochromation of the incident X-rays. Sample 27 was

collected with the use of an incident Ge monochromator and

the missing Cu K�1±K�2 splitting is clear. It is signi®cant that

this methodology can automatically identify such differences

even though they are relatively small.

7. Conclusions

We have presented a method for routine analysis of a typical

set of data produced by a round-robin or related set of

experiments in which different laboratories collect data on the

same sample. We have shown that the techniques hitherto

used for analysis in high-throughput crystallography are

equally applicable here when examining data sets that are very

similar and where differences are expected to be small. The

calculation of non-linear 2� shifts to optimize pattern corre-

lation plays a key role in identifying anomalous data sets, and

when these shifts are applied the method becomes sensitive to

quite small differences in the patterns; the absence or presence

of Cu K�1±K�2 splitting, for example, is clearly indicated. This

is a small data set, and the computations can be carried out

manually, but it is easy to see that the technique will easily

scale to hundreds and even thousands of data sets where

manual inspection is not possible. The visual tools associated

with dendrograms, MMDS and three-dimensional PCA, are

essential components of the analysis and also make it easy to

®nd anomalous data sets, as well as to visualize the clusters

they form. The method also has obvious applications for

quality control. Fuzzy clustering has great potential, especially

as a potential tool for identifying mixtures.

We thank the contributors to the ICDD Grant-in-Aid

program for their data and Dr Lowe-Ma for very helpful

discussions.
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Figure 4
Pattern 10 (in blue) compared with the most representative pattern of the
set (number 19, in red). The lack of correspondence is obvious. The
Pearson correlation coef®cient between the two patterns is ÿ0.013 and
the Spearman correlation coef®cient is ÿ0.121.

Figure 5
Two individual peak comparisons between pattern 27 (in red) and pattern
19 (in blue). The latter is the most representative sample of the large 25-
sample set of patterns. The Cu K�1±K�2 splitting is present in pattern 19
but not in 27. The patterns have not been shifted relative to each other.
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