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PyCIFRW is a general-purpose Python package providing a simple, powerful

interface for working with CIF files. Objects and methods are available for

reading, writing and manipulating CIF files and dictionaries. Comprehensive

validation of CIF files and dictionaries against DDL1 or DDL2 dictionaries is

also possible. PyCIFRW is easily included in larger projects and is portable

across a large number of platforms. Although written in an interpreted language,

parsing and validation times are acceptable for most applications.

1. Introduction

The CIF syntax (Hall et al., 1991) for data archiving and exchange is

well established in crystallography. An important feature of the CIF

format is the availability of standard dictionaries which codify the

meanings of discipline-specific sets of CIF data items in both human

and machine-readable form. These dictionaries are written using a

dictionary definition language (DDL) (Hall & Cook, 2005; West-

brook et al., 2005) which is itself simply a set of standard CIF tags. The

machine-readable tag–value pairs in these dictionaries describe

conditions that each CIF data item should satisfy; for example, the

DDL attributes for a particular data item may restrict values to

positive integers, or allow this data item to occur only in a loop with

another specific data item.

Programming libraries for working with CIF and STAR files (CIF

syntax is a restricted form of STAR syntax) significantly ease the task

of adding CIF functionality to software projects. Such libraries have

long been available in the well established compiled languages

Fortran (Hall & Bernstein, 1996) and C, or variants (Westbrook et al.,

1997; Chang & Bourne, 1998). Among other capabilities, these

libraries read and write syntactically correct CIF files, and in some

cases check CIF data values and structures against one or more DDL

dictionaries.

Such broad CIF support is generally lacking for interpreted

languages, despite a number of advantages that these languages have

over compiled languages. These advantages include: an identical

programming interface on a variety of the common desktop and

mainframe platforms, allowing creation of portable programs with no

additional effort from the programmer; dynamic typing and high-

level constructs mean that similar programming tasks require

significantly fewer lines of code than their C/Fortran equivalent,

leading to better program maintainability; simple tasks can be

accomplished using built-in interactive interpreters; and program

distribution and installation is usually simpler for both author and

installer. Such advantages come at the cost of a much slower

execution speed and larger memory footprint during execution.

However, with the rise of desktop computer power over the past

decade, these costs have diminished to the point where interpreted

languages have become viable alternatives for performing common

computational tasks. Among the most established of these languages

are Tcl (Ousterhout, 1994), Perl (Wall et al., 2000) and Python (van

Rossum & Drake, 2003). A degree of CIF parsing and validation

support in these languages is provided by HICCuP (Edgington,

1997), written in Python, and STAR::Parser (Bluhm, 2000), written in

Perl. HICCuP was an early stand-alone application for working with

CIFs, and offered a series of validation tests against preprocessed

DDL1 dictionaries. STAR::Parser is a set of modules offering both

parsing and validity checking against DDL1 and DDL2 dictionaries.

The project described here is a comprehensive native Python

library for CIF parsing and validating. It differs from the above

efforts in the broader scope of its validation tests against both DDL1

and DDL2 dictionaries and the ability to work with multiple merged

dictionaries. Unlike HICCuP, it is a general purpose, native imple-

mentation designed for rapid integration into larger projects.

2. Using PyCIFRW

This section gives a sample of the simple and powerful interface

provided by PyCIFRW, using the example CIF file of Fig. 1.

An important task for a CIF application is to extract data from a

pre-existing CIF file. Fig. 2 shows an interactive session reading in a

file and accessing data blocks. A CIF file is read in by passing a file

name or URL when initializing a CifFile object. Data blocks within

the file and data items within the data blocks are then accessed using

square-bracket notation, emulating the syntax for access into the

Figure 1
CIF file used in later examples, adapted from a CIF deposited for C13H22O3

(Mondal et al., 2002).
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built-in Python ‘dictionary’ data type. This emulation includes a series

of standard Python dictionary access methods for extracting and

setting values.

Each CIF data block (e.g. mycif[’II’] in Fig. 2) is an instance of

a CifBlock object. Data values for items contained in a CifBlock

are either strings or numbers. If the value of a looped item name is

requested, a Python list of strings or numbers is returned; however, a

complete set of looped items is typically more useful than lists of a

single item’s values. For this reason, the CifBlock method

GetLoop(loop_dataname) returns a CifLoopBlock object repre-

senting the CIF loop block containing loop_dataname. As a

CifLoopBlock object represents an entire loop it is possible to add,

remove and alter co-looped items by simple assignment using the

square-bracket notation.

A CIF loop is composed of one or more loop ‘packets’, where a

single loop packet contains the values taken by all of the data items in

one iteration of the loop. CifLoopBlock objects allow retrieval of a

packet from a loop block by packet number, as shown in Fig. 3. In this

style of access, the link between position in the returned Python list

and data name is obtained by calling method GetItemOrder().

More usefully, Python-style iterators are also defined, allowing

economical selection of packets satisfying an arbitrary condition. The

final command in Fig. 3 demonstrates the use of this feature. The

filter command will return only those packets in the second

argument for which the function given in the first argument returns

True. When executing the function for each packet in CifLoopBlock

object anisos, the packet will be passed as the first variable to the

function; in the example, an anonymous (‘lambda’) function of one

variable (a) is specified. This function checks whether the variable’s

_atom_site_aniso_label is equal to ‘C4A’, thereby selecting only

packets for atom C4A.

These loop methods and iterators are also available for the more

general case of STAR nested loops (see x3 below).

2.1. Save frames

While CIF data files should not use save frames, PyCIFRW reads,

manipulates and writes save frames in order to support DDL2

dictionaries. The save frames in a CIF data block are available

through the special key ‘saves’, the value of which is also a

dictionary. The keys in this dictionary are the frame names. Each save

frame behaves identically to a normal data block.

For example, if df = CifFile(‘cif_mm_2.0.03.dic’), then

df[‘cif_mm.dic’][‘saves’].keys() will give a list of save-

framenames (in this case, data and category name definitions from

the macromolecular CIF dictionary), and df[‘cif_mm.dic’]

[‘saves’][‘atom_site’] will be a CifBlock containing the

attributes of the atom_site category. Save frames are invisible

during normal operations on a data block: for example,

df[‘cif_mm.dic’].keys() returns a short list of dictionary global

data names, excluding the 1800 data name definitions found inside the

save frames.

2.2. CIF output

A string object suitable for writing to a file is obtained by calling

the built-in Python str function on a CifFile object. Internal

formatting functions insert quotation marks and semicolons where

necessary, and illegal characters will be absent, as the presence of

such characters in a data value would have caused an error to be

raised when the data value was first set. Overlong lines are broken at

the last whitespace before the line length limit, or, if no whitespace is

available, at an arbitrary 80 characters. Special handling of long lines

using the backslash convention is not yet implemented.

2.3. Validation

In the following, ‘validation’ is used to mean checking that the

values and placement of data items in a CIF data block conform to

the specifications contained in one or more machine-readable DDL

dictionaries.

PyCIFRW defines a validate function which returns validation

results for the given CIF file and CIF dictionary or dictionaries.

Alternatively, PyCIFRW bundles a simple command-line program

called cif_validate.py which executes all relevant validation

functions on the given CIF file when passed a list of dictionaries.

Dictionaries may be specified by name and version, or by file name,

and are downloaded if necessary. An example use of this program is

shown in Fig. 4. DDL2 dictionaries may be used to validate DDL1-

style CIF files; this is achieved by creating new dictionary entries

during internal initialization using the value of the DDL2 _item_

aliases.alias_name attribute.

A list of the validation tests performed by PyCIFRW is given in

Table 1. Each test was developed by examining the description of

each attribute in the DDL1 and DDL2 specifications published in the

International Tables for Crystallography, Vol. G (Hall & McMahon,

2005), where necessary referring to canonical dictionaries for exam-

ples of correct attribute use. Note that, while an output file produced

by PyCIFRW is guaranteed to be syntactically correct, it is not

guaranteed to be valid unless the validate function returns no

errors.

2.3.1. Treatment of multiple dictionaries. When multiple diction-

aries are provided to the validation routines, they are first merged

according to the protocol suggested by McMahon (2005) (BM), with

the following variations.

(a) The calling function is responsible for ordering the dictionary

list [BM step (i)].
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Figure 3
Working with looped data. A loop block is selected and the third packet (out of
five; see Fig. 1) accessed. Note that Python list indices start from 0. The U33 value
for atom C4A is then found using an alternative access method.

Figure 2
Example of interactive use, showing retrieval of non-looped data item
_cell_length_a, which is returned as a string, and retrieval of _symmetry_
equiv_pos_as_xyz from the loop_ block, which is returned as a Python list
object.



(b) Contrary to BM, when a dictionary definition contains

unlooped attributes, and the new dictionary to be merged with it also

contains some or all of these attributes, ‘overlay’ mode will not

attempt to construct a loop including both old and new attributes,

even if those attributes may be looped. Instead, the merged

dictionary will contain the attribute as it appears in the new

dictionary, if necessary removing it from any loop block or adding the

complete loop block in which it appears. Behaviour as specified by

BM requires access to the DDL1/2 dictionaries specifying looping

properties for the data items, and will be implemented in a future

release.

2.3.2. Comments on the validation of DDL1 and DDL2 diction-

aries. Just as CIF data files are subject to constraints expressed in CIF

dictionaries, CIF dictionaries are themselves subject to constraints

expressed in the dictionaries that define the DDL1 and DDL2

attributes. The use of save frames in DDL2 dictionaries sometimes

leads to subtle differences in interpretation of attribute meaning

when validating dictionaries compared with validating CIF data files.

In particular, it becomes important to identify the correct object for

validation: in the general case, we conclude that it is the complete

data block which is valid or invalid, rather than, for example, a single

definition block. While it might be expected that the combination of

enclosing data block and single definition save frame for a DDL2

dictionary would be sufficient to satisfy validity constraints, this is also

not generally true. This behaviour arises because ascertaining the

correctness of a number of DDL2 attributes requires checking the

presence or value of certain attributes which can only be found in

other save frames. For example, _item.category_id, which appears

in most save frames, is a child of _category.id, so values taken by

_category.id in category-definition save frames must be examined

to check that _item.category_id takes legal values.

The interpretation of the _category.mandatory_code attribute

is somewhat unclear in the context of a DDL2 dictionary. Vol. G of

International Tables for Crystallography (Hall & McMahon, 2005)

states that this attribute ‘specifies whether the category must appear

in any data block based on this dictionary’ (p. 64). Uncertainty arises

from the setting of this attribute to yes for the ITEM_DESCRIPTION

category. In currently available DDL2 dictionaries, attributes

belonging to this category appear in those save frames that define

data item names. The intention of the authors of the ITEM_

DESCRIPTION category definition in specifying that this is a manda-

tory category would appear to have been to force all defined names to

have an associated description, which implies from a validation point

of view that the scope of a search when checking for the presence of

such a mandatory category item is a single save frame. However,

under such an interpretation, all category definition save frames in

DDL2 dictionaries would be non-conformant, as they do not contain

any data items from the ITEM_DESCRIPTION category. Therefore, an

alternative interpretation is adopted, where an item is considered to

appear in a data block even if the only appearance is in one or more

save frames.

As implied by the above discussion, PyCIFRW will correctly

validate DDL1 dictionaries in the same way as ordinary CIF files;

however, DDL2 dictionaries require a special flag to the validation

routines. This flag causes PyCIFRW firstly to make the translation

save frame! data block for the purposes of validation, but then to

search outside a single save frame to resolve parent–child references

and check for the presence of items from mandatory categories in the

dictionary as a whole.
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Figure 4
Example of validation output using small-molecule CIF C13H22O3.cif (Mondal et
al., 2002).

Table 1
Validation tests in PyCIFRW.

NA = not applicable.

Relevant attributes

Test DDL1 DDL2

Check against type specified in dictionary _type,_type_construct _item_type.code and _item_type_list.construct
Check value is in allowed range _enumeration_range _item_range.maximum and _item_range.minimum
Check value is in allowed set _enumeration _item_enumeration.value
Check that e.s.d.’s are allowed _type_conditions _item_type_conditions.code
Check that value is/is not looped _list NA
Check that all items are from same category _category _item.category_id
Check that mandatory items are present in the loop _list_mandatory _item.mandatory_code
Check that any reference names specified by loop items are present _list_reference NA
Check that child items only take values of the parent item and that

parent is present
_list_link_child _item_linked.child_name

Check that all items which this item depend on are present in the data
block

NA _item_dependent.dependent_name

Check that at least one item from any mandatory categories is present NA _category.mandatory_code
Check that sets of items take unique values _list_uniqueness _category_key.name



3. Implementation

The various PyCIFRW objects are built out of two fundamental

objects defined in the underlying STAR file implementation:

BlockCollection and LoopBlock.

LoopBlock objects are collections of key–value pairs with a special

key ‘loops’ containing a possibly empty list of LoopBlocks, corre-

sponding to nested loops. This list is also searched when retrieving or

setting data values, so that data names act as if they are keys of the

outermost LoopBlock. LoopBlocks are STAR-conformant objects;

in particular, they may be arbitrarily deeply nested, and have no

name length restrictions. A number of methods are provided in the

underlying STAR file implementation for iterating over nested loop

packets, some of which are useful in the CIF context, as described in

the previous section.

A CifLoopBlock is a LoopBlock with restricted-length key

names, and values which are either simple lists or atomic values. A

CifBlock is a CifLoopBlock with non-list data values. The under-

lying generalization is that a STAR data block is a special case of a

STAR loop block; the set of all non-looped key–value pairs in a CIF

or STAR block could be equally well expressed as a loop with a single

data packet.

A BlockCollection object represents a collection of objects

derived from LoopBlock and is used to construct the CifFile object

and each block’s set of save frames, which are also collections of

blocks. BlockCollections add case-insensitivity of key names and

preservation of input order to the standard Python dictionary type.

3.1. CIF input

The data representation described earlier is built up during parsing

of a CIF file. Parsing is accomplished using a parser constructed by

the Yapps2 lexer/parser (Patel, 2003) from a simple implementation

of the STAR grammar specification. This grammar, together with pre-

and post-parsing checks, is designed to be rigorously conformant to

the CIF 1.1 standard (Hall et al., 2005) and as such PyCIFRW can be

used as a CIF syntax checker. It has been tested against the IUCr

‘trip’ test suite (http://www.iucr.org/iucr-top/cif/developers/trip) and

correctly identifies both conformant and non-conformant files.

3.2. Dictionaries, validation and merging

The CifDic object is subclassed from a BlockCollection object,

and requires one or more DDL1 and/or DDL2 dictionaries to be

provided at initialization. These dictionaries are normalized to a

uniform internal structure, allowing data name definitions to be

accessed using square bracket notation instead of needing to access

the various save frames in the case of DDL2.

The validation routines listed in Table 1 are methods of the CifDic

object. CIF value type checking for DDL2 dictionaries is performed

by direct use of the regular expressions contained in the dictionary

file.

A number of obvious transformations are performed when initi-

alizing DDL1 dictionaries in order to produce DDL2-like behaviour:

category-wide information (e.g. _list_mandatory, _list_uni-

queness) is transferred into a category block; definitions containing

looped _name data items are expanded to include one item name per

definition; enumeration ranges are expressed using DDL2-style

maximum/minimum specifications; and specific _type_construct

attributes are moved to the dictionary global level. DDL2 diction-

aries are also transformed by moving parent/child attributes to the

corresponding data name definition as for DDL1 dictionaries. Due to

the difficulty of reversing this latter transformation, DDL dictionary

merging in PyCIFRW is performed at the CifFile level, and the final

merged CifFile object is used to initialize the CifDic object.

4. Discussion

Table 2 gives some representative times for input and validation of

typical small-molecule and protein data files, as well as dictionary

preparation times (which are dominated by the parsing stage). As

expected for an interpreted language, parsing of typical input files is

of the order of seconds with current hardware, compared with

compiled-language parsers which would take small fractions of a

second. Validation times give an order of magnitude estimate of data

access times for data-hungry applications, as validation requires

accessing every data item at least once.

For applications which do not access large numbers of CIF files,

these times are well within acceptable limits. As compensation for the

loss in execution efficiency, programmers obtain maintainable, easily

distributable code which runs without change on all platforms, and

end users have the option of simple command-line interaction with

CIF files.

5. Availability

PyCIFRW runs on all platforms supported by Python, which includes

Windows, Linux and Mac OS X. The program code and developer

documentation are produced from single files in the literate

programming noweb (Ramsey, 1994) format to ensure maximum

accessibility and maintainability. PyCIFRW is copyright the Austra-

lian Synchrotron Research Program and is freely downloadable

under liberal licensing terms from http://anbf2.kek.jp/CIF. It is also

bundled as part of the CCTBX project (Grosse-Kunstleve et al.,

2002).

The author is grateful to a number of early users of PyCIFRW,

especially R. Grosse-Kunstleve and D. du Boulay.
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