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In two previous papers [Gilmore, Barr & Paisley (2004). J. Appl. Cryst. 37, 231±

242; Barr, Dong & Gilmore (2004). J. Appl. Cryst. 37, 243±252], it was

demonstrated how to generate a correlation matrix by comparing full powder

diffraction patterns, and then partition the diffractograms into groups using

multivariate statistics and associated classi®cation procedures. For clustering the

patterns into related sets, dendrograms, metric multidimensional scaling and

three-dimensional principal-components analysis score plots are employed.

However, sometimes cluster membership for certain patterns is not always very

clear or other ambiguities may arise; this paper describes cluster validation

techniques using silhouettes and fuzzy clustering. The two methods operate in a

complementary way: in some cases silhouettes are the most useful, and in others

fuzzy clustering is more applicable. These procedures are available as options in

the commercial computer program PolySNAP.

1. Introduction

In previous papers (Gilmore et al., 2004; Barr et al., 2004a;

Barr, Dong, Gilmore & Faber, 2004, referred to as I, II and III,

respectively; see also Storey et al., 2004) we have shown how to

use the full powder diffraction pattern to partition collections

of diffractograms into sets by generating a correlation matrix

derived from matching the full pro®les of all the powder

patterns with one another, and then applying the relevant

techniques of multivariate statistics and classi®cation. For

clustering the patterns into related sets, we use dendrograms

coupled with metric multidimensional scaling (MMDS) and

three-dimensional principal-components analysis (PCA) score

plots. Sometimes cluster membership for certain patterns is

not always very clear or other ambiguities arise; this paper

describes some additional calculations and algorithms that can

be used to validate cluster membership, in particular the use of

silhouettes and fuzzy clustering. They operate in a comple-

mentary way: in some cases silhouettes are the most useful,

and in others fuzzy clustering is more applicable. In xx2 and 3

we describe these techniques in detail, and follow this in x4
with a set of examples. These procedures are available as

options in the PolySNAP computer program, licensed to

Bruker-AXS (Barr et al., 2004b).

2. Silhouettes

We start the high-throughput diffraction analysis by gener-

ating a correlation matrix, q. To do this, powder patterns are

treated as bivariate samples with n measured points [(x1, y1),

. . . , (xn,yn)] and are compared with one another using a

weighted mean of parametric and non-parametric correlation

coef®cients (the Pearson and Spearman coef®cients, respec-

tively) using every measured intensity data point (Gilmore et

al., 2004) From this we generate a distance matrix, d, where

dij � 0:5�1:0ÿ �ij�; 0:0 � dij � 1:0; �1�
or a similarity matrix s where

sij � 1:0ÿ dij=d max
ij ; 0:0 � sij � 1:0; �2�

where d max
ij is the maximum element in the distance matrix.

These matrices are used as input for the generation of

dendrograms, the MMDS and PCA computations, which give

the primary partition of data into clusters.

Silhouettes (Rousseeuw, 1987; Kaufman & Rousseeuw,

1990) are a property of every member of a cluster and de®ne a

coef®cient of membership. To compute them, we use a

dissimilarity matrix, d, in place of the distance matrix. The

relationship between the two is de®ned via

�ij � dij=d max
ij : �3�

If the pattern i belongs to cluster Cr which contains nr patterns,

de®ne

ai �
P
j2Cr
j6�i

�ij=�nr ÿ 1�: �4�

This de®nes the average dissimilarity of pattern i with respect

to all the other patterns in cluster Cr. Further, we de®ne

bi � min
s 6�r

P
j2Cs

�ij=ns

 !
: �5�

The silhouette for pattern i is then



hi � �bi ÿ ai�=max�ai; bi�: �6�
Clearly ÿ1 � hi � 1.0. Furthermore, it is not possible to de®ne

silhouettes for clusters with only one member (singleton

clusters).

From our experience with powder data collected in re¯ec-

tion mode on both organic and inorganic samples with peak

widths varying from 0.1 to 0.05� FWHM, we conclude that for

any given pattern:

(i) hi > 0.5 implies that pattern i is probably correctly

classi®ed;

(ii) 0.2 < hi < 0.5 implies that pattern i should be inspected

since it may belong to a different or new cluster;

(iii) hi < 0.2 implies that pattern i belongs to a different or

new cluster.

We display each cluster as a histogram, frequency plotted

against silhouette values, and look for outliers or poorly

connected plots.

3. Fuzzy clustering

We have already described the theory of fuzzy clustering as

applied to high-throughput diffraction pattern analysis in

paper III, but we present a brief overview of the principles

again here for clarity. In standard clustering methods we

partition a set of n diffraction patterns into c disjoint clusters.

We can express cluster membership via a membership matrix

U(n � c) where individual coef®cients, uik, represent the

membership of pattern i of cluster k. The coef®cients are equal

to unity if i belongs to c and zero otherwise, i.e.

uik 2 �0; 1� �i � 1; . . . ; n; k � 1; . . . ; c�: �7�
If we relax these constraints and insist only that

0 � uik � 1 �i � 1; . . . ; n; k � 1; . . . ; c�; �8�

0 <
Pn
i�1

uik < n �k � 1; . . . ; c� �9�

and Pc

k�1

uik � 1; �10�

then we have the concept of fuzzy clusters or fuzzy sets in

which there is the possibility that a pattern can belong to more

than one cluster (see, for example, Everitt et al., 2001; Sato et

al., 1966). Such a situation is quite feasible in the case of

powder diffraction, for example, when mixtures can be

involved (see x4.4).

In this paper we will relax the constraint imposed by

equation (10) by allowing the membership coef®cients to be

un-normalized; such coef®cients are then sometimes called

`possibilities'.

The generation of the U matrix is not simple and, as

described in paper III, we have explored two methods as

discussed in detail by Sato et al. (1966).

(a) Additive clustering in which U is determined by mini-

mizing the difference between the observed and calculated

similarity matrices coupled with steepest descents for opti-

mization. The function minimized is

�2
1 �

Pn
i 6�j�1

sij ÿ �
Pc

k�1

uikujk

� �2
, Pn

i6�j�1

sij ÿ �s
ÿ �2

; �11�

where

�s � �1=n�nÿ 1�� Pn
i 6�j�1

�sij� �12�

and � is a constant that scales s and U.

(b) The use of a more general algorithm using aggregation

operators and also coupled with steepest descents. In this case

we minimize

J � Pc

i6�j�1

sij ÿ
Pc

k�1

min�uik; ujk�
� �

: �13�

These will be referred to as methods 1 and 2, respectively.

Both techniques need starting values of U. We use the initial

cluster assignments from the dendrogram such that if powder

pattern i is deemed to belong to cluster j, the initial value of uij

= 0.8; otherwise it is given a random value scaled in accor-

dance with equation (10).

The two methods minimize different functions and thus give

different results, although they do not usually differ signi®-

cantly. Method 2 tends to give values of uij with a wider

dynamic range. Where relevant, we present the results of both

calculations in x4.

Finally, membership coef®cients uij < 0.3 can usually be

treated as zero.

4. Using silhouettes and fuzzy clusters

All the results presented here are derived using the silhouette

and fuzzy clustering options in PolySNAP (Barr et al.,

2004b,c) employing real experimental data (except the simu-

lated mixtures in x4.4 which are sums of experimental

patterns) collected on a variety of diffractometers. We start

with a situation in which the initial clustering is well behaved,

and show that the silhouettes and fuzzy clusters add additional

evidence that this is so, then move on to a series of situations

where there is ambiguity in some cluster assignments that

these validation methods can help to resolve. All the data sets

are relatively small in order to preserve the clarity and

presentation of our argument, but the techniques are equally

(if not more so) valid when used with larger data sets. From

our experience with data sets of up to 2000 patterns, there are

no limits on the validity of the silhouette formalism with

pattern numbers, but fuzzy clustering techniques become less

useful with more than 100±200 data sets.

4.1. Well defined clusters

We begin with an example where the clusters are well

de®ned. The data come from a proprietary pharmaceutical

compound and were collected on a Bruker D8-GADDS

system in re¯ection mode with a 2� range of 5±43�. Peak
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widths are ca 0.5� FWHM. There are 16 samples. Fig. 1(a)

shows the dendrogram calculated using the complete-link

method (Barr et al., 2004a). It can be seen that the data are

partitioned into ®ve clusters connected with tie bars that

represent high similarity between the members of each cluster.

This is reinforced by the corresponding metric multi-

dimensional scaling (MMDS) plot in Fig. 1(b). Here each

sphere represents a single diffraction pattern, and each cluster

is also well de®ned. In Figs. 1(c)±1( f) typical silhouette

histograms for four of the clusters are shown: they are

compact with no outliers and have no entries less than 0.5 for

any silhouette. Table 1(a) shows the corresponding results in

numerical form.

The fuzzy cluster coef®cients are equally well behaved and

shown in Table 1(b) using method 2 (method 1 gives very

similar results). The membership functions are all >0.8 and

there are no anomalous entries, i.e. patterns with either low

membership coef®cients in the class to which they are assigned

or high memberships in alternative clusters. We can therefore

be con®dent in the cluster assignments made by PolySNAP.

4.2. Ambiguous cluster definition

The second case is not so simple. The data comprise 106

pharmaceutical samples, also collected on a Bruker D8-

GADDS system in re¯ection mode. Peak widths are ca 0.5�

FWHM. The dendrogram shown in Fig. 2(a) is ambiguous:

there are three clusters, but the large red and yellow coloured

groups are connected by a relatively low tie bar with a third,

more isolated, small group in green. Furthermore, the MMDS

plot in Fig. 2(b) shows that the two large clusters are in close

proximity. The green cluster is still well isolated from the

others. The silhouettes for the green and yellow clusters are

well de®ned with no entries <0.5, but the red cluster is more

diffuse and has several entries <0.5. These silhouettes are

displayed in Figs. 2(c)±2(e).

In Fig. 3(a) the tie bar in the dendrogram is raised so that

the two large clusters amalgamate into one. The associated

MMDS plot in Fig. 3(b) looks convincing, although there are
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Table 1
Silhouettes and membership coef®cients.

(a) Silhouettes corresponding to Fig. 1. Each cluster is well de®ned.

Pattern Cluster Silhouette

7 1 0.603
11 1 0.589

3 2 0.760
6 2 0.623

12 2 0.586
16 3 0.817

1 3 0.799
2 3 0.790

15 3 0.697
10 4 0.906
14 4 0.905

4 5 0.841
5 5 0.829
9 5 0.812

13 5 0.751

(b) The membership coef®cients, uij. The entries in bold face correspond to the
cluster to which the pattern belongs. The membership functions are all >0.8,
and there are no other entries >0.23, i.e. there is no evidence of patterns
belonging to more than one cluster. This behaviour is indicative of well de®ned
clusters correctly assigned.

Pattern No. Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

1 0.09 0.08 0.88 0.11 0.17
2 0.10 0.10 0.88 0.12 0.16
3 0.19 0.88 0.09 0.15 0.14
4 0.12 0.14 0.16 0.13 0.89
5 0.11 0.12 0.14 0.11 0.89
6 0.17 0.84 0.10 0.18 0.21
7 0.84 0.21 0.06 0.08 0.09
8 0.10 0.13 0.17 0.12 0.81
9 0.10 0.11 0.13 0.11 0.88

10 0.10 0.17 0.15 0.87 0.16
11 0.84 0.23 0.16 0.13 0.19
12 0.17 0.83 0.10 0.10 0.09
13 0.09 0.10 0.12 0.11 0.86
14 0.11 0.18 0.17 0.87 0.18
15 0.08 0.08 0.84 0.10 0.12
16 0.10 0.10 0.88 0.12 0.17

Table 2
The silhouettes for 13 powder diffraction patterns collected on a Bruker
D8 diffractometer from commercial aspirin tablets.

Fig. 4 shows the initial dendrogram in which patterns 7 and 8 are separated
into two singleton clusters. In (a) the silhouettes for the three clusters
containing more than one sample are presented. The clusters are well de®ned
with no silhouette <0.58. When the cut level on the dendrogram is adjusted to
merge patterns 7 and 8 into a single cluster (see Fig. 4c), the resulting
silhouettes are displayed in (b). It can be seen that the cluster formed by
patterns 7 and 8 is poorly de®ned and that cluster 4 now also contains possible
outliers. This con®rms the singleton status of patterns 7 and 8.

(a) Silhouettes for the three clusters containing more than one sample.

Pattern Cluster No. Silhouette

2 4 0.712
4 4 0.691

10 5 0.749
11 5 0.700
13 5 0.661

9 6 0.807
6 6 0.794
1 6 0.792
5 6 0.696

12 6 0.584

(b) Silhouettes after merging patterns 7 and 8 into a single cluster.

Pattern Cluster No. Silhouette

8 1 0.412
7 1 0.348
2 2 0.669
4 2 0.663
1 4 0.654
6 4 0.646
9 4 0.636

13 4 0.572
5 4 0.534

10 4 0.433
12 4 0.385
11 4 0.337



several potential outliers. The silhouettes, shown in Fig. 3(c),

however, are very well de®ned with no entry <0.6. In this way

we can be sure that the data comprise one large cluster and a

small unrelated one without investigating any individual

powder diffraction patterns, although one should still inspect

any potential outliers in the ®nal stages of analysis.

Fuzzy clusters are of limited value here, and do not indicate

the need for amalgamation of the two large groups.

4.3. Are two patterns to be clustered together?

In this example we use 13 powder patterns from commercial

aspirin samples collected in re¯ection mode on a Bruker D8
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Figure 1
(a) The dendrogram for 16 powder diffraction patterns calculated using the complete link method. The data are partitioned into ®ve clusters each with a
unique colour. (b) The corresponding metric multidimensional scaling (MMDS) plot in which each sphere represents a single diffraction pattern. The
sphere colours are taken from the dendrogram. Each cluster is well de®ned. (c)±( f ) show typical silhouettes for four of the clusters. They are compact
and have no entries less than 0.5 in value of silhouette. (The ®fth cluster is equally well de®ned and omitted for brevity.) Table 1 shows these results
numerically.



system. Since these samples include ®llers, aspirin itself and

other formulations, it is not surprising that peak widths are ca

0.5� FWHM. The data collection range was 10±43� 2�. A

default run of PolySNAP gives the dendrogram shown in Fig.

4(a); the data are partitioned into ®ve sets with patterns 7 and

8 forming singleton clusters. The silhouettes for all the clusters

containing more than one pattern are tabulated in Table 2(a);

they are all well de®ned with no entries <0.58. However, Fig.

4(b) presents the corresponding MMDS plot, and it can be seen

that patterns 7 and 8 are relatively close. The question is there-

fore posed as to whether they should form a 2-pattern cluster.

In Fig. 4(c) the dendrogram cut level is raised so that this

amalgamation takes place. Table 2(b) shows the resulting

silhouettes. Both clusters 1 (formed by patterns 7 and 8) and 4

are now poorly de®ned with low silhouettes and possible

outliers, indicating that there are signi®cant differences

between these patterns.

We now inspect the patterns themselves, shown super-

imposed in Fig. 4(d). There are considerable similarities and

there is evidence of possible preferred orientation, but the

peaks at ca 18 and 34� 2� make it clear that these are different

samples.
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Figure 2
(a) The dendrogram for 106 powder diffraction patterns collected on a Bruker GADDS system. There are three clusters. The yellow and red groups are
connected by a relatively low tie line and thus have a high similarity. The green cluster is quite distinct. (b) The corresponding MMDS plot. This
reinforces the evidence from the dendrogram: the red and yellow clusters are in close proximity and almost overlapping, but the green coloured group
remains separate. (c)±(e) show the silhouettes for the three clusters. The red cluster is somewhat diffuse and has six entries <0.5 (0.44±0.49), which
indicates that the clustering pattern needs inspection. The green cluster has values between 0.93±0.89 and is well de®ned.



Although this is a simple case to resolve, cases where there

are more than 1000 patterns are much more complex, and

silhouettes can provide a powerful tool for resolving

membership ambiguities of this type. It is interesting to note

that fuzzy clustering was again of minimal value in this

situation.

4.4. Mixtures

Mixtures are a common occurrence in high-throughput

experiments and PolySNAP has numerous tools to process

them in both qualitative and quantitative mode. However,

fuzzy clustering is also useful. As an example, we present data

from a proprietary pharmaceutical compound collected in

re¯ection mode on a Bruker D8-GADDS system. The data
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Figure 3
(a) The same data as Fig. 2, but the dendrogram cut line has now been
raised so that the red and yellow clusters are joined into one large group.
(b) The corresponding MMDS plot. The red cluster is well de®ned. (c)
The corresponding silhouette plot. The silhouettes are now tightly
clustered with a minimum value of 0.64, providing strong evidence for
cluster amalgamation.

Figure 4
(a) The powder patterns for the 13 commercial aspirin samples
partitioned into ®ve sets; patterns 7 and 8 form singleton clusters. (b)
The corresponding MMDS plot; patterns 7 and 8 are relatively close, and
the question is posed as to whether they form a cluster together? (c) The
dendrogram cut level is adjusted so that this takes place. (d) The
superposition of the powder diffraction patterns of samples 7 (blue) and 8
(red).



collection range was 12±45� 2�. Peak widths were ca 0.5�

FWHM. There are two polymorphic forms present: A

(patterns 1±4) and B (patterns 8±11). Patterns 5±7 are

mixtures generated by adding the patterns of the pure forms in

the following proportions: pattern 5 is A 40%, B 60%; pattern

6 is A 50%, B 50%, and pattern 7 comprises A 60%, B 40%.

The default dendrogram from PolySNAP on this data set is

shown in Fig. 5. The data are partitioned into two clusters with

three of the mixtures in the red coloured cluster and one in the

yellow. There is little indication of mixtures from this display.

The silhouettes also show nothing unusual: cluster 1 has

silhouette values between 0.76 and 0.81 and cluster 2 between

0.68 and 0.85.

The fuzzy cluster memberships tell a different story; this is

shown in Table 3. Both fuzzy clustering methods are used and

the results are very similar. Samples 1±4 all have values of uij

corresponding to membership of a single cluster (number 2).

Patterns 8±11 are all pure form B, and they too have

membership coef®cients indicating that they belong to cluster

1 and no other. Patterns 5±7, however, have signi®cant

membership coef®cients of both clusters, and thus the possi-

bility of mixtures is clearly identi®ed. PolySNAP could now be

re-run in quantitative mode with a database of pure forms

used as additional input.

4.5. Optimum shifts

One of the commonest sources of systematic error in

matching powder patterns, especially in high-throughput

situations linked to crystallization robotics, is the occurrence

of 2� shifts arising from variability of the instrumental zero

point, sample height, transparency, etc. (see Klug & Alex-

ander, 1974; Wilson, 1963). The PolySNAP software provides

three possible corrections:

��2�� � a0 � a1 cos �; �14�
which corrects for the zero-point error via the a0 term and, via

the a1 cos� term, for varying sample heights in re¯ection mode,

or

��2�� � a0 � a1 sin �; �15�
which corrects for transparency errors, or

��2�� � a0 � a1 sin 2�; �16�
which provides transparency coupled with thick-specimen

error corrections. The parameters a0 and a1 are re®nable

constants determined by maximizing pattern±pattern corre-

lations, although this greatly increases the run time of the

program (see paper II). A problem can arise as to which of the

equations (14), (15) or (16) is most suitable in a given

experiment; we show here the applicability of fuzzy clusters to

this problem.

The test data for this example comprise 15 patterns from the

ICDD database of clay minerals where the full diffraction

pro®les are available (ICDD, 2003). The data were collected

on a wide variety of instruments in re¯ection mode; typical

peak widths were ca 0.05±0.1� FWHM (for further details see

Barr et al., 2004). The PolySNAP program partitions the data

into ®ve distinct clusters. Table 4(a) shows the membership

coef®cients using clustering method 2 before the application

of any shifts, and then after the shift function a0 + a1 sin� has

been applied. The maximum shift for both coef®cients was 0.1.

The entries in bold face correspond to the cluster to which the

pattern has been assigned by the dendrogram. The average

membership coef®cient, uij, is 0.74, with a minimum value of

0.65, whereas after the application of optimal shift they take

the corresponding value of 0.80 with a minimum value of 0.76.

All the membership coef®cients increase. Attempts to use the

two other shifts [equations (14) and (16)] resulted in no

signi®cant change in the fuzzy cluster values.
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Figure 5
The dendrogram for a set of 11 organic powder patterns with two
polymorphs. Samples 1±4 are form A; 8±11 are all form B; pattern 5
comprises 40% A and 60% B; pattern 6 is 50% A and 50% B, while set 7
contains 60% A and 40% B. The patterns for the mixtures have been
simulated by adding the most representative sample of the pure forms
with the required proportions. The data are partitioned into two groups,
with the mixtures belonging to one or other of the sets.

Table 3
The membership coef®cients, uij, corresponding to Fig. 4.

The results of both fuzzy clustering methods are displayed; the output from
method 1 is in columns 3 and 4, whilst that of method 2 is in columns 5 and 6.
They are very similar. Samples 1±4 are pure form A and all have values of uij

corresponding to membership of a single cluster (number 2). Patterns 8±11 are
all pure form C, and they too have membership coef®cients indicating that
they belong to cluster 1 and no other. Pattern 5 comprises 40% B and 60% C;
pattern 6 is 50% B and 50% C, while set 7 contains 60% B and 40% C. (The
patterns for the mixtures have been generated arti®cially by adding the most
representative sample of the pure forms with the required proportions.) These
four patterns have signi®cant membership coef®cients of both clusters, and
thus the mixtures are clearly identi®ed.

Method 1 Method 2

Pattern % composition Cluster 1 Cluster 2 Cluster 1 Cluster 2

1 Pure A 0.11 0.76 0.07 0.72
2 Pure A 0.10 0.76 0.04 0.73
3 Pure A 0.19 0.71 0.18 0.68
4 Pure A 0.10 0.76 0.05 0.73
5 A 40% B 60% 0.46 0.63 0.42 0.61
6 A 50% B 50% 0.40 0.72 0.36 0.66
7 A 60% B 40% 0.32 0.76 0.29 0.70
8 Pure B 0.73 0.21 0.71 0.18
9 Pure B 0.75 0.24 0.71 0.19

10 Pure B 0.70 0.26 0.70 0.21
11 Pure B 0.68 0.23 0.71 0.20



Table 4(b) shows the corresponding values of the silhou-

ettes. These are much less sensitive to the shift function: the

mean value before the shift is 0.709, whereas after its appli-

cation it is 0.755 with some patterns showing a decrease in

silhouette values while others increase.

5. Conclusions

We have shown how silhouettes and fuzzy clusters can be used

as a secondary technique to validate cluster assignments when

using powder diffraction data. They are not primary sources of

the generation of clusters [although Rousseeuw (1987) has

used them in that way], but serve in this instance as a tool for

checking the ®nal assignments, especially highlighting poten-

tial problem data sets in the presence of a large number of

patterns.

The two methods are complementary: often one technique

is insensitive to clustering ambiguities, whilst the other will

highlight possible problems, and for this reason PolySNAP

allows the use of both automatically. Both are robust with

respect to data defects, e.g. preferred orientation, large peak

widths and high backgrounds.

Cluster analysis and related methods have a large literature,

and we have not yet exhausted the possibilities in the area of

high-throughput powder diffraction. We are now studying the

use of neural networks, especially Kohonen self-organizing

maps (Kohonen, 1997) and minimum spanning trees (see, for

example, Graham & Hell, 1985). The methods described here

should also be applicable to any one-dimensional data set such

as Raman and IR spectroscopy or DSC, and we are currently

investigating such applications.

We wish to thank Bob Docherty, Chris Dallman, Neil

Feeder and Paul Higginson of Pharmaceutical Sciences, P®zer

Global R and D, UK, for data, many useful discussions and
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Table 4
Using membership coef®cients to determine the optimum formula for shifting powder diffraction patterns relative to each other.

The data comprise 15 patterns from the ICDD database which form ®ve distinct clusters. (a) shows the membership coef®cients using clustering method 2 before
the application of any shifts and then after the shift function a0 + a1 sin� has been applied. The entries in bold face correspond to the cluster to which the pattern
belongs. The average membership coef®cient is 0.74 with a minimum value of 0.65, whereas after the application of optimal shifts it is 0.80 with a minimum value of
0.76. (b) shows the corresponding values of the silhouettes. These are much less sensitive to the shift function: the mean value before the shift is 0.709, whereas after
its application it is 0.755; some patterns show a decrease in silhouette, whereas all the patterns show an increase in membership coef®cient.

(a) Membership coef®cients.

u before a0 + a1 sin� shift u after a0 + a1 sin� shift

Pattern
No.

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

1 0.07 0.75 0.06 0.08 0.05 0.14 0.81 0.03 0.15 0.04
2 0.00 0.05 0.00 0.76 0.06 0.05 0.06 0.03 0.80 0.09
3 0.04 0.07 0.00 0.76 0.06 0.09 0.12 0.05 0.83 0.07
4 0.04 0.12 0.00 0.68 0.09 0.05 0.17 0.10 0.78 0.09
5 0.00 0.00 0.78 0.00 0.00 0.08 0.03 0.79 0.09 0.05
6 0.72 0.12 0.17 0.06 0.06 0.79 0.21 0.19 0.14 0.07
7 0.72 0.02 0.30 0.02 0.03 0.79 0.11 0.27 0.01 0.06
8 0.05 0.14 0.00 0.73 0.05 0.08 0.21 0.01 0.83 0.06
9 0.00 0.00 0.00 0.04 0.77 0.02 0.01 0.05 0.07 0.84

10 0.05 0.72 0.04 0.12 0.05 0.11 0.79 0.03 0.18 0.03
11 0.15 0.02 0.75 0.00 0.00 0.22 0.06 0.76 0.00 0.05
12 0.09 0.65 0.07 0.14 0.06 0.13 0.78 0.04 0.17 0.06
13 0.00 0.00 0.78 0.00 0.00 0.10 0.01 0.83 0.09 0.06
14 0.03 0.00 0.78 0.00 0.00 0.16 0.05 0.80 0.02 0.06
15 0.00 0.02 0.00 0.05 0.77 0.06 0.02 0.02 0.09 0.84

(b) Corresponding silhouettes.

Pattern No. Cluster Silhouette before a0 + a1 sin� shift Silhouette after a0 + a1 sin� shift

7 1 0.680 0.641
6 1 0.649 0.639
1 2 0.792 0.782

10 2 0.751 0.737
12 2 0.705 0.685
13 3 0.792 0.779
14 3 0.712 0.703

5 3 0.683 0.672
11 3 0.635 0.611

8 4 0.823 0.848
3 4 0.819 0.824
2 4 0.757 0.766
4 4 0.732 0.720

15 5 0.905 0.966
9 5 0.903 0.965



suggestions, and for pioneering and inspiring this project,

Bruker-AXS for the aspirin data, and the International Center

for Diffraction Data for the data used in x4.5.
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