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The program CRYSTALS [Betteridge, Carruthers, Cooper, Prout & Watkin

(2003). J. Appl. Cryst. 36, 1487] has been extended to include an option for the

re®nement of a continuous electron density distribution lying along a line, a ring

or on the surface of a sphere. These additional non-atomic electron distributions

can be re®ned in any combination with traditional anisotropically distributed

spherical atoms, including the re®nement of `partial' atoms overlapping with the

special electron distributions.

1. Introduction

The crystallographic literature contains many examples of

cases where good computational ideas have been incorporated

into unsupported software, so that working versions of the

programs soon become impossible to ®nd. Amongst the aims

of the monolithic program system CRYSTALS (Betteridge et

al. 2003) have been the desires both to develop new ideas and

strategies, and to incorporate into a stable platform good ideas

taken from elsewhere. We describe here the reimplementation

of an idea initially developed outside of Oxford.

Most of the widely distributed programs for single-crystal

X-ray structure analysis only permit the structure to be

described in terms of atoms with spherical form factors and

isotropic or second-order tensor anisotropic atomic displace-

ment parameters (a.d.p.'s). These parameterizations of elec-

tron distribution can be used to model disorder, but this

process requires the introduction of `partial' atoms distributed

throughout the diffuse electron density and organized so that

there is a sensible relationship between their a.d.p.'s; the total

site occupancy of these atoms is also controlled. Some

programs give the user a warning if the a.d.p.'s of single atoms

become suf®ciently anisotropic to justify the introduction of

`split' atoms, i.e. the distributed density can perhaps be better

represented by two atoms. The a.d.p.'s and molecular

geometry of these split atoms may have to be controlled by

restraints or constraints. The same situation can arise in

neutron diffraction, where the nuclear density is distributed

over a site larger than that normally ascribed to an ordered

atom. In this paper `density' will refer to either nuclear or

electron density, and `form factor' will refer either to atomic

form factor or to nuclear scattering length. If more than two

atoms become necessary to model the disorder, `smeared out'

electron density may provide an alternative model.

Programs have been designed and developed for local use

(Chernyshev et al., 1992; Zlokazov & Chernyshev, 1992) which

replace the point atom and its associated form factor and

a.d.p.'s by a representation in which an atom or group of atoms

are replaced by a simple geometrical shape. However, such

programs are not widely available or supported for long. In

the current development to CRYSTALS, the permitted shapes

are a line segment, an annulus (ring) and a spherical shell

(sphere). In each case, the density distribution of the shape is

controlled by the form factor and an isotropic a.d.p. The

length of the line and the radius of the annulus or shell are

controlled by variable parameters, as is the location and

orientation of the shape in the cell. The implementation

permits atomic representations to coexist with the shape

representations for the density, thus permitting non-uniform

density distributions to be constructed.

2. Implementation considerations

Chernyshev et al. (1994) (CZYAS), besides giving a brief

background to the problem, showed that it is possible to re®ne

a structure model containing one or more of these special

®gures (line, ring, sphere) by introducing an additional factor

into the calculation of the structure factors. The authors

determined the appropriate contribution to the structure-

factor expression for electron density distributed on the

surface of a sphere, a line and a ring (Appendix A).

Inclusion of these special shapes in a re®nement program

can be seen as equivalent to introducing into the structure-

factor expression more complicated (and possibly spatially

directed) modi®cations to the conventional a.d.p. terms. The

sphere (hollow shell) is characterized by six parameters,

namely a re®nable centre of action (x), an effective radius, a
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site-occupancy factor and an isotropic displacement para-

meter (d.p.). The line is characterized by x, an occupancy, an

isotropic d.p., a `length' for the line segment and parameters

giving the orientation of the line in the cell. The annulus is

characterized by x, an occupancy, an isotropic d.p., an effective

radius and parameters giving the orientation of the ring in the

cell. CZYAS model the density distribution for the ring by a

zero-order Bessel function. Computational dif®culties with

single-precision (32 bit) arithmetic led us to use two approx-

imations instead, described by Press et al. (1986).

The line and ring are orientated shapes, requiring re®nable

parameters to describe the orientation. These parameters

eventually appear in the CZYAS calculations as parameter  ,

which is the angle between the scattering vector and the line or

ring normal. The propagation of  into the structure-factor

expression is best developed in terms of the triclinic unit

vector representing the line or ring normal. Only two of the

three components are independent. This constraint is most

easily handled by making the corresponding polar coordinates

of the unit vector the actual least-squares variables and

calculating  for each re¯ection via the orthogonal and then

triclinic components in real space, followed by a transforma-

tion into reciprocal space (Boisen & Gibbs, 1990). The polar

coordinates are an angle of declination [angle between the z

axis of a Cartesian system (Rollett, 1965) and the unit vector]

and an angle of azimuth (angle between the projection of the

unit vector onto the plane containing the x and y axis of the

Cartesian system and the x axis). This representation, with the

angles given in degrees, is probably also convenient for the

program user. Fully expanded, the elegant equations of

CZYAS become less attractive; these are given explicitly in

Appendix A1. The derivatives are given in Appendix A2, and

the meaning of symbols in Appendix A3.

2.1. Implementation details

The singularities latent in the expanded equations were

investigated numerically, and it was found that all the limiting

cases were ®nite and so could be accommodated in the ®nal

program. However, providing a mathematical solution to a

problem is not suf®cient if a program is to ®nd wide accep-

tance. Users of the program must be provided with a

reasonably easy-to-use interface to the mathematics. All of the

existing program structure has been preserved and extended

in a consistent manner to include these new variables. It is

therefore possible to re®ne structures containing both normal

atoms and these special ®gures. It is even possible to embed

atoms in the special ®gures and set relationships between their

site-occupation factors. The modelling of distributed density

containing local maxima is hence permitted, thus providing a

partial solution to the problem of modelling a `hindered

rotator' (King & Lipscomb, 1950; Bennett et al., 1975),

pending a full reimplementation of the algorithms of these

authors. Fig. 1 is a screen capture showing how annuli with

embedded partial atoms appear in the CRYSTALS model

window. The inner ring of atoms is isotropic, the outer

anisotropic. An alternative approach to modelling via the

discrete Fourier transform of the difference density (Spek,

1994) is often more suitable for static disorder.

Tools are included for converting groups of normal atoms

into the special ®gures. All the usual constraints and restraints

available in the CRYSTALS program are available for the

special ®gure parameters (e.g. they can be left unre®ned,

linked to other parameters or given soft values via restraints).

Symmetry restrictions for a special ®gure on a special position

are not yet worked out automatically by CRYSTALS, so that

the user must specify them explicitly. For the monoclinic

system, this calculation is simpli®ed by using the second

setting, which makes the unique axis parallel to z of the

Cartesian system so that the angles of declination and azimuth

are evident. For example, an annulus lying perpendicular to

the c axis would have the angles of declination and azimuth

constrained to zero.

2.2. Validation

It is extremely dif®cult to prove that code of this complexity

is working correctly, though various tests may suggest its

validity. One test is to check the self-consistency by creating a

special ®gure and generating a set of structure factors from

this model to be used as `observations' in a subsequent

re®nement. The model used to generate the structure factors

should remain unchanged after least squares. As a further test,

the model can be perturbed before re®nement. It should

return to the starting value after least squares. It was found

that the range of convergence was similar to that of conven-

tional least squares.

An indication of the physical reasonableness of the struc-

ture factors generated by the algorithm can be obtained by

plotting out their Fourier transform. A structure containing

pentamethylcyclopentene was modi®ed so that only the ten

Figure 1
CRYSTALS screen capture of a Cp* fragment consisting of partial atoms
embedded in annuli.



Cp* atoms remained. Structure factors were generated from

this model and used as pseudo-observations, `Fo'. The inner

and outer rings of C atoms were alternately replaced by `ring'

special ®gures. The special-®gure parameters (centroid, radius,

Uiso, declination and azimuth) were re®ned to convergence,

and structure factors were computed (giving Fcalc and �). The

Fourier transforms are shown in the accompanying ®gures.

Fig. 2 shows the electron density computed from the `Fobs' and

� computed from a normal atomic model. Fig. 3 shows density

computed from the `Fobs' and phases computed from a ring

®gure used in place of the methyl groups. There is more or less

continuous density, with only slight peaks at the original atom

sites. This map is a striking example of how the phases

dominate the features of Fourier syntheses. Fig. 4 is a similar

map, using both structure factors and phases computed from

the ring special shape, and shows that the Fourier transform of

the structure factors generated for the special shape is indeed

an annulus. Fig. 5 is a section perpendicular to Fig. 4, passing

through one inner C atom (left of centre) and between two

atoms (right of centre). The outer low peaks are sections

through the annulus. Figs. 6 and 7 correspond to Figs. 3 and 4

but with the inner ring of atoms replaced by the special ®gure.

Table 1 lists some properties of the original ten-atom fragment

and the special-®gure parameters. Note that the difference in

the radii of the two rings corresponds closely to a CCpÐCmethyl

bond length.

A number of structures have been re®ned using these

distributed electron densities and have been published

(NicolaõÈ et al., 2001, 2003; Fillaux et al., 2003).
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Figure 2
Electron density based on structure factors computed from the
distributed density and phases computed from an atomic model.

Figure 3
Electron density based on structure factors computed from the
distributed density and phases computed from a ring ®gure used in place
of the methyl groups.

Figure 4
Electron density based on both structure factors and phases computed
from the ring special shape.

Figure 5
Electron density based on a section perpendicular to Fig. 4, passing
through one inner C atom (left of centre) and between two atoms (right
of centre).
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2.3. CIF data items

New CIF data items have been allocated to these electron

distributions. The centroids, Uiso values and occupancies are

associated with existing _atom_site_ data items, enabling

existing plotting programs to at least indicate the centre of the

shape. The additional items are given new names and can be

included in a loop similar to the anisotropic a.d.p. loop.

3. Conclusions

The integration of these special electron distributions into

CRYSTALS provides the user with considerable ¯exibility in

modelling totally or partially distributed electron density.

CRYSTALS normally takes care of atomic parameter

restrictions for atoms in special positions. That part of the

code has not yet been extended to cover the special ®gures.

However, the user is always able to introduce restraints or

constraints into the re®nement manually, so that with thought,

special ®gures can be re®ned even if they lie on sites of special

symmetry. The ability to co-re®ne atomic sites and special

®gures, with relationships imposed to control total occupancy

etc., provides a mechanism for modelling `peaky' distributed

density.

4. Availability

The CRYSTALS program for Windows is available free to

not-for-pro®t organizations from the Oxford University

Chemical Crystallography Laboratory website, http://

www.xtl.ox.ac.uk.

APPENDIX A
The equations given by CZYAS become complicated when

they are expanded into computable form in terms of the actual

least-squares parameters. The forms we have used are listed in

this appendix as an aid to other programmers.

The additional factors given by CZYAS:

1. Surface of a sphere:

S �H; x� � S �H;R� � sin�2�HR�
2�HR

:

2. Line:

S �H; x� � S �H; r; �; '� � sin��Hr cos �
�Hr cos 

:

3. Ring:

S �H; x� � S �H;R; �; '� � J0 �2�HR sin �:

Figure 6
This correspond to Fig. 3, but with the inner ring of atoms replaced by the
special ®gure.

Figure 7
This correspond to Fig. 4, but with the inner ring of atoms replaced by the
special ®gure.

Table 1
Comparison of the atomic model and the annular model parameters.

Inner refers to the annular ®gure replacing the cyclopentadiene atoms and
outer refers to the annular ®gure replacing the methyl atoms.

Ideal CCpÐCmethyl bond
length

1.49 AÊ Radiusouter ÿ Radiusinner 1.48 AÊ

Mean CCp Ueq 0.09 AÊ 2 Inner Uiso 0.05 AÊ 2

Mean CCp Umin 0.04 AÊ 2

Mean CCp Umed 0.07 AÊ 2

Mean CCp Umax 0.16 AÊ 2

Mean Cmethyl Ueq 0.22 AÊ 2 Outer Uiso 0.13 AÊ 2

Mean Cmethyl Umin 0.05 AÊ 2

Mean Cmethyl Umed 0.10 AÊ 2

Mean Cmethyl Umax 0.51 AÊ 2
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A1. Additional factors in terms of the refinable parameters

1. Surface of a sphere:

S �H; x� � S �H;R� � sin�2�HR�
2�HR

:

2. Line:

S �H; x� � S �H; r; �; '� � sin��Hr cos �
�Hr cos 

� sin���r �H��
��r �H�

cos � r �H
rH

� �
�for r �Hj j � 0:0; S �H; x� � 1:0�;

r �H � x DOTHLX� y DOTHLY� z DOTHLZ

1� 2 cos� cos� cos  ÿ cos2 �ÿ cos2 �ÿ cos2 
;

x

y

z

0@ 1A � xc

yc

zc

0@ 1Acÿ1;

xc � r sin � cos ';

yc � r sin � sin ';

zc � r cos �:

3. Ring:

S �H; x� � S �H;R; �; '� � J0�w� �
P1
tÿ0

ÿ1=4� �tw2t=�t!�2;

w � 2�HR sin ;

sin � 1ÿ r �H
rH

� �2
" #1=2

� 1ÿ r �H
H

� �2
" #1=2

:

Approximations:

For w < 8.0,

S �H; x� � R1 � w2 R2 � w2fR3 � w2�R4 � w2�R5 � w2R6� � g� �
S1 � w2 S2 � w2fS3 � w2�S4 � w2�S5 � w2S6� � g� � :

For w > 8.0,

S�H; x� � �0:636619772=w�1=2

�
cos w1

h
P1 � 8=w� �2

�
P2

� 8=w� �2
n

P3 � 8=w� �2�P4 � 8=w� �2P5

�o�i
ÿ �8=w� sin w1

h
Q1 � 8=w� �2

�
Q2

� 8=w� �2
n

Q3 � 8=w� �2 �Q4 � 8=w� �2Q5

�o�i�
:

A2. Derivatives

1. Surface of a sphere:

@S�H;x�
@R

� 4��sin#=��R cos 4��sin#=��R� �ÿsin 4��sin#=�R� ��
4��sin#=��R2

:

2. Line:

@S �H; x�
@r �@�; @'� �

�r �H� cos ��r �H�� � ÿ �ÿ1 sin ��r �H�� �
�r �H�2

@�r �H�
@r �@�; @'�

for jr �Hj � 0:0;
@S �H; x�
@ r�@�; @'� � 0:0

� �
;

@�r �H�
@r
�

DOTHLX

DOTHLY

DOTHLZ

0@ 1A cÿ1

sin� cos'
sin� sin'

cos�

0@ 1A
1� 2 cos� cos� cos ÿ cos2�ÿ cos2�ÿ cos2

;

@�r �H�
@�

�
2�

DOTHLX

DOTHLY

DOTHLZ

0@ 1A cÿ1

r cos� cos'
r cos� sin'
ÿr sin�

0@ 1A
3:6 �1� 2 cos� cos� cos ÿ cos2�ÿ cos2�ÿ cos2� ;

@�r �H�
@�

�
2�

DOTHLX

DOTHLY

DOTHLZ

0@ 1A cÿ1

r sin� sin'
r sin� cos'

1

0@ 1A
3:6 �1� 2 cos� cos� cos ÿ cos2�ÿ cos2�ÿ cos2� :

3. Ring:

@S �H; x�
@R

� @S �H; x�
@w

@w

@R
;

@S �H; x�
@�

� @S �H; x�
@w

@w

@�
for sin � 0:0;

@S �H; x�
@�

� 0:0

� �
;

@S�H; x�
@'

� @S�H; x�
@w

@w

@'
for sin � 0:0;

@S �H; x�
@'

� 0:0

� �
:

For w � 8.0,

@S �H; x�
@w

�
�
@u

@w
vÿ u

@v

@w

�
vÿ2;

u � R1 � w2 R2 � w2 R3 � w2 R4 � w2�R5 � w2R6�
� �� 	ÿ �

;

v � S1 � w2 S2 � w2 S3 � w2 S4 � w2�S5 � w2S6�
� �� 	ÿ �

;

@u

@w
� w 2R2 � w2 4R3 � w2 6R4 � w2�8R5 � w210R6�

� �� 	ÿ �
;

@v

@w
� w 2S2 � w2 4S3 � w2 6S4 � w2�8S5 � w210S6�

� �� 	ÿ �
:
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For w > 8.0,

@S �H; x�
@w

� wÿ1�0:636619772=w�1=2

�
�
�8=w�

�
Q1�1:5 sin w1 ÿ w cos w1�

� 8=w� �2
�

Q2�3:5 sin w1 ÿ w cos w1�

� 8=w� �2
n

Q3�5:5 sin w1 ÿ w cos w1�

� 8=w� �2
h

Q4�7:5 sin w1 ÿ w cos w1�

� 8=w� �2Q5�9:5 sin w1 ÿ w cos w1�
io��

ÿ
�

P1�w sin w1 � 0:5 cos w1�

� 8=w� �2
�

P2�w sin w1 � 2:5 cos w1�

� 8=w� �2
n

P3�w sin w1 � 4:5 cos w1�

� 8=w� �2
h

P4�w sin w1 � 6:5 cos w1�

� 8=w� �2P5�w sin w1 � 8:5 cos w1�
io���

;

@w

@R
� 4��sin#=�� sin ;

@w

@�
� ÿ2�R�r �H�

H sin 

@�r �H�
@�

;

@w

@'
� ÿ2�R�r �H�

H sin 

@�r �H�
@'

;

DOTHLX � �cos� cos�ÿ cos � �k �a=b� � h cos �
� �cos� cos  ÿ cos�� �l �a=c� � h cos ��
� �cos� cos  ÿ cos�� �l �a=c� cos  � k �a=b� cos ��
� h sin2�� k �a=b� sin2 � cos  � l �a=c� sin2  cos �;

DOTHLY � �cos� cos�ÿ cos � �k cos  � h �b=a��
� �cos � cos  ÿ cos �� �l �b=c� cos  � h �b=a� cos ��
� �cos � cos  ÿ cos �� �l �b=c� � k cos ��
� h �b=a� sin2 � cos  � k sin2 �� l �b=c� sin2  cos �;

DOTHLZ � ��cos� cos �ÿ cos �
� �k �c=b� cos �� h �c=a� cos��	
� �cos � cos  ÿ cos �� �l cos �� h �c=a��
� �cos � cos  ÿ cos �� �l cos �� k �c=b��
� h �c=a� sin2 � cos �� k �c=b� sin2 � cos�� l sin2 :

A3. Abbreviations used

H: re¯ection vector in reciprocal space.

H � 2sin#=�: length of re¯ection vector.

#: diffraction angle.

�: wavelength.

x: parameters describing the sphere, the line or the ring.

R: radius of sphere or ring.

r: direction vector in reciprocal space.

r: length of direction vector (= 1 for the ring).

�: declination angle describing the orientation of the

direction vector.

': azimuthal angle describing the orientation of the direc-

tion vector.

 : angle between the direction vector in reciprocal space

and H.

J0: Bessel function of 0th order (Press et al., 1986, p. 170).

w = 2�HRsin : argument of the Bessel function.

w1 � wÿ 0:785398164 (abbreviation).

R1±R6, S1±S6: constant parameters in the approximation

Q1±Q5, P1±P5 of the Bessel function.

DOTHLX, DOTHLY, DOTHLZ: abbreviations.

x, y, z: triclinic coordinates.

xc, yc, zc: Cartesian coordinates.

c: orthogonalization matrix (Rollett, 1965).

a, b, c, �, �, : cell parameters.

h, k, l: re¯ection indices.
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