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A deconvolution method for diffraction measurements based on a statistical

learning technique is presented. The radial-basis function network is used to

model the underlying function. A full probabilistic description of the

measurement is introduced, incorporating a Bayesian algorithm based on an

evidence framework. This method allows predictions of both the convolution

and the underlying function from noisy measurements. In addition, the method

can provide an estimation of the prediction uncertainty, i.e. error-bars. In order

to assess the capability of the method, the model was tested first on synthetic

data of controllable quality and sparsity; it is shown that the method works very

well, even for inaccurately measured (noisy) data. Subsequently, the

deconvolution method was applied to real data sets typical of neutron and

synchrotron residual stress (strain) data, recovering features not immediately

evident in the large-gauge-volume measurements themselves. Finally, the extent

to which short-period components are lost as a function of the measurement

gauge dimensions is discussed. The results seem to indicate that for a triangular

sensor-sensitivity function, measurements are best made with a gauge of a width

approximately equal to the wavelength of the expected strain variation, but with

a significant level of overlap (�80%) between successive points; this is contrary

to current practice for neutron strain measurements.

1. Introduction

It is not generally possible to make a measurement at a point.

Whatever the measurement technique, the quantity of interest

must be evaluated over a sampling gauge having finite

dimensions. When considering strain measurement by

diffraction, it is often the case that a large gauge volume must

be used, either because of low signal, or because of poor

spatial discrimination. This has the effect of smearing out the

measured values relative to the underlying function. Different

conflicting pressures govern the choice of gauge volume. A

large gauge volume enables one to acquire statistically

significant information quickly and accurately, free from the

effects of microstructural fluctuation, but tends to smooth out,

and in severe cases lose irrevocably, variations in stress or

strain. If the gauge is too small, the sampling time for scat-

tering methods may become prohibitively long, while local

microstructural features may make the data unrepresentative

of the continuum behaviour.

There is currently much interest in the multi-scale beha-

viour of materials. Some authors suggest that phenomena such

as the size effect in fatigue can be related to the fractal nature

of the microstructure (e.g. Carpinteri et al., 2002). Of course,

just like the microstructure itself, the residual stress field varies

in a multi-scale manner. In general, the sampling volumes

typical of diffraction are too large to measure type-II (grain

scale) and type-III (sub-grain scale) stress fields, except in

terms of peak broadening (Fitzpatrick & Lodini, 2003;

Hutchings et al., 2005). Nevertheless, a great deal of infor-

mation about the micromechanics of heterogeneous defor-

mation can be obtained by diffraction, either at the grain scale

(Clausen et al., 1998), sub-grain scale (Ungar et al., 1984) or

between constituent phases (Oliver et al., 2004; Wang et al.,

2005; Van Acker et al., 1996; Noyan & Cohen, 1985). In

general, materials engineers neglect the microstructural stress

fluctuation and focus on the type-I (macro-stress) variation.

This component is regarded as smoothly varying and

compares directly with continuum finite-element models.

The various methods for measuring elastic strain by

diffraction all present different obstacles to the derivation of

the true (underlying) macro-strain or stress profile. Labora-

tory X-rays have the advantage that they penetrate very short

(micrometre) distances through most engineering materials.

This means that the depth over which they average is very

shallow; however, in order to build up a depth profile,

destructive layer-removal techniques must be employed.

High-energy synchrotron X-rays and thermal neutrons both

have much higher levels of penetration (Withers, 2004),

offering the possibility of non-destructive measurements. For

thermal neutrons, a scattering angle of 90� is usually adopted,
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but because of the low intensities and long associated counting

times characteristic of neutron diffraction, high-spatial-reso-

lution measurements are usually made with a gauge size of

1 mm or larger, with relatively poor counting statistics and

sparse data. On the other hand, the very high photon inten-

sities encountered at modern synchrotron sources mean that

small gauge volumes can be defined with excellent counting

statistics and sampling density. In fact, it is often the case in

practice that the fineness of the gauge that can be used is

limited by poor microstructural sampling of the type-I stress

field. If, on the other hand, effective deconvolution procedures

can be established, then large gauge volumes can be used with

obvious benefits in terms of data collection efficiency and

statistical representation. The higher energies (short wave-

lengths) typically employed result in low scattering angles. As

a consequence, the gauge shape is commonly an elongated

diamond (5:1 or 10:1 aspect ratio) with the longest dimension

often a millimetre in length or so. Further complications arise

because attenuation, which can be significant over the gauge

dimension, especially for synchrotron X-rays, means that the

gauge volume may not be evenly illuminated.

Unless the data are noiseless, one would not expect to be

able to reconstruct features in the stress or strain profile

having a characteristic ‘wavelength’ smaller than the gauge

dimensions. Indeed, if the macro-stress is of concern, then the

smooth underlying variation is of primary interest and an

algorithm for the ‘best guess’ reconstruction of the underlying

profile would have real practical utility. This is especially so for

near-surface measurements. This is both because near the

surface, the gradients of strain and stress can be very steep, but

also because the dimension characterizing the effective

sampling gauge varies as the instrumental gauge enters the

surface. This means that while the strain profile is smeared out

to translator positions that have the centre of gravity of the

sampling volume located beyond the surface of the object, it

may be possible to reconstruct a profile that is much more

representative of the underlying near-surface profile.

Furthermore, in such cases the magnitudes and locations of

the near-surface compressive and tensile stresses are often

performance critical, and thus of great interest from a struc-

tural integrity point of view.

In an ideal (noiseless) case, there is a direct mathematical

route from the measured response to the underlying macro-

strain or stress profile. However, deconvolution approaches

tend to be very sensitive to noise in the measurements,

rendering formal deconvolution impractical. Consequently, we

have taken a completely different approach. In this paper, we

present a method for reconstructing depth profiles based on

statistical learning techniques. We apply a probability model

to the measured profile, incorporating a Bayesian algorithm

based on an evidence framework. The probability model

allows predictions for the expectations and error-bars of the

underlying strain/stress profile. First, the method is tested on

synthetic data in order to assess its capability as a function of

measurement sparsity, noise levels and sensor response func-

tion (essentially determined by the gauge volume). It is

subsequently applied to real data typical of that acquired by

neutron and synchrotron strain scanning.

It should be noted that the method is completely general

and could be applied to the reconstruction of stress or strain

profiles measured by other methods, for example by magnetic

methods (Xiong et al., 2006), or indeed more generally to the

reconstruction of data of any sort from volume-averaged

measurements.

2. Statistical learning method for deconvolution

The framework given below should be applicable to a very

wide range of sensors and sensor–sample interactions;

however, we shall illustrate its basis and practical utility with

reference to the analysis of neutron and synchrotron strain

data. Our approach builds upon a rigorous and widely

accepted theoretical framework developed by others, which is

summarized here only in outline; for more details the reader is

directed to the works by MacKay (1992) and Tipping (2001).

In order to make the paper accessible, we retain a formal

mathematical framework. Those with little interest in the

mathematical foundations can omit this section, moving

straight to x3.

2.1. Mathematical model of sampling

All practical sensors have a response function g(x) of finite

extent. This may vary in both sensitivity and extent as a

function of sampling depth. When making measurements by

neutron or synchrotron diffraction, the gauge volume over

which diffraction data are collected is usually defined by

apertures or collimators (Hutchings et al., 2005). This repre-

sents the nominal gauge volume and neglects beam divergence

and the attenuation of the beam across the sampling gauge.

This is quite sufficient in most cases. As a result, when scan-

ning along a line (x), the response function has a triangular

form (Fig. 1). If the attenuation length, defined as the distance

over which the number of neutrons or photons decreases by
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Figure 1
The sensor response function for a typical synchrotron sampling gauge
(shown dashed) of length 1 mm neglecting beam attenuation across the
gauge volume. A neutron sensor response function would be identical
even though the gauge (shown dashed) using a scattering angle of 90�

would normally be a square.



e�1, is comparable to the largest dimension of the gauge, then

in reflection geometry at least, a more complex response

function would be appropriate that describes the attenuation

in illumination over the gauge volume. This level of

complexity is neglected here.

In general terms, the sensor–sample signal response can be

described mathematically by the convolution

yðxÞ ¼ f ðxÞ � gðxÞ ¼
R

du gðx� uÞ f ðuÞ; ð1Þ

where f(x) and g(x) are signal and sensor response functions,

respectively, as they are called in signal processing. In this

paper, we will focus on the moving-window-style convolution

exemplified by the sampling gauges typical of neutron and

synchrotron diffraction shown in Fig. 1. One additional aspect

is required. As the sample surface is approached, the effective

sampling gauge changes shape, in that no signal is recorded

from that portion of the instrumental gauge that lies outside of

the sample. As a result, the signal drops in magnitude and the

strain is averaged only over the portion of the gauge

remaining inside the sample. This can be achieved simply by

rewriting the convolution as

yðxÞ ¼ f ðxÞ � gðxÞ ¼

R
du gðx� uÞ �ðuÞ f ðuÞR

du gðx� uÞ �ðuÞ
; ð2Þ

where �(u) is 1 if u is within the sample, and 0 otherwise. The

advantage of this modification is that we do not need to adjust

the sensitivity of the response function representing the

effective volume of the gauge as it passes through the surface

of sample.

The aim is to reconstruct the underlying function f(x) based

on the measurement y(x) and the given response function,

g(x). Reconstruction can be fully achieved by deconvolution

of a discrete Fourier transformation (DFT). However, the

algorithms developed along this line do not work very well in

practice. This is primarily because measurement noise can

cause solutions to exhibit unrealistic oscillations. Traditionally,

optimal filters have been introduced to solve this problem

(Press et al., 1992). Secondly, it should be noted that the

noiseless measurement y(x) and the underlying signal f(x) are

functions of variables with physical meanings. In our case, the

macro-strain (by definition since the local microstructural

fluctuations are described by �f ) and the measured (convo-

luted) response y(x) have a smooth dependence on position.

The deconvolution method based on DFT takes no account of

this property.

We model the smooth underlying function as

f ðxÞ !
XK

k¼1

UkðxÞwk or f ¼ Uw ð3Þ

where Uk is a set of basis functions and wk are the corre-

sponding weights; K is the number of basis functions. There

are various types of basis function available; however, the

kernel functions (Vapnik, 1995) are the most successful and

are used here. Popular regression models of the kernel func-

tion are the radial-basis function networks. Their form can be

generally expressed in terms of the Euclidean distance from

their centre xk, i.e. Uðkx� xkkÞ. In the statistical learning

method, one of the advantages is that the number of weights

grows only linearly with the number of training examples. In

this work, we use the Gaussian type of radial-basis function,

Uðkx� xkkÞ = exp½�cðx� xkÞ
2
�, where the function is eval-

uated at position x and the scaling parameter c will be deter-

mined by our algorithm. Other radial-basis functions may be

used, but the Gaussian type has been proved to be more

successful in most cases (Bishop, 1995; Tipping, 2001).

Numerically, the convolution in equation (2) can be written

as

ym ¼ ½f ðxÞ � gðxÞ�m

¼

PN
n¼1 gðxm � unÞ �ðunÞ f ðunÞ �unPN

n¼1 gðxm � unÞ �ðunÞ �un

¼
PN

n¼1 Gmnfn ð4Þ

and its matrix form is

y ¼ Gf; ð5Þ

where G is an M � N matrix of the given sensor response

function, y is an M-dimensional vector describing the

measured convolution, and f is an N-dimensional vector of the

underlying function to be predicted. M is the number of points

measured, and N is the number of points used to delineate the

underlying function.

Through the convolution relation between the underlying

function f and the measurement y in equation (5), the

measurement can be expressed in terms of the weight para-

meters

y ¼ GUw: ð6Þ

The above equation has a form that is very similar to the

normal regression model. In principle, we can use the sum-of-

the-squares error function to optimize the weights, if given the

measured convolution and the forms of the basis function and

response function. Once the weight parameters are deter-

mined, the underlying function and the measured convolution

can be calculated straightforwardly by equations (3) and (6).

However, the central goal in modelling is not to obtain a best

fit to the training data, but rather to infer the rule (model)

generating the data, so that the model can make the best

possible predictions for a new input x. The most general and

complete description of the data generator (model) is in terms

of the probability distribution. On the other hand, the effects

of the local fluctuation �f and the measurement error �y

require that the model is probabilistic, i.e. a statistical model.

2.2. Statistical description of the convolution process

We consider the measurement of the variation of any

underlying property, f(x), using a sensor. In practice, the

property may show local fluctuations, perhaps because of local

heterogeneities in structure. In our exemplar case, this might

be due to the grain-to-grain fluctuations in strain arising from

the anisotropy in single-crystal stiffness and plasticity of real

crystals. In our treatment we have modelled these (type-II and

type-III) fluctuations by a Gaussian distribution having a
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standard deviation �f . Classically, if a sufficiently large

sampling gauge is used, these fluctuations contribute to line

broadening (Noyan & Cohen, 1987); however, in practical

cases at high spatial resolution, it is not uncommon to measure

repeatable point-to-point fluctuations in response arising from

grain-sampling effects (Withers, 2003). As discussed in the

introduction (x1), while much can be gained from knowledge

of the local fluctuations and their standard deviation �f from a

materials viewpoint, in many cases it is the smoothly varying

type-I profile, f(x), that is of engineering interest.

We assume that the probability of the function having a

certain form is normally distributed:

PðfjwÞ ¼
1

½ð2��2
f Þ

N
�
1=2

exp �
1

2�2
f

kf �Uwk2

 !
; ð7Þ

where �f represents the point-to-point deviation from the

underlying function, in our case having microstructural origins

as discussed above. More specifically, this means that the value

f(x) detected by the gauge is given by some deterministic

function upon which is superimposed a random fluctuation of

standard deviation �f . This local scatter in the strain can be

estimated directly by our algorithm. In other words, the model

is able to make some prediction regarding the level of micro-

strain in the sample. This is somewhat different from the

measure of the micro-strain given by the diffraction line width.

It is the variation in the volume-averaged strain that would be

measured using a gauge equal in dimension to the spacing

between the points used to define the underlying function,

namely the N points in equations (4) and (5). As N!1, it

describes the variation in the total profile.

In addition, we assume that the M measurements of y are

generated by sampling a smooth function with additive

random sensor noise �y, so that the probability distribution

function of convolution y for a given function f has a Gaussian

form:

PðyjfÞ ¼
1

½ð2��2
yÞ

M
�
1=2

exp �
1

2�2
y

ky�Gfk2

� �
; ð8Þ

where �y is the standard deviation of the statistical error

associated with measuring y. In general, the statistical

measurement uncertainty is unknown, but can be estimated

through our algorithm. In the case of synchrotron and neutron

diffraction, the uncertainty in peak position can be estimated

in terms of the best fit peak profile to the measured diffraction

data, or evaluated in terms of the number of counts in the

signal In and the standard deviation of the diffraction peak

width �diff as (Withers et al., 2001)

�y ¼ �diff½1þ 2ð21=2
ÞB=H�=ðInÞ

1=2; ð9Þ

where H is the peak height and B is the background.

An important concept in Bayesian inference is that of

‘marginalization’, which involves integrating out unwanted

variables (Bishop, 1995). Suppose we are discussing a model

with two variables f and y. Then the most complete description

is in terms of the joint distribution p(f, y). If we are interested

only in the distribution of y, then we should integrate out f.

Thus, the predictive distribution for y is obtained by averaging

the conditional distribution pðyjf Þ with a weighting factor

given by the distribution p( f). Thus, the conditional prob-

ability distribution of the convolution y for a given weight

vector, w, is obtained by integrating over f:

PðyjwÞ ¼
Rþ1
�1

df Pðy; fjwÞ

¼
Rþ1
�1

df PðyjfÞPðfjwÞ

¼
1

½jCjð2�ÞM�1=2
exp½�ð�T

wC�1�w=2Þ�; ð10Þ

with

�w ¼ y�GUw ; C ¼ �2
yIþ �2

f GGT; ð11Þ

where �w is the difference between the measurements and the

model predictions, superscript T is the transpose operator, C is

the covariance matrix of modelled total statistical error, I is

the M-dimensional unit matrix, and G is defined in equations

(4) and (5).

In the statistical description, the output of the convolution

is expressed in terms of the most probable value of the

distribution in equation (10). Compared with the equation (6),

the expectation value of the statistical model is the same as the

output of the conventional model. There is a very clear

physical meaning of the covariance matrix C in equation (11),

which describes the propagation of the local fluctuations

during the convolution process (actually there are some

eliminations of the local fluctuations through convolution).

The total uncertainty of the measurement comes from two

parts: the measurement error �y and the convolution of the

local fluctuation �f .

2.3. Bayesian algorithm

In essence, we are building up the function from a series of

Gaussian functions. While it is trivial to fit a data set of M

measurements with M Gaussian curves in equation (6) by

minimizing the cost function �2 � ky�GUwk2, this would

lead, in all probability, to over-fitting by which the noise, as

well as the signal, are fitted, giving poor predictive capability.

In order to avoid over-fitting of the noise in the data and to

yield simple (smooth) underlying functions, weight decay

(Bishop, 1995) is used. This introduces a tendency for all

weights to decay to zero unless there is strong evidence to the

contrary.

For the Bayesian algorithm (this has been discussed at

length elsewhere), the prior probability distribution of

weights, w, has the Gaussian form (MacKay, 1992; Bishop,

1995)

PðwÞ ¼
QK
k¼1

PðwkÞ �
QK
k¼1

ð�k=2�Þ1=2 exp½�ð�kw2
k=2Þ�

� �
; ð12Þ

The weight decay �k is connected to weight wk, and can be

written as a diagonal matrix A = diag ð�1; �2; . . . ; �KÞ. One

weight decay �k is given for each weight wk, as used by Tipping
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(2001), with the weight wk being zero if �k !1. In practice,

most weights are decayed towards zero, and the model solu-

tion generally has fewer Gaussian functions (	 M) to capture

the trend while discounting the noise as best as it can. Note

that this approach is not always successful; for example in Fig.

4(d), the model has overestimated the noise and under-

estimated the amplitude of the underlying function, in contrast

to Fig. 4( f) where the model is informed of the measurement

uncertainty as prior knowledge.

Through Bayes’ theorem, upon observing data D, the

posterior probability of weights w is then

pðwjDÞ ¼
1

½ð2�ÞKjSj�1=2
expf�½ðw� lÞTS�1

ðw� lÞ=2�g; ð13Þ

with

l ¼ SUTGTC�1y ; S ¼ ðUTGTC�1GUþAÞ�1: ð14Þ

In order to obtain optimal estimations of c, weight decay �k

and noise levels �f and �y, we apply a Bayesian evidence

framework (MacKay, 1992; Tipping, 2001). This framework

defines a cost function called the evidence,

Rþ1
�1

dw PðyjwÞPðwÞ; ð15Þ

and determines c, weight decay and noise levels iteratively by

maximizing the evidence. For convenience, the logarithm of

the evidence is maximized generally:

PK
k¼1

ln �k � ln jCj þ ln jSj �
PK
k¼1

�k�
2
k ��T

l C�1�l ð16Þ

with �l = y�GUl. We set the derivatives of the log-evidence

with respect to �k to zeros and obtain

�k ¼ �k=�
2
k ; �k ¼ 1� �kSkk ðk ¼ 1; . . . ;KÞ: ð17Þ

Since there are no explicit expressions to iterate c, �f and �y,

we will use the gradient of the log-evidence to update these

parameters.

In the Bayesian algorithm, the trained model is described in

terms of the posterior probability distribution, and the

prediction will be made by averaging the probability distri-

bution of the output over all possible models [i.e. integrating

their probabilities over the posterior probability of the weights

in the equation (13)]. When presented with inputs xm and xn

(the coordinates of the position in our case), the outputs for

the measurement ym and the underlying function fn are

described by probability distributions. The predictions of our

model are the most probable values (i.e. the means) of these

probability distributions:

ym ¼ ½GUl�m ; f n ¼ ½Ul�n; ð18Þ

with l the optimized weight vector given by equation (14).

The forms of the solutions in equation (18) are the same as

those in equations (3) and (6), while the difference lies in how

the optimal weights are calculated. The estimated uncertain-

ties of the predictions of ym at xm and fn at xn, i.e. the respective

variances, are given by the variances of the probability

distributions:

�2
fn
¼ �2

f þ ½USUT
�nn ; �2

ym
¼ Cmm þ ½GUSUTGT

�mm: ð19Þ

In order to implement this algorithm, we take the number of

the basis functions K to be the same as the number of the

convoluted measurements M. The centres of the basis func-

tions xk are evenly distributed over the sample. We first choose

initial values of c and hyperparameters �k, �f and �y. Through

the covariance matrix of the output C in equation (11), the

weights can obtained by equation (13). With the optimal

weights l and the covariance matrix S, we can improve our

estimation of �k through equation (17), and �f , �y and c

through gradient descent with the log-evidence in equation

(16) as the error function. We start the next iteration with the

estimated values of hyperparameters until a tolerance

criterion is reached. Finally, the expectation value and the

uncertainty of the predicted convolution and underlying

function can be calculated through equations (18) and (19),

respectively.

For any given data set, the number of solutions f fitting the

data y will be infinite. From the point of view of the Bayesian

algorithm, the probability of solutions that have large oscil-

lations is very small, though their number may be large. The

most probable solution of the Bayesian algorithm is generally

rather smooth and simple, which reduces the risk of giving a

seriously ‘wrong’ answer. However, for a given measured

profile (convolution) and sensor response function g(x),

obtaining the deconvolution is complex as the underlying

function cannot be measured directly. The components with

short wavelength of variation have been averaged out by the

response function; as a result, there is some information loss

through convolution. The lost information cannot be fully

retrieved by any method. In such a case, the Bayesian algo-

rithm tries to use a smooth function f(x) to fit the observed

convolution y(x), so that the probability of making a large

error in predicting f(x) is small. As a result, the prediction of

the underlying variation will always tend to be ‘conservative’

in the sense that the actual underlying variation may be more

extreme. Consequently, the prediction is likely to be ‘non-

conservative’ in the engineering sense, in that the underlying

function maybe more extreme. However, the predicted

variation is likely to be less non-conservative than the

response actually measured. As a consequence, the variance

�2
f predicted by equation (17) is not likely to be accurate if the

underlying function contains significant components having

wavelengths smaller than the width of the sensor window. Of

course the materials engineer will try to choose the gauge

dimensions such that important variations in the underlying

profile are not lost in this way. Smaller scale variation will be

captured in the diffraction peak width. A great deal of work

has been done using Fourier analysis of diffraction peak line

broadening to obtain the root mean square (r.m.s.) strain as a

function of sampling length as outlined by Noyan & Cohen

(1987).

3. Undertaking scanning as efficiently as possible

Clearly, given the high cost and demand for synchrotron and

neutron beams, it is important to make strain measurements to
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sufficient accuracy to estimate the underlying profile as

quickly as possible. For a symmetrical diamond-shaped gauge

of the type considered here in Fig. 1 (i.e. as would be deter-

mined by apertures of equal sizes defining the incoming and

outgoing beams), the number of counts per unit time is

proportional to the square of the sensor (gauge) width (W2)

for a specific measurement geometry (scattering angle 	). The

number of measurements per unit length of scan line is given

by 1=�x, where �x is the spacing between successive

measurements. Using equation (9), the uncertainty in peak

position is given by

�y ’ �diff=ðInÞ
1=2

ð20Þ

if the peak height to the background ratio is high. As a

consequence, the time to acquire a measurement to a given

accuracy �y is proportional to

�2
diff=ðW

2�2
yÞ: ð21Þ

As a result, the time to complete a scan is proportional to

�2
diff=ð�x W2�2

yÞ: ð22Þ

Thus for a given diffraction peak width (�diff) we want to

maximize �x W2�2
y in order to undertake a scan as quickly as

possible consistent with obtaining a good estimator of the

underlying profile.

4. Application of the deconvolution algorithm to
synthetic data

The chief advantages of synthetic data when assessing the

performance of any reconstruction algorithm are that one

‘knows’ the underlying function that one is trying to estimate

and one can systematically vary the quality of the data. Here

Gaussian ‘noise’ with standard deviation �f has been added to

the smooth underlying function f(x) characteristic of the type-

I macro-stress (strain) profile at a series of N discrete points.

As discussed earlier, in practice such point-to-point fluctua-

tions might arise from microstructural heterogeneities.

A sensor response function, g(x), taking the form of a

triangle (as seen in Fig. 1), has been used to represent the

sampling capability of the sensor. This has then been convo-

luted with the ‘noisy’ underlying function specified at N (=

200) points at each of M measurement points, spaced �x apart

to give the best possible measured response. This represents

the measured signal were there no noise associated with the

sensor. Finally, the measured training data were obtained by

adding conventional Gaussian measurement noise (�y) to the

response to represent statistical error associated with the

sensor. In the case of diffraction, this might be due to the use

of poor counting statistics leading to poor determination of

the diffraction peak centre and is represented by equation (9).

While in practice the level of peak fit uncertainty is often

evaluated by the peak fitting routine, except where stated no

information about the likely level of measurement uncertainty

was input into the model.

4.1. Test example I

As a first test case, we have taken the underlying function

(type-I strain) to be

f ðxÞ ¼ sinð�xÞ=ð�xÞ; ð23Þ

with the boundaries of the strained object located at x = 0 and

x = 6. This function has a very simple frequency distribution,

with decreasing amplitude of signal with increasing x.

In order to assess the performance of the Bayesian frame-

work compared with a conventional �2 minimization, equation

(6) was first solved using the cost function �2 � ky�GUwk2.

The results are shown in Figs. 2(a) and 2(b). We can see that

the model predicts very poorly the underlying function, even

though the predicted convolution passes through each

measurement almost exactly. It is also observed that the

predicted convolution (Fig. 2a) exhibits higher oscillation near

the boundaries of the sample than within the sample. This is

because the effective volume becomes smaller when the centre

of the gauge leaves the sample, and the contribution to the

cost function is exaggerated by the measurements with most of

the gauge outside of the sample. A more reasonable fit could

be obtained by reducing the number of basis functions, but

that would require prior knowledge of the likely form of the

underlying profile. If, on the other hand, a weight decay term

0:01kwk2 is added manually to the above cost function, the

prediction on the measured convolution is improved some-

what without prior knowledge (see Fig. 2c). However, while

the curve through the measurements appears reasonable, the

estimate of the underlying function is far from satisfactory

(see Fig. 2d). Further increasing the weight decay would

compromise the features in the measured response. In the

Bayesian algorithm, the weight decays �i (connected to each

weight) are set in an optimal iterative manner. The weights

that cause large oscillation are most likely to be removed;

consequently the performance of the Bayesian model is far

superior (Figs. 2e and 2f), although it does take longer to run

(�30 s) than the conventional �2 minimization. Note that the

model is closer to the smooth underlying function than the

original noisy (microstructurally fluctuating) profile (open

symbols in Fig. 2f).

Fig. 3 shows the comparison between the measurements and

the Bayesian model predictions for a fixed sampling interval

�x = 0.2 and different noise levels and window widths.

Unsurprisingly for the noise-free measurements with window

width W = 1, our method provides a good estimate of the

sensor response (continuous curve in Fig. 3a) and reconstructs

the unmeasured underlying function almost exactly (Fig. 3b)

with very low noise estimates. With a Gaussian measurement

uncertainty (noise) level of �y = 0.1 and a Gaussian fluctuation

in the underlying function of �f = 0.1, the errors of the model

predictions increase. Nevertheless, the method is able to

predict accurately the convoluted measured response were

there no noise (Fig. 3c) and the deconvolution is able to

reproduce details of the underlying function very well, even

within the region of smaller amplitude where the scatter is as

large as the signal. Note that the data points in Fig. 3(c) are

research papers

J. Appl. Cryst. (2006). 39, 410–424 Xiong and Withers � Profile reconstruction 415



generated using the same conditions as those in Fig. 2, and the

differences are due to the randomness of noise added. The

predicted convolution profiles are therefore slightly different,

but the predictions of the underlying profile are in close

agreement, certainly within the error-bars. Note that here the

error-bars are somewhat smaller than in Fig. 2( f), reflecting

greater confidence in the prediction.

If we increase the window width to 4, the predicted

underlying function has good accuracy towards x = 0 due to

the improvement in spatial resolution at a surface where the

gauge is only partially filled; however it loses detail in regions

of smaller amplitude (as seen in Figs. 3e and 3f). As is seen

from the dashed line in Fig. 3(e), the smearing effect of the

large window means that the oscillations in the underlying

function are lost. As a result, even though the best estimate of

the convoluted profile (solid line) is close to the noiseless one

(dashed in Fig. 3e), the deconvoluted prediction cannot

recover the features in the underlying function Fig. 3( f). This

worsening of performance is

captured by the large error-bars

and the predicted profile is no

worse than the microstructurally

affected total signal (the open

circles in Fig. 3f) as an estimate of

the underlying function, though it

is more conservative. The fact that

the solid lines in Figs. 3(e) and

3( f) are so similar indicates that

the model does not seriously

amplify noise-related fluctuations,

i.e. introduce more detail than it

should in its predictions of the

underlying response. In both Figs.

3(e) and 3( f), the error-bars are

reasonable estimates of the point-

to-point scatter.

From the figures it is evident

that the model works as well as

can be expected on all these data

sets. Indeed, the model predicts

the measured (convoluted)

response, y(x), more nearly than

the individual measurements on

which it is based in all cases.

Furthermore, once deconvoluted,

the expected values (predictions)

from the model are in general

closer to the underlying smooth

type-I strain profile, f(x), than one

would measure with a completely

faithful infinitesimally fine sensor,

which would pick up the micro-

structural fluctuations. Similar

behaviour has been observed in

the dynamic model for predicting

deformation microstructures

(Xiong & Withers, 2005). As one

would expect, its performance in

recovering the profile is better for

the sensors with the narrower

response functions. From this

perspective, the triangular sensor

response is better than a corre-

sponding top-hat function of the

same extent because it weights

more heavily towards its centre.
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Figure 2
The right-hand panels, (b), (d) and ( f ), show the underlying smooth function, sinð�xÞ=ð�xÞ (dashed line),
along with the actual microstructurally fluctuating (�f = 0.1) values (open symbols). The convolution of the
smooth profile with the sensor is shown in the left-hand panels, (a), (c) and (e) (dashed line), along with the
noisy (�y = 0.1) measurements (full symbols). In (a) a conventional �2 minimization has been applied (solid
line) to give an estimate of the underlying profile (solid line) in (b). In (c) a 0:01kwk2 weight decay has been
added to the �2 cost function, while in (e) a Bayesian algorithm has been used to estimate the underlying
function (dashed line) in ( f ). The number of points at which the underlying function f is specified, N (=
200), is not important so long as the integrations in equation (2) are accurate enough numerically; for
clarity, only a fraction of the 200 points are shown (by open symbols) in the right-hand figures. The insets in
(c), (d), (e) and ( f ) compare the predicted values (triangles) and the data points (circles) against the
noiseless true profile. All the predictions (triangles) of the Bayesian algorithm have associated error-bars
which have been omitted for clarity, but a typical error-bar is shown at the bottom-right of the inset ( f ).



For fixed values of noise level, the effect of input noise �f is

less significant than the sensor noise �y. This can be under-

stood as the effect of the response function is essentially that

of a moving-window-average, which can eliminate (random)

microstructural fluctuations of the signal. Unsurprisingly, the

predictions on the observed values (i.e. the profile measured

by the sensor without sensor noise) are generally better than

those on the non-observables (i.e. the underlying function), as

information in the underlying signal is partly lost through the

convolution.

4.2. Test example II

As a second test case, we have taken the underlying func-

tion to be

f ðxÞ ¼ cos½�xðxþ 1Þ=2�; ð24Þ

over the range 0 to 4. This func-

tion has a richer spectrum struc-

ture than sinð�xÞ=ð�xÞ over the

defined region, since the half

period decreases from essentially

1 to 1/2 to 1/3 to 1/4, etc., between

each successive minimum.

Figs. 4(a) and 4(b) show the

comparison between the

measurements and the model

predictions using a sampling

interval �x = 0.05 and noise

levels �y = 0.1, �f = 0 and a

window width of W = 1. We can

see from Fig. 4(b) that the

prediction is very good over the

longer periods, becoming unac-

ceptable at around x = 2.5 (
 ’ 2/

3). The smearing action of such a

wide window (W = 1) has filtered

out Fourier components with

shorter periods. Good perfor-

mance was recovered near the

surface (x = 4) despite the very

sharp variations there (
 ’ 1/3).

This is because, as noted earlier,

as the gauge leaves the sample,

signal is received from only a

small part of it, thus decreasing

the effective sensor size.

One might expect that a more

complete recovery of the under-

lying function could be achieved

by increasing the spatial defini-

tion and lowering the uncertainty

of the measurements. Figs. 4(c)

and 4(d) show the equivalent

response using a sensor of higher

spatial resolution (W = 0.2) along

with lower measurement noise

levels, �y = 0.01, and a larger

sampling interval, �x = 0.2. This corresponds to the case

where one slides the sensor across by a distance equal to the

width of the sensor in each increment, as is often the case

when scanning with neutron diffraction. Accordingly, it would

be 5 times quicker to complete the scan because of the

reduced measurement frequency, but it would take 25 times

longer to acquire each point because the dimensions are 5

times smaller. In fact, because of the much lower measurement

uncertainty used here, one would need to acquire 100 times

the signal at each point in order to achieve the envisaged 10

times improvement in measurement accuracy [equation (20)].

As a result, the overall acquisition time would be 500 times

that for the first setup. Despite this, the response is certainly
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Figure 3
The convolution using window width W of a triangular response function and sampling interval �x = 0.2
with sample boundaries at 0 and 6. The left-hand panels (a), (c) and (e) show the measured profile, and the
right-hand panels (b), (d) and ( f ) are for the underlying function, sinð�xÞ=ð�xÞ. The open symbols (right-
hand side) indicate the microstructural fluctuations in the underlying function; the full symbols (left-hand
side) show the measured points. The broken lines are the underlying function (right-hand side) and the
noiseless convolution (left-hand side) and the full lines with error-bars are the corresponding predictions of
the method. The number of points of the underlying function f is N (= 200); for clarity, only a fraction of the
200 points are shown (by open symbols) in the right-hand figures.



no better than the previous case. This is because without prior

knowledge of the improved measurement uncertainty, the

sampling rate is too sparse to capture the features of the

underlying profile. Consequently, the model has inferred that

the point-to-point variation in the measurements is due to

noise in the signal rather than any underlying oscillation in the

data. As a consequence, the prediction is of a high measure-

ment uncertainty (large error-bars) and a conservative esti-

mate of the strain profile amplitude. In fact, in this case, even

near the surface (x = 4) the performance is poor due to the

sparseness of the data in this region.

Of course, in practice when making strain measurements,

one can usually infer the uncertainty in the measurement from

the statistical goodness of fit of the Gaussian or other peak

profile to the diffraction peak data. Furthermore, Withers et al.

(2001) have shown that the uncertainty in the measurement of

diffraction angle can be expressed analytically in terms of the

diffraction peak width and the number of counts under the

peak [equation (9)]. Consequently, provided that the

systematic errors are not too large, one can obtain a very good

estimate of the measurement uncertainty �y. This information

can be input into the model directly rather than allowing the

model to deduce the noise level on the basis of the evidence.

This is especially important where the data are sparse, because

it is difficult for the model to differentiate between wavelength

components of the underlying function having a spacing less

than or equal to the spacing of the

data and noisy fluctuations. Figs.

4(e) and 4( f) show the compar-

ison between the measurements

and the model predictions for the

same data as in Figs. 4(c) and 4(d).

In this case we have input the

measurement error (�y = 0.01)

directly into the model as prior

knowledge instead of inferring it

according to equation (17) based

on the evidence. The model now

performs much better in the light

of this new information. In fact,

the model is able to predict the

underlying function across the

whole profile, except in the very-

near-surface region where the

sparseness of the data prevents

accurate deconvolution. In other

words, with the prior knowledge

that the measurement error is

very small, the algorithm simply

selects a solution from functions

that fit the data points well,

allowing shorter wavelength

components that would otherwise

be viewed as unlikely.

4.3. Assessing the performance
over a sine wave

In order to chart the perfor-

mance of the model more quan-

titatively, it is useful to consider

the underlying test function

f ðxÞ ¼ Af sinð2�x=
Þ; ð25Þ

having a constant amplitude Af

and the object boundaries at infi-

nity, since this contains just one

wavelength 
. In this case, we can

calculate the convolution through
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Figure 4
The convolution using window width W of a triangular response function and sampling interval �x with
sample boundaries at 0 and 4. The left-hand panels, (a), (c) and (e), show the measured profile, and the
right-hand panels, (b), (d) and ( f ), are for the underlying function, cos½�xðxþ 1Þ=2�. The open symbols
(right-hand side) indicate the microstructural fluctuations in the underlying function; the full symbols (left-
hand side) show the measured points. The broken lines are the underlying function (right-hand side) and
the noiseless convolution (left-hand side), and the full lines with error-bars are the predictions of the
method. In (e) and ( f ), the measurement uncertainty is known and imposed on the model. For clarity, only
some of the points defining the underlying function are shown in the right-hand figures.



the triangular window (W) analytically:

yðxÞ ¼ AyðW=
Þ sinð2�x=
Þ: ð26Þ

It can be seen that the convolution has the same form as the

underlying function except that the amplitude has the value

AyðW=
Þ ¼ Af

sinð�W=2
Þ

�W=2


� �2

; ð27Þ

which varies according to the window width, W, normalized by

the wavelength of the underlying function. This amplitude is

plotted in Fig. 5, where it decreases very quickly as the

normalized window width increases. This means that the data

measured by a larger window are more vulnerable to the

measurement error, since they have a higher noise–signal ratio

for a given absolute noise level. Since AyðW=
Þ is zero for W =

2k
 (k = 1, 2, . . . ) the information of the underlying function

is blocked completely for these window sizes (note the

tendency for this in Fig. 7). For a general underlying function

having a continuous spectrum, the components with wave-

lengths 
 = W=2k will be completely lost. These cannot be

retrieved by any method, even for the idealized case of

complete sampling, �x! 0, and no noise, �y = 0. The

subsidiary maxima of AyðW=
Þ are very small (i.e. for W=
 >

2), so that Fourier components of wavelengths shorter than

W=2 can be regarded as irrecoverable in most practical

applications.

In order to assess the capability of the method and to verify

these arguments, we have tested the performance of the

method for the underlying function in equation (25) under

various conditions. In each trial we have generated data and

trained the model 40 times for each set of measurement

parameters, namely Gaussian noise level �y (�f = 0 in all

simulations), sampling interval �x and window width W. In

each case, we have calculated the mean error for the convo-

lution and for the underlying function over the 200 specified

locations. In each case, the actual error is the r.m.s difference

between the prediction [equation (18)] and the true value of

the convolution or the underlying function, while the

predicted error is given by equation (19). For each trial, we

calculate the average and standard deviation of the resulting

errors as the expectation and uncertainty, respectively.

4.3.1. Performance versus measurement noise level. The

averaged values of the actual error and the predicted error for

the convolution (�y=Ay) and underlying function (�f=Af )

are compared in Figs. 6(a) and 6(b) for different measurement

noise levels (�y=Ay) for fixed window width W = 0:25
 and

sampling interval �x = 0:05
. It is found that the errors vary

approximately linearly with the measurement error �y=Ay.

The 1:1 gradient in Fig. 6(a) suggests that the inferred error is

almost exactly the same as the noise actually added (i.e.

�y=Ay), with the consequence that it can be used as an accu-

rate indicator of the measurement error. The actual error of

the convolution in Fig. 6(a) is smaller than inferred by the

model, as expressed by the error-bars. It is interesting that the

measurement error feeds back into our inferred error of the

underlying function [i.e. we have a 1:1 gradient in Fig. 6(b) for

the inferred errors]. Once again, the actual error tends to be

smaller than the inferred error-bars, indicating a good esti-

mation of the underlying function in most cases.

Figs. 6(c) and 6(d) show the actual averaged error in

reconstructing the underlying function at different noise levels

for fixed window width and sampling interval. A similar linear

dependence of the error on measurement noise levels (�y=Ay)

is observed to that in Figs. 6(a) and 6(b). In the case of �x =

0:25
 and W = 0:25
, a very poor estimation is achieved and

the error-bars are much larger than the scatter in the

measurements. This corroborates the observations associated

with Figs. 4(c) and 4(d) that for sparse data (�x 
 W) there is

a tendency for the model to infer a low level of variation in the

response by overestimating the noise level. Figs. 6(e) and 6( f)

show the actual error of deconvolution for the same condi-

tions as in Figs. 6(c) and 6(d), except in this case we have input

the measurement error (�y=Ay) directly into the model as

prior knowledge, rather than adjusting it according to equa-

tion (17) based on the evidence. The expected improvement of

performance, as in Fig. 4, occurs only in the case of �x = 0:25

and W = 0:25
 in the region of small measurement error

(�y=Ay). It can be understood that the model cannot track the

true value of the convolution accurately in the presence of

higher measurement error. This suggests that in cases where

the data are sparse (e.g. when acquiring neutron diffraction

data), it may be necessary to make more accurate measure-

ments and to input the statistical measurement uncertainty

into the model as prior information to achieve satisfactory

performance. This has an associated penalty in measurement

time [equation (22)] and a better strategy may be to use a

larger window with overlapping sampling �x<W (see x6).

When �x<W, the simulations suggest that the model is able

to make a good estimate of the actual measurement noise.

4.3.2. Performance versus sampling interval. According to

the sampling theorem summarized by Press et al. (1992), at

least two sample points per period are required to determine a
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Figure 5
The normalized amplitude of the convolution of the underlying function
sinð2�x=
Þ with the sensor response as a function of normalized sensor-
window width (W=
).



sine wave. As the period of convolution is the same as the

underlying function, it seems to be sufficient to sample at an

interval of �x = 
=2 for the convolution; however, this does

not work in practice. Due to the limited resolution of the

gauge, measurement error will result in large oscillations to

the underlying function during deconvolution. Consequently,

the deconvolution method needs greater sampling in order to

avoid possible over-fitting of the noisy data, and to reproduce

smooth functions for both the convolution and the underlying

function.

With regard to the effect of sampling frequency �x, Figs.

7(a), 7(c) and 7(e) show the actual mean error of the decon-

volution for different sampling intervals at various window

widths and noise levels. We can see that there is a sharp

deterioration in performance for �x greater than around

0:22
 (i.e. when the sampling rate is less than 5 per cycle). It is

harder to recognize signal from noisy measurements at low

sampling rates, and in such cases the profile amplitude will be

underestimated and the noise level overestimated as discussed

above. On the other hand, the results also show that increasing

the sampling rate much below 0:2
 leads to relatively mild

improvements in performance. As a conservative estimation

from the simulations, the sampling interval (�x) should be just

less than 
=5 in order to obtain an acceptable (90%) decon-

volution in most cases.

4.3.3. Performance versus window width. With regard to

the effect of window width W=
, Figs. 7(b), 7(d) and 7( f) show

the actual mean error of the deconvolution for different

window widths at various noise levels and sampling intervals.

For small window widths (W<
), the actual errors increase
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Figure 6
The difference between the predictions and the true error values, where the underlying function is f(x) = sinð2�x=
Þ. Each point is obtained by averaging
over 40 simulations (generating synthetic data and training the model 40 times). In (a) and (b), the triangles with error-bars are the actual errors of the
convolution (a) and the underlying function (b), and the diamonds with error-bars represent the uncertainty inferred by the model using equation (19).
In (c), (e), (d) and ( f ), diamonds, circles, squares and triangles are used respectively as the varied parameter increases in size. In (c) and (d), the
measurement error (�y=Ay) is inferred from the data, whereas in (e) and ( f ) it is input as prior knowledge.



slowly as a function of window width. The actual errors are

small, and the deconvolution method can retrieve most of the

underlying function. As the window width increases beyond 
,

the error in the deconvolution increases very quickly and the

solution soon becomes unacceptable. At W ’ 2
, the average

error of the deconvolution reaches a maximum value, 1=ð21=2Þ,

and the algorithm gives only the trivial solution (straight line

of zero height) in accordance with equation (27) and Fig. 5. If

W> 2
, the performance improves somewhat, although not to

an acceptable level.

With regard to the measurement error �y, it is clear that in

the regime for which window width and sampling frequency

provide acceptable performance, the plateau level is strongly

influenced by the measurement error.

If one has no prior expectation of likely dominant wave-

lengths of the underlying function, one could make an

assessment of the critical length scale based on a structural

integrity approach, and use Fig. 7 to assess the largest

admissible gauge width. Alternatively one could undertake

measurements at W and 2W, and by comparing the increase in

amplitude of the (convoluted) measurements with Fig. 5, it

would be possible to read off the dominant stress scale

(wavelength).

4.3.4. Optimal scanning time. If one has some expectation

of the likely wavelength of the underlying function, using the

arguments above one can optimize the scan time by maxi-

mizing the quantity �x W2�2
y [equation (22)] consistent with

achieving an acceptable average error in the estimation of the

underlying function �f . From our simulations, if an average

error of 0:1Af is acceptable, then the fastest scan time per unit

length of profile is given by �x = 0:2
, W = 1:08
, �y = 0:1Ay.

This optimization reflects the tendencies identified above,

namely to keep �x below 0:22
, W ’ 
 or less, and

�y=Ay ’ �f=Af .
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Figure 7
The actual errors, where the underlying function, f(x) = sinð2�x=
Þ, is the same as used in Fig. 6. Similarly, each point is obtained in the same manner as in
Fig. 6. Diamonds, circles and squares are used respectively as the varied parameter increases in size.



5. Application to the reconstruction of real diffraction
data

While the methods by which strain is measured by neutrons

and synchrotron X-rays are essentially the same, the different

characteristics of the beams as discussed above (the latter

having much larger fluxes and much lower scattering angles)

means that the forms of data collected are usually quite

different. This is exemplified by the neutron and synchrotron

strain data obtained for a 10.6 mm shot-peened 7071 Al block

(Webster et al., 1997). The synchrotron data were collected on

BM16 at the ESRF, Grenoble, with the scattering vector (also

the strain measurement direction) parallel and perpendicular

to the surface to measure the in-plane and out-of-plane

components of strain, respectively. The neutron diffraction

data were collected on D1A at the ILL only for the in-plane

direction. In all cases, the 311 reflection was used. In the

former case, slits of 100 mm width were used with X-rays of

40 keV at a scattering angle (2	) of 15.06�, giving a diamond

gauge of approximate dimensions 760 and 100 mm across the

diagonals. As a result, the spatial resolution for the out-of-

plane strain was 7.6 times smaller than for the in-plane strain.

An analyser crystal was positioned in the diffracted beam,

which had the benefit of minimizing surface effects (Withers,

2003). A slit spacing of 0.5 mm was used at the ILL steady-

state neutron source, giving a diamond gauge volume having

approximately equal diagonals (710 mm) at a scattering angle

of 110�. As a result of the much faster times associated with

collection of a diffraction peak using the synchrotron

arrangement, the sampling interval is characteristically finer

and the measurement uncertainty, �y, smaller.

The measured strain profiles for the synchrotron and

neutron data are shown in Fig. 8(a). The strain measurement

errors representative of the synchrotron are of the same size

as the symbols, except at the surface, while the mean error for

the neutron measurements is �2 � 10�4. In practice, it is

common for shifts in diffraction angle that are not related to

elastic strain to occur when the instrumental gauge is partially

full. These effects are sometimes called surface strains or

spurious strains and are well documented (Hutchings et al.,

2005; Edwards, 2003; Webster et al., 1996; Spooner & Wang,

1997). In this work, the strains were measured either in such a

way that the spurious strains are small [for example using an

analyser crystal on BM16 (Withers, 2003)], or corrected by

mathematical analysis (Hutchings et al., 2005). With attenua-

tion lengths of 6.5 and 100 mm for 40 keV X-rays and thermal

neutrons, respectively, in both cases the sampling gauge can be

considered to be evenly illuminated.

The maximum spatial resolution is achieved when the

instrumental gauge just penetrates the surface (when its centre

is located a half of the gauge diagonal from the surface). This

occurs at x = �50, �380 and �355 mm for the out-of-plane

synchrotron, in-plane synchrotron and in-plane neutron

measurements, respectively. As the sample enters the gauge

volume, the effective gauge shape and the position of its

effective centre change until the gauge is entirely within the

sample, after which the effective and geometrical centres

coincide (neglecting the effect of attenuation). The devisor in

equation (2) takes care of the effective increase in the sensor

area as the instrumental gauge is progressively filled by the

sample. Naturally, the diffracted signal increases over this

regime.

In each of the three cases, we take the sensor to be a

triangular function having the extents listed above. We can

then apply the deconvolution based on our statistical learning

method to this data set. Firstly, we can obtain best estimates of

the convoluted sensor position-measured strain response free

from sensor measurement errors. These are indicated by the

lines in Fig. 8(a). The best estimates of the underlying residual

strain profile, reconstructed taking account of the convoluting

effect of the sensor responses, are plotted in Fig. 8(b).

Since the underlying macro-strain profile is not known, the

performance of our deconvolution method cannot be assessed

directly. However, as a result of shot peening, the out-of-plane

stress is expected to be zero and the in-plane stress isotropic,

and therefore we can relate both the in-plane ("z) and the out-

of-plane ("y) strains uniquely to the in-plane stress distribu-

tion [�zðxÞ]. In simple terms:

�zðxÞ ¼ �yðxÞ ¼ E "zðxÞ=ð1� �Þ ¼ �E "xðxÞ=2�: ð28Þ

Given that for aluminium the Young’s modulus, E, is around

70 GPa, and Poisson’s ratio, �, is around 0.33, the in- and out-

of-plane strain profiles should be essentially equal in magni-

tude, but opposite in sign. The stress profiles calculated

directly from the strain profiles of Fig. 8(b) are shown in Fig.

8(c). It is clear that because of the finer spatial resolution, the

out-of-plane synchrotron measurements are most likely to

represent the ‘true’ profile accurately. These show the least

difference between the measured and deconvolved profiles.

The surface stress is in good agreement with a laboratory X-

ray stress measurement made at the surface (�100 MPa). In

contrast to the original analysis (Webster et al., 1997), it has

been possible to recover the underlying shape of the stress

field using the in-plane synchrotron strain measurements.

Once deconvolved, the underlying profile shows a high level of

agreement and the location and extent of the maximum

compressive stress as well as the near-surface stress are in line

with the out-of-plane measurements. There is some evidence

that the profile is shifted by �50 mm relative to that for the

out-of-plane measurements; this degree of mis-registration

would not have been exceptional given the sample location

procedures available at the time. The neutron measurements

show the largest discrepancy (as well as the largest predicted

uncertainties), with the sub-surface compressive maxima not

recovered upon deconvolution. This is a consequence of the

larger measurement uncertainty in the data and the fact that

very few points were measured near the surface.

6. Conclusions

In this paper, we have presented a robust deconvolution

method based on a Gaussian statistical learning technique.

The measurement of convolution is fully described by a

probabilistic model that includes a Bayesian algorithm. This
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method allows predictions of both the convolved profile and

the underlying function, together with their error-bars, while

minimizing the effect of measurement scatter or fluctuation.

The deconvolution method has been tested on both synthetic

and real data sets. The results have demonstrated the condi-

tions under which the model works well in retrieving the

underlying function. The conditions under which the data are

too noisy or too sparse, or where the sensor has inadequate

spatial resolution, have also been determined. The MATLAB

code for our statistical deconvolution algorithm together with

the mathematical formalism is available from our website

(http://www.sdc.manchester.ac.uk/soft/) for those who wish to

apply it to their own data, or for evaluation.

Some conclusions may be drawn as follows.

(i) The actual error (the difference between the predicted

and the true value of the underlying function) is proportional

to the measurement uncertainty �y. The effect of the noise or

microstructural fluctuations �f in the underlying profile on the

reconstruction is very small, and can be neglected.

(ii) The sampling interval does not affect the performance

very much, provided that it is less than 20% of the dominant

wavelength. However, the sampling rate should be increased

accordingly in order to compensate for loss of information due

to measurement error and the limited spatial resolution of the

sensor window.

(iii) In theory, for the idealized case of �x and �y tending to

zero, the window width can be set at any value except a

multiple of 2
 in order to reconstruct the function. However,

in practice, the window width needs to be of the order of 
 or

smaller, in order to obtain an acceptable deconvolution (i.e. to

recover the underlying function within 90%). Wavelengths

shorter than W=2 can be regarded as irrecoverable practically.

(iv) Our method performs best for overlapping measure-

ments; in cases where they do not overlap it may be necessary

to input the measurement uncertainty directly into the model

as prior knowledge.

Of course conclusions (ii) and (iii) are made on the basis of

simulations carried out for idealized profiles of constant

wavelength. For a real function with a continuous spectrum,

the situation will be more complex. It should be noted that

provided that the acquisition time is increased to maintain a

constant level of measurement uncertainty �y, the sampling

gauge can resolve short-wavelength components of the profile

near the surface, even for large sampling gauges.

The implications of these results have been explored for the

optimal choice of gauge size and measurement spacing needed

to recover the underlying macro-stress or strain profile within

minimum time. Perhaps contrary to current practice, the

underlying function can be most efficiently recovered using

our algorithm for neutron measurements using relatively large

gauges (approximately equal to the expected wavelength), but

with a high degree of overlap between successive measure-

ments. Unless one is prepared to use long acquisition times to

achieve high levels of point-to-point measurement accuracy,

this is a more effective strategy than increasing the spatial

resolution by decreasing the window size. If it is acceptable to

recover the profile to within 0.1Af, then a measurement

uncertainty of 0.1Ay is probably sufficient for each measure-

ment. Finally, it should be noted that while we have applied

the deconvolution algorithm to the recovery of the underlying
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Figure 8
The performance of our algorithm on the experimental data (Webster et
al., 1997) collected near a shot-peened Al surface using W = 0.10, 0.76 and
0.71 mm and near-surface sampling intervals �x of 0.02, 0.1 and 0.1 mm
for the out-of-plane synchrotron (filled circles), in-plane synchrotron
(open circles) and in-plane neutron (open squares) measurements,
respectively. The full lines are profiles reconstructed using our method for
synchrotron measurements, while the dashed lines are for the in-plane
neutron data. (a) The measured strain profile. The vertical line at x = 0
denotes the edge of the sample. (b) The reconstructed residual strain
profile versus depth below the peened surface. (c) The inferred residual
stress profile versus depth below the peened surface; a laboratory X-ray
sin2  surface-stress measurement (triangle) is also included for
comparison.



profile for diffraction strain data, the approach is completely

general and is expected to be of wide utility.
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