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Precise channel-to-energy conversion is very important in full-pattern refine-

ment in energy-dispersive X-ray diffraction. Careful examination shows that the

channel-to-energy conversion is not entirely linear, which presents an obstacle

to obtaining accurate quantitative data for lattice strains by pattern refinement.

In order to establish an accurate quadratic channel-to-energy conversion

function, a Matlab program was written to find the best quadratic coefficient and

hence the whole energy conversion function. Then this energy conversion

function was used to perform a whole-pattern fitting of the energy-dispersive

X-ray diffraction pattern of a Ti64 sample. The strain across the Ti64 bar

calculated from the fitting results has been compared with values obtained by

single-wavelength X-ray diffraction utilizing a Laue monochromator.

1. Introduction

Diffraction of penetrating radiation such as neutrons or high-

energy X-rays provides a powerful non-destructive method of

interrogating the details of crystal lattice structures in the bulk

of metallic alloy polycrystals. By collecting individual

diffraction peaks or entire sections of diffraction patterns, it is

possible to obtain information about residual micro- and

macrostrain as well as grain orientation (texture).

There are two principal methods of recording diffraction

patterns in use: the monochromatic beam angle-dispersive

technique, and the white-beam energy-dispersive technique.

Of the two methods, the monochromatic beam technique is

more widely used, both in the laboratory setting and at

synchrotron beamlines. The principal advantage of the

monochromatic method is the high resolution of peak centre

position and peak shape. The main disadvantage of this

technique is associated with the necessity of scanning the

detector over a range of angles to obtain a pattern, although

the use of position-sensitive detectors (PSDs) serves to reduce

the measurement time. In addition, information about the

macroscopic strain obtained from a single diffraction peak is

susceptible to errors associated with the inhomogeneity of

elasto-plastic deformation between grains (Clausen et al.,

2003). Furthermore, the number of grains may be small that lie

within the sampling volume and are in the diffraction condi-

tion, thus contributing to a peak. Apart from the total flux

from the source, the intensity of the observed peak depends

on the degree of monochromation (energy bandwidth) and

the selectivity of the beam in terms of grain orientation. At

synchrotron beamlines, these parameters are particularly high,

due to the very low divergence of the beam and good optics.

When engineering applications are considered, often macro-

scopic averages are sought, and this high selectivity may be a

disadvantage. A preferred solution would be to use a mono-

chromator system that offers an energy bandpass in the region

of �E/E = 10�3, and may allow the divergence of the beam to

be somewhat increased, so that a larger number of grains

contribute to each reflection, thus improving the counting

statistics.

A high-energy Laue monochromator system has recently

been proposed and implemented on Station 16.3 at Daresbury

by Laundy et al. (2004). A silicon crystal monochromator is

mounted to produce a small bouncing angle in the transmis-

sion geometry, and is bent sagittally. Sagittal bending induces a

spread of lattice parameters within the crystal, thus increasing

the bandpass but decreasing the quality of monochromation

within a reasonable range, while at the same time producing

some focusing (and hence divergence) in the horizontal plane.

The second method used in the present study is the white-

beam energy-dispersive technique. This method allows very

fast data collection times for the entire pattern over a large

range of lattice spacings. However, the procedures for pattern

interpretation and refinement still require some development.

Several examples of interpretation procedures have been

developed in an ad hoc fashion for specific purposes by several

authors. In dealing with energy-dispersive diffraction data

acquired from a laboratory X-ray source, Ballirano & Caminiti

(2001) transformed the data to the angular dispersive domain

for full-pattern refinement. Similarly, Steuwer et al. (2004)

developed an approach involving the transformation of data

into a format of time-of-flight neutron diffraction, and used

this approach for their strain mapping investigation using

energy-dispersive synchrotron X-ray diffraction. The real



predicament, however, is the fact that accurate pattern

refinement is usually hampered by a small degree of non-

linearity in the conversion between channel numbers and

photon energies. This non-linearity has also been noted by

Dong et al. (2003), who proposed an algorithm for full-pattern

refinement that deals with non-linearity and errors in energy

measurements, especially for high-pressure energy-dispersive

X-ray diffraction studies. In our approach, we assume that this

non-linearity can be adequately represented by a quadratic

term, and propose a procedure allowing the coefficients in the

quadratic conversion function to be determined using a

pattern from a well characterized powder sample, such as the

NIST silicon standard, as calibrant. The solution that we

propose is therefore comparatively general, and could be used

in the context of any application of energy-dispersive X-ray

diffraction when accurate calibration of the channel-to-energy

conversion is required.

The purpose of the set of experiments described in the

present paper was to investigate the application to the analysis

of lattice strains in engineering materials and components of

two experimental techniques: high-energy single-bounce Laue

monochromatic beam diffraction, and white-beam energy-

dispersive diffraction.

Strain determination by diffraction for the purposes of

stress evaluation is a well established branch of diffractometry,

represented in a large body of literature (Cullity, 1978; Noyan

& Cohen, 1987; Hauk, 1997). The most widely used method of

analysis documented in this literature concerns the sin2 
method, which involves the collection of multiple peak posi-

tions for different orientations of the scattering vector with

respect to the sample, and the determination of the underlying

state of stress from these measurements. It is important to

note that the subject of the present paper is very different

from this conventional approach in several important respects.

Firstly, no attempt is made to collect data from the sample

position (gauge volume) within the sample for several

different orientations of the scattering vector. Rather, the

orientation of the scattering vector with respect to the sample

is kept fixed, but the gauge volume position is changed,

thereby allowing the spatial variation of a strain component to

be worked out. Secondly, since all measurements are carried

out with high-energy X-rays and in transmission, no correc-

tions for absorption are needed, and direct access to bulk

strain measurement is gained.

As an example of an engineering material possessing

considerable practical importance for aerospace and other

structural applications, a two-phase near-alpha titanium alloy,

Ti–6Al–4V, was chosen. The predominant alpha phase in this

material has a hexagonal close packed (h.c.p.) structure, and

gives rise to a large number of peaks in the diffraction pattern.

One of the interesting aspects of the deformation behaviour of

this material is the anisotropy of elastic and plastic properties

with respect to the direction within the hexagonal lattice cell.

For example, slip systems exhibiting easy slip are associated

with the basal {00.1} plane and close packed [11.0] directions,

while easy elastic deformation (lowest elastic modulus)

corresponds to the c-axis direction, [00.1]. Detailed char-

acterization of lattice strains in titanium alloys often requires

separate evaluation of lattice strains that correspond to the a

axis and c axis and other specific orientations, but also the

evaluation of overall macroscopic average strains. We

demonstrate that the two experimental methods considered in

the present paper (Laue monochromation and energy-

dispersive diffraction) are well suited to the task, and show

excellent agreement between the results.

2. Experimental details and data analysis

Two experiments on monochromatic and white-beam

synchrotron X-ray diffraction in transmission through a bent

bar of Ti–6Al–4V titanium alloy were carried out on Station

16.3 (Collins et al., 1999) at SRS, Daresbury Laboratory, UK.

The specimen of Ti64 was machined to the dimensions hy =

50 mm, hx = 8.5 mm, hz = 4 mm, and bent by applying a

bending moment Mz of approximately 100 N m using a

universal testing machine with a four-point bending attach-

ment. A monochromatic X-ray beam with energy of about

68 keV produced by a Laue monochromator (Laundy et al.,

2004) was used in the first experiment. In the second experi-

ment, the same bent bar was studied using the white (poly-

chromatic) beam and an energy-dispersive detector.

In the Laue monochromatic setup, a singe bent silicon

single crystal was placed at a small angle from the vertical in

the path of the incident beam to produce a transmitted

monochromatic X-ray beam. The direction of the transmitted

monochromatic beam formed an angle of about 6� with the

incident beam, and the energy of the monochromatic beam

was 68 keV. The monochromator crystal was bent to select a

bandwidth in the range of �E/E between 10�4 and 10�3,

allowing the degree of monochromation to be readily adjusted

to match the properties of the object. Beam size used in the

experiment was 0.2 mm in the vertical direction and 0.2 mm in

the horizontal direction. Peak centre positions were obtained

by fitting Gaussian, pseudo-Voigtian or combined peak shapes

to the observed diffraction peaks.

In the white-beam experiment, the experimental setup was

similar to that described by Korsunsky et al. (2002). The

scattering angle was fixed at 10�. Diffraction patterns of the

standard calibrant silicon powder and at different position

within the bent titanium alloy bar were recorded. The data

were then analysed by performing Rietveld refinement using

the General Structure Analysis System, GSAS (Larson & Von

Dreele, 2000), with the graphical user interface EXPGUI

(Toby, 2001). The Pawley (1981) refinement approach was

used in the data analysis.

The channel-to-energy conversion was initially calibrated

using a radioactive source (Am209) and assumed to be linear.

Careful examination, however, shows that the energy

conversion is not entirely linear. This presents an obstacle to

obtaining accurate quantitative data for lattice strains by

pattern refinement. The following procedure was adopted in

order to establish an accurate quadratic channel-to-energy

conversion function. Firstly, the sign and range of variation of

the coefficient of the quadratic term was identified by running
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a few tests with GSAS: when the quadratic coefficient is set to

be too large, the quality of fit deteriorates. In order to find the

best value of the coefficient within the selected range, a Matlab

program was written. The program performed data prepara-

tion for GSAS by prepending a header containing a particular

quadratic energy-conversion function to the data file, and

launched GSAS refinement of the silicon power pattern. After

the chosen number of iterations, GSAS produced an output

file containing, amongst other data, the quality of fit parameter

Rp. The Matlab program performed this procedure for the

chosen set of values of the quadratic term coefficient, and

generated output in the form of a table of fit quality versus

quadratic term coefficient. The program could be run

repeatedly in order to obtain the best value of the quadratic

term coefficient to the desired precision. Once this value was

determined, the quadratic channel-to-energy conversion

function was used throughout the analysis of all data obtained

from the titanium alloy bent bar.

It is clear that implementing the channel-to-energy cali-

bration procedure outside the GSAS framework is an ineffi-

cient step. The task of finding the best calibration would be

better accomplished by incorporating this procedure within

the GSAS package, which, after all, is devised for non-linear

optimization.

A second Matlab program was written to perform full-

pattern fitting of the data sets one by one, starting from an

example refinement that was manually fitted. Then the

program generated output of the results of lattice parameters

for all the data sets.

3. Results and discussion

The initial linear fitting of channel-to-energy conversion from

the radiation source is shown in Fig. 1(a), in which the linear

equation is also shown. Two W characteristic radiations

(energy and channel) and one Am characteristic radiation

(energy and channel) are used initially to calibrate the

channel-to-energy conversion.

The diffraction data collected in energy-dispersive mode

are counts versus channel numbers, then the linear channel-to-

energy conversion is used to convert channel numbers to

X-ray energies (keV). The Si diffraction data were then

transferred into GSAS format and input into GSAS. The

experimental and refined Si patterns are shown in Fig. 2(a).

The ‘+’ marks correspond to the experimental pattern that is

obtained with the help of the channel-to-energy conversion,

while the solid line is the calculated pattern using the lattice

parameter of the Si standard. The positions of the diffraction

peaks are also marked, and the difference between the

experimental and calculated patterns is shown at the bottom.

The fitting is basically fine, but careful examination of the

difference line shows that the peak positions are not accurate

enough. The position of peak 220 at 37.114 keV is completely

correct, but the other peak positions are not so accurate. The
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Figure 1
(a) Linear calibration of channel-to-energy conversion from W and Am
radiation source. (b) Energy difference between quadratic and linear
channel-to-energy conversion.

Figure 2
Fitted Si powder patterns using GSAS: (a) linear energy conversion, (b)
quadratic energy conversion.



experimental peak 111 at 22.728 keV is shifted to the right of

the calculated position, whereas the experimental peaks at

energies higher than 40 keV are shifted to the left of the

calculated positions. This means that the linear channel-to-

energy conversion is not strictly correct. There should be a

quadratic term in the energy conversion equation, which can

correct the discrepancies between the experimental pattern

and the calculated pattern.

The Matlab program was run to obtain the best fit of the Si

diffraction data; thus the quadratic channel-to-energy

conversion coefficients were optimized. The best fit of the Si

patterns is shown in Fig. 2(b). It can be seen that the fitting of

peak positions is much better than in Fig. 2(a). Compared with

the peak positions in Fig. 2(a), the experimental peaks in Fig.

2(b) are shifted to lower energies in the low-energy range, and

those at high energies are shifted to higher energies. The

experimental position and intensity of every peak coincides

perfectly with those calculated.

In the particular case considered, the quadratic function for

channel-to-energy conversion that provides the best quality of

fit is given by

E ¼ �0:648þ 0:0682N þ 4:202� 10�7N2; ð1Þ

where E denotes photon energy (in keV) and N represents the

channel number.

The energy difference between the quadratic and the linear

channel-to-energy conversion is shown in Fig. 1(b). The

abscissa is the X-ray energy in keV, while the ordinate shows

the energy difference. It shows that at around 38 keV, the

quadratic and linear conversions have the same energy; in the

energy range below 38 keV, the energy in the quadratic

conversion is lower than that in the linear conversion, whereas

in the energy range above 38 keV, the energy in the quadratic

conversion is higher. This is consistent with what has been

observed in Figs. 2(a) and 2(b).

Ti–6Al–4V is an alloy that is widely used to manufacture

components located at the front of the aeroengine, such as fan

blades and disks. The structure achieved by the manufacturing

process is obtained by solution treating in the middle of the

�+� phase field and air cooling. This gives a mixture of

primary alpha and a transformation product which comprises

� and � phases. The � phase has an h.c.p. structure which

is typical of titanium at room temperature and transforms to

a body centred cubic (b.c.c.) structure, the cubic � phase,

at 1156 K.

The b.c.c. � phase is not contiguous and occupies ‘islands’

surrounded by the predominant h.c.p. � phase, which at room

temperature deforms mainly by basal slip and imposes a

strong constraint on the � phase. As a consequence of this

two-phase structure, large strains are often observed within

the minority phase, which is constrained within the matrix of

the major phase. Other modifications of titanium lattice

structure, particularly the orthorhombic phase, may also be

present.

A bar of Ti–6Al–4V alloy with dimensions hy = 50 mm, hx =

8.5 mm, hz = 4 mm was machined from a plate. Preferred

orientation in the bar was evaluated using laboratory X-ray

diffraction using a Bruker AXS D8 diffractometer with Euler

cradle. Texture was found not to be significantly high (not

exceeding 2� random), so the material was thought to be

untextured. The bar was bent by applying a bending moment

Mz of approximately 100 N m using a universal testing

machine with a four point bending attachment, Fig. 3(a). Lines

labelled A, B and C in Fig. 3(a) illustrate the stress profiles

that correspond to progressively increasing applied bending

moment (for the case of non-work-hardening material). At the

instant when the applied moment just reaches the critical

value required for yielding, the stress (and elastic strain)

distribution across the bar is linear (line A). When the applied

moment is increased further (line B), the material undergoes

progressive plastic yielding, beginning at the surface. The total

strain remains linear across the beam, but a proportion of it is

now accommodated plastically. As the moment is increased

further (line C), so does the zone of plasticity. Upon

unloading, the residual elastic strain profile has the ‘z’ shape

illustrated in Fig. 3(b).

The residually stressed bent bar of Ti–6Al–4V alloy was

scanned through the beam, and patterns recorded and refined
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Figure 3
(a) Illustration of the bending experiment used to generate the residual
stress profile within the sample. (b) Illustration of the residual stress (and
residual elastic strain) profile across the bent sample.



in order to investigate the state of strain within gauge volumes

along this line. A representative diffraction pattern of the Ti

alloy was put into GSAS, and lattice parameters and peak

profile coefficients were refined to a satisfactory quality. Then

a Matlab program was used to run GSAS in batch mode to fit

the Ti alloy diffraction patterns one by one, to produce the

resulting lattice parameters. The relative error obtained from

the GSAS refinement is around 0.66 � 10�4 for lattice para-

meter ‘a’, around 1.05 � 10�4 for lattice parameter ‘c’ of the

h.c.p. � phase, and up to 2 � 10�4 for lattice parameters of the

other phases.

With the help of correct quadratic channel-to-energy

conversion, careful examination of the state of strain within

polycrystalline multiphase materials can be undertaken. Two

examples of refined Ti-alloy patterns are shown in Figs. 4(a)

and 4(b). The bottom line of markers indicates the peak

positions of the Ti � phase, the middle line of markers are for

Ti � phase, and the top line of markers for the orthorhombic

phase. Comparison between the two patterns reveals that one

of the peaks corresponding to the Ti � phase, 310, shows

particular sensitivity to the deformation state: it is clearly

present in the pattern in Fig. 4(a), but absent in Fig. 4(b).

Detailed analysis of the data reveals that this peak is only

present in the regions within the sample that are subjected to

tensile residual stress, but absent where the stress is

compressive.

A general observation ought to be made here on the

interpretation of diffraction patterns of in situ loaded or

residually stressed volumes of polycrystals. The distinction

between powder patterns and coherent polycrystalline solids

must be made first. Powders can usually be safely assumed to

be free from macroscopic stress and strain, unlike poly-

crystalline solids. In a polycrystal, loading induces strains in

grains of all orientations. However, only grains contributing to

the diffraction pattern are those containing ‘allowed’ lattice

planes lying normal to the scattering vector. Strictly speaking,

uniaxial strain loading of a lattice cell induces a distortion,

rather than a change in the lattice parameter. It must also be

noted that all crystal orientations obtained by rotation around

the scattering vector contribute to the diffraction signal,

although their strain states may actually differ. Finally, it is

important to note that elastic strains involved are usually too

small to produce detectable peak splitting.

Precise evaluation of diffraction peak positions in terms of

energy (in white-beam studies) or diffraction angle (in

monochromatic beam studies) allows lattice strain in the

scattering vector direction to be computed (see below).

However, it is important to note that in many cases the

purpose of diffraction measurement is to evaluate the stress

state within the gauge volume, rather than strain. This task

requires the knowledge and understanding of the nature of

microscopic (single grain) and macroscopic (polycrystalline)

stiffness matrices, and making certain assumptions about the

full three-dimensional deformation state. This is in many ways

the weakest link in the analysis, and is prone to errors.

However, in the present paper we do not concern ourselves

with this problem at all: our attention is confined to the

analysis of strains.

Consider a situation where elastic anisotropy (i.e. the

dependence of stiffness on grain orientation) is negligible. This

means that, under elastic conditions, the strain that arises in all

grains is the same. Considering a cubic structure for simplicity

(without restricting the generality of the argument) and

denoting the strain by e, we obtain the new lattice spacing for a

set of planes hkl given by

dhkl ¼ ð1þ eÞd0
hkl ¼ ð1þ eÞa0=fhkl; ð2Þ

where

fhkl ¼ ðh
2 þ k2 þ l2Þ

1=2:

Although the lattice may also undergo expansion or contrac-

tion in the direction perpendicular to the scattering vector, this

phenomenon does not affect the Bragg peak position in the

present diffraction experiment. Equation (2) holds for all

peaks within one diffraction pattern, and can be written as
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Figure 4
(a) X-ray diffraction pattern of Ti–6Al–4V alloy refined using the newly
proposed calibration procedure. Peaks of the minority phases, the b.c.c. �
(denoted by ‘b’) and the orthorhombic phase (denoted by ‘o’) are
indicated. Note the presence of the small 310 peak of the � phase. (b) X-
ray diffraction pattern of Ti–6Al–4V alloy refined using the newly
proposed calibration procedure, obtained from a different location within
the sample. The 310 peak of the � phase is absent from this pattern.



dhkl ¼ ð1þ eÞd0
hkl ¼ ae=fhkl; ð3Þ

where ae is now used to denote a ‘strained’ lattice parameter.

The above discussion demonstrates that the observed

diffraction pattern appears to be exactly such as if it is the

lattice parameter that has experienced strain e, i.e.

ae ¼ ð1þ eÞa0: ð4Þ

The above conclusion can be generalized for the h.c.p. lattice,

in which case separate strain values ea and ec must be intro-

duced for the two lattice parameters.

The above argument demonstrates why it has become

conventional in diffraction strain analysis to use Rietveld

refinement in the same way as one would for a powder sample,

and associate strain with lattice parameter change, rather than

cell distortion. From the large body of literature available on

the subject, we refer to the paper by Daymond et al. (1999) for

the discussion of this issue. It is important to note that

experimental validation of this approach has shown excellent

accuracy and agreement with the applied macroscopic average

elastic strain.

Based on quadratic channel-to-energy calibration of the

detector, pattern refinement was carried out for the determi-

nation of lattice parameters, producing the fits illustrated in

Fig. 4. Once the lattice parameters were found, corresponding

strains were computed on the basis of each parameter by

rearranging equation (4) into the form

e ¼ ðae=a0
Þ � 1: ð5Þ

It is important to note that, contrary to the simplifying

assumption made above about uniformity of strain with

orientation (isotropy), in practice elastic strains differ

depending on the orientation of diffracting lattice planes

within the unit cell. As a consequence, a situation arises where

individual peaks are shifted with respect to the their ‘regular’

positions that might be expected for a powder sample. It is

now well established that orientation dependence of elastic

and plastic deformation of grains within polycrystalline

aggregates results in the development of so-called ‘aniso-

tropy’, or ‘difference strains’ (e.g. Korsunsky et al., 2002).

These terms refer to the apparent inconsistency in the strains

(and hence peak positions) observed for different reflections.

This leads to a problem in the refinement of diffraction

patterns, and apparent degradation of the quality of fit. Some

ad hoc measures have been proposed to overcome this diffi-

culty (Daymond et al., 1999). They consist of introducing an

additional parameter (anisotropy strain) in the Rietveld

refinement that provides a measure of how much each peak is

displaced from its position. However, since these displace-

ments are prescribed solely in accordance with the elastic

stiffness variation with lattice orientation, the approach fails to

deal efficiently with the consequences of plastic anisotropy of

the single crystals that constitute the aggregate.

This situation is clearly reflected in the GSAS fit of the Ti64

alloy in the present case. In Fig. 4, peak positions for the Ti �
and Ti � phases manifest visible ‘anisotropy strain’ behaviour,

with peak positions showing displacements (of opposite sign)

with respect to their predicted positions. This observation has

interesting and important implications for the internal stress

state of two-phase titanium alloys. The results of our study of

this phenomenon will be reported separately.

Figs. 5(a) and 5(b) show the comparison of strain across the

scanned line of the Ti alloy bar between the Laue mono-

chromatic beam method and energy-dispersive white-beam

method. The strain in the white-beam method is calculated

from the lattice parameters produced by GSAS whole-pattern

fitting, while the strain in the Laue monochromation method is

calculated from the peak positions obtained from a single

peak fitted using a Gaussian peak shape. The strain calculated

from white-beam lattice parameter ‘a’ and the strain deter-

mined from the monochromatic 110 peak are compared in

Fig. 5(a), while the strains from the white-beam lattice para-

meter ‘c’ and from the monochromatic 002 peak are shown in

Fig. 5(b). The strain shows a typical bending profile of the

central line of bending. It can be seen that the strains from

both methods match very well, which means that both

methods are successful.

The current example provides an excellent vehicle to

illustrate the level of detail afforded by white-beam energy-

dispersive analysis. Although the b.c.c. � phase and the
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Figure 5
Comparison of strain determined by monochromatic and white-beam X-
ray diffraction: (a) lattice parameter a from white-beam diffraction and
peak 110 from monochromatic diffraction, (b) lattice parameter c from
white-beam diffraction and peak 002 from monochromatic diffraction.



orthorhombic phase are minority phases, probably amounting

to less than 10% of the material, excellent lattice parameter

evaluation is also possible for these phases.

Fig. 6(a) shows a comparison between strain profiles

calculated on the basis of the lattice parameter a of the h.c.p. �
phase, a of the b.c.c. � phase, and b of the orthorhombic phase.

Good agreement is observed between all three cases.

Fig. 6(b) shows a comparison of strain profiles calculated on

the basis of the lattice parameter c of the h.c.p. � phase, a of

the b.c.c. � phase, and c of the orthorhombic phase. The

behaviour of strain associated with the c parameter of the

orthorhombic phase most closely follows that of a of the b.c.c.

� phase.

4. Conclusion

A rational procedure was developed, and a Matlab program

implementing it was written, with the objective of finding the

best form of quadratic channel-to-energy number conversion

for an energy-dispersive diffraction detector, by fitting the

energy-dispersive X-ray diffraction pattern of the standard Si

powder. Hence, adequate accuracy of peak placement was

achieved across the entire energy spectrum considered. The

use of a quadratic energy conversion function was compared

with an approximate linear energy conversion function, and

was found to improve substantially the quality of pattern

refinement, and hence interpretation. Then the quadratic

energy conversion function was used to perform pattern

refinement of energy-dispersive X-ray diffraction patterns of a

bent titanium alloy sample. Strain distributions extracted from

monochromatic and white-beam experiments were found to

be in good agreement. Furthermore, detailed analysis of the

deformation state within each of the three phases present was

also possible.
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Figure 6
(a) Comparison of strain profiles calculated on the basis of different
lattice parameters: a of the h.c.p. � phase, a of the b.c.c. � phase, and b of
the orthorhombic phase. Good agreement is observed between all three
cases. (b) Comparison of strain profiles calculated on the basis of
different lattice parameters: c of the h.c.p. � phase, a of the b.c.c. � phase,
and c of the orthorhombic phase. The behaviour of strain associated with
the c parameter of the orthorhombic phase most closely follows that of a
of the b.c.c. � phase.


